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2.1

The goal of sequence similarity

There is a well-known conjecture in the industry of biology. Given two DNAs,
RNAs or Proteins, if they are highly similar, we can infer that the DNAs, RNAs or
Proteins share similar function or similar 3D structure. Consequently, researchers
of bioinformatics often need to compare the similarity between two biological
sequences. A wide variety of applications in sequence comparison have been
probed for quite a long time. Some typical applications are given below:

Inferring biological functions of gene.
When a gene looks similar to some gene with known function, we can con-
jecture that both genes have similar function.

Finding the evolution distance between two species.

We know that evolution often modifies the DNA of species in the way
of mutation.By measuring the similarity of their genome, we can know
their evolution distance. Such knowledge is especially important for biology
scientist.

Helping genome assembly.

For instance, human genome project can reconstruct the whole genome on
the basis of the overlapping information of large quantities of short DNA
pieces. The overlapping information is extracted using sequence compari-
son.

There are many other applications of sequence similarity.

Examples include reconstructing long sequences of DNA from overlapping
sequence fragments, comparing DNA sequences in Databases, and com-
paring two or more sequences for similarities and searching databases for
related sequences and subsequences.
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2.2 Global alignment

2.2.1 The string alignment between two strings

Given two strings, S = ACAATCC and T = AGCATGC, one way to compare
them is to compute their alignment. Below is a possible alignment of the two
strings. The special symbol “-” is called a space. More precisely, the alignment
of the two strings is obtained by introducing some spaces, either into or at the
ends of S and T,so the length of the sequences will be the same,and then placing
the two resulting sequences one above the other so that every character or space
in one of the sequences is paired to a unique character or a unique space in the
other sequence.

If the paired characters are the same, we call it a match, otherwise, we call a
mismatch. If a space in the first sequence is paired to a character of the second
sequence, it is an insert. If a character in the first sequence is paired to a space
in the second sequence, it is called a delete. During the above example, the
alignment contains 8 pairs. 5 pairs are match. 1 pair is mismatch. 1 pair is
delete. 1 pair is insert.

S = A-CAATCC
T = AGCA-TGC

2.2.2 Goodness evaluations

The goodness of alignment is defined by >, §(S[i], T'[7]), where §(x,y) is a simi-
larity function between x and y, each is a single character or a single space. Fig-
ure 2.1 shows a similarity function, where §(z,y) = 2, —1, —1, —1 for match,mismatch,delete
and insert respectively.

For the previous two sequences. The similarity score of their alignment is
7(2%5—1—1—1= 7). We can check that this alignment has the maximum score.
Such alignment is called optimal alignment. Other alignments of the two strings
get lower scores. String alignment problem tries to find the alignment with
the maximum similarity score. This problem is also called global alignment
problem.

Some people like to use distance function to evaluate the goodness of align-
ment. E.g., one distance function is as follows: match(0), mismatch(1), insert(1),
delete(1). The optimal alignment problem tries to find the alignment with
the minimum distance.

Usually, the minimum distance is called the edit distance. The edit dis-
tance between two sequences could also be thought as the minimal number of
edit operations (insertions, deletions and substitutions) needed to transform one
sequence into the other, which could be used to roughly measure the replication
process of DNA sequences.
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Figure 2.1: Example of similarity function

Let’s compare the similarity function and distance function. We could find
out that if you negate the values in the distance function, it becomes a similarity
function.Since similarity and distance are dual concepts, we only study similarity
function in this note.

Two special Cases:

e Longest common subsequence (LCS):Score for mismatch is negative
infinity; score for insertion or deletion is 0; score for match is 1.

e Hamming distance: score for insert or delete is negative infinity

2.2.3 Needleman-Wunsch algorithm

This section discusses how to compute the optimal alignment of two strings.
Consider two strings: S[1..n] and T'[1..m]. Define V(i,) be the score of the
optimal alignment between S[1..i] and T'[1..7].

Basis:

V(0,0) =0
V(0,7) =V(0,7 —1)+ (5, T[j]) Insert j times
V(i,0) =V(i—1,0) +6(S[7],u) Delete i times

Recurrence: (for i > 0 and j > 0)

V(i—1,j—1)+0(S[F],T[j]) match/mismatch
V(i,j) =max< V(i—1,7) 4+ 0(S[é], ) Delete
V(i,j—1)4+6(u, T[7]) Insert

For the alignment between S[1..i] and T'[1..5], the last pair of alignment should
be match, mismatch,delete or insert. To get the optimal score,we choose the
maximum value among these three cases. Thus, we have the above recurrence.

Figure 2.2 shows the V table of the two strings S = AGCATGC and T =
ACAATCC . We fill in the table row by row based on the above recursive equa-
tions. Let’s look at row 2, column 2. The value 2 is obtained by choosing the
maximum of 0+2,—1—1,—1— 1. Let’s calculate another one, e.g., row 2 column
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Figure 2.2: The dynamic programming table for S = AGCATGC and T =
ACAATCC

3. We choose the maximum value of —1+2, 2—1,—2 — 1. Note that in this case,
there are two ways to get the maximum value. In Figure 2.2, we draw arrows
to indicate all the ways to get the maximum values. The max alignment score we
obtained at the right bottom corner of the table is 7. Then, we trace back along
the arrows to the value for the first pair of the two sequences, thus finding the
optimal alignment.

Analysis

e Space: We need to fill in all entries in the n x m table, so space complexity
= O(nm)

e Time: Each entries can be computed in O(1) time. Time complexity =
O(nm)

2.2.4 Problem about the space

Note that the dynamic programming requires O(mn) space .When we compare
two very long sequences, space would be a problem. Can we solve the string
alignment problem in linear space?

2.2.4.1 Finding optimal alignment score of two strings in O(min(n, m))
space

If we just want to get the alignment score in the previous example, observe that
the table can be filled in row by row. In other word, when we fill in a row, we
only need the V-values of the current row and the previous row. The V-values
in all other rows are not necessary. If n is smaller than m, we could fill the table
row by row. If m is smaller, we could fill column by column. Thus, if we did not
need to backtrack, space complexity = O(min(n,m))
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Figure 2.3: Mid-point Example

2.2.4.2 Finding optimal alignment of two strings in O(n + m) space

In fact, we can deduce the optimal alignment of two strings in O(n + m) space.
based on the cost-only algorithm in Section 2.2.4.1.

The main observation is the following equation. It means that the opti-
mal alignment of (S[l..n],T[1..m]) is the union of (1) the optimal alignment
of (S[1..n/2],T[1..7]) and (2) the optimal alignment of S[n/2+1..n],T[j+ 1..m]).
Figure 2.3 illustrates this idea.

V(S[1..n], T[1..m]) = maz1<j<m{V (S[1..n/2], T[1..j])+V (S[n/2+1..n), T[j+1..m])}

The entry (n/2,7) is called the mid-point. The following algorithm tells us
how to compute the mid-point using the cost-only algorithm in Section 2.2.4.1.
The mid-point algorithm is as follows:

1. Do cost-only dynamic programming for the first half. Then, we find V' (S[1..n/2],T[1..7])
for all 5

2. Do cost-only dynamic programming for the reverse of the second half. Then,
we find V(S[n/2 + 1..n|,T[j + 1..m]) for all j

3. Determine j which maximizes the sum!

If we divide the problem into two halves based on the mid-point and re-
cursively deduce the alignments for the two halves, we can reduce the space
complexity to O(n + m). The overall algorithm is as follows.

Algorithm Alignment(S/[iy..is], T[j1..J2])

1. Let maid = (i1 + ig)/?
2. Find the mid-point (mid, j) using the mid-point algorithm

3. Deduce the alignment based on Alignment(S[i;..mid], T[j;..j]) and Alignment(S[mid+
1..io], T[j + 1..52])

Analysis
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e Space: Working memory for finding mid-point takes O(m) space. Each
dynamic programming computation requires storing one additional row,
which can be discarded once the middle point is found. Thus, in each
recursive call, we only need to store the alignment path. If n < m we
can store the middle column instead. Therefore the space complexity is

O(min(m,n)).

e Time: Time for step 1 is O(n/2m). Time for step 2 is also (n/2m).Time
for step 3 is m. So the time complexity of the first cycle is the sum of
the three steps,O(nm). Let’s define T(m,n) as the time for the whole
alignment.T(n, m) = time for finding mid-point + time for solving the two
subproblems= O(nm) + T(n/2,j) + T(n/2,m — j).Thus, time complexity
=T (n,m) = O(nm).

2.2.5 Problem about the speed

e Aho, Hirschberg, Ullman (1976): If we can only compare whether two sym-
bols are equal or not, the string alignment problem can be solved in Q(nm)
time.

e Hirschberg (1978): If symbols are ordered and can be compared, the string
alignment problem can be solved in Q(nlogn) time.

e Masek and Paterson (1980)—Based on Four-Russian’s paradigm, the string
alignment problem can be solved in O(nm/logn) time.

Let d be the total number of inserts and deletes. Note that 0 < d < n+m. If
d is smaller than n+m, we can get a better solution. Observe that the alignment
should be inside the (2d + 1) band, since the number of deletes and inserts is at
most d (see Figure 2.4). The lower and upper triangle beside the (2d + 1) band
in the V table require more than d’s deletes or inserts. Thus, we don’t need to
fill in the lower and upper triangle in the V table.The area of the (2d 4+ 1) band
in the V table is (nm — (n — d)(m — d) = md + nd — d?). The time for filling in
every entry inside the band is O(1). So the total Time is O((n + m)d).
Example (Figure 2.5): We could see the maximum score is 7. The most optimal
alignment in this example is A-CAATCC and AGCA-TGC (2—-1-3-5—4—
6 — 5 — 7). The optimal alignment is not unique. We may get other optimal
alignments if there are more than one back tracing path.

2.3 Local alignment

We know that global alignment is used to align the entire sequences. Sometimes
we are interested in finding the subsequences of the input sequences whose align-
ment has the highest score. In other words, we are ready to ignore any deletions



Lecture 2: Sequence Comparison - August 16, 2002 2-7

Figure 2.4: 2d + 1 Band
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Figure 2.5: 2d+1 Band Example

which happen at the beginning or end of any of the two sequences. Such sequence
comparison is called local alignment. Local alignment searches for regions of
local similarity and does not include the entire length of the sequences. In prac-
tice, local alignment method is very useful for scanning databases when we do
not know that the sequences are similar over their entire lengths.

2.3.1 Brute-force algorithm

The mechanism of local alignment is as follows. Let S[1..n] and T'[1..m] be two
strings. Local alignment proceeds with the following steps.

e Find substrings(i.e., contiguous subsequences) A of S and B of T.
e Compute the similarity score of substring pair A and B.

e Select a pair of substring A" and B’, whose optimal (global) alignment
has the maximum value over all pairs of such substring A and B.

Clearly, there are n? choices of substring from S and m? choices of substring
from T. The process of global alignment of A and B costs O(nm). Hence, the
total time complexity equals to O(n*m?).
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2.3.2 Smith-Waterman algorithm

We can see that the above algorithm is too slow. In 1981, Smith and Water-
man proposed a better solution toward the problem of local alignment. Before
describing the algorithm, we give some definitions first.

Prefix X is a prefix of S[1..n] if X = S[1..k], where 1 <k < n.
Suffix X is a suffix of S[1..n] if X = S[k..n], where 1 <k < n.

For example, let S[7] = ATCCGGT, then ATCC is a prefix of S and GGT
is a suffix of S. Note that empty string is both prefix and suffix of S.

V(i,j) Given two strings S and T with [S| = n, |T| = m. V(ij) is the
maximum value of an optimal(global) alignment of A and B over all suffixes
A of S[1,..i] and all suffixes B of T[1..j], where 1 <i<mnand 1< j<m.

Intuitively, the score of local alignment is maz;;V (¢,7). Smith-Waterman dy-
namic programming algorithm for optimal local alignment is quite similar to
that of global alignment. Detail of this algorithm is given as follows.

Basis:

V(i,0)=0
V(0,5) =0
Since the optimal suffix to align with a string of length 0 is the empty suffix.
Recurrence: (for i > 0 and j > 0)

0 Align empty strings
oy V(i—1,7—1)+6(S[i],T[j]) Match/mismatch
V) =maxq g 175y 15 ) Delete
V(i,j—1)+6(u,T[j]) Insertr

2.3.3 Example

For example, let S = CTCATGC and T = ACAATCG, a match score +2, an
insert and a delete score —1. Smith-Waterman dynamic programming algorithm
fills in the V table with values from top to bottom and left to right. Figure 2.6
shows the V table. The maximum score 6 is the score of the optimal local
alignment of S and 7.

The path in Figure 2.6 corresponds to the optimal alignment, which is:

C_AT_G
CAATCG
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Figure 2.6: The V table for local alignment between S = CTCATGC and T =
ACAATCG

2.3.4 Time and Space Analysis

For the time analysis of Smith-Waterman algorithm, note that we need to fill in
all entries in the n x m table, where each entry can be filled in O(1) time. The
next step is to find the maximum value among all n x m entries. Totally, the
time needed is O(nm). For the space analysis, since we store the n x m table,
the space required is O(nm).

2.4 Semi-global alignment

In earlier sections, we have seen two kinds of sequence alignment: global align-
ment and local alignment. There is another type of alignment known as semi-
global alignment. Semi-global alignment is similar to global alignment, in the
sense that it tries to aligns two sequences as a whole. The different lies in the
way it penalizes spaces at the beginning and end of the alignment. While global
alignment does not differentiate between spaces that are sandwiched between two
residues and spaces that precede or succeed a sequence, semi-global alignment
imposes no penalty to the latter spaces. To put it more formally, semi-global
alignment assigns no cost to spaces that appear before the first residue or after
the last residue.

To better appreciate the motivation behind semi-global alignment, let’s con-
sider the following example from [SM97]. Suppose we have an original sequence
S and a target sequence 1" below:

S = CAGCACTTGGATTCTCGG
T = CAGCGTGG

If we compute the optimal global alignment, we would get:

CAGCACTTGGATTCTCGG
CAGC----- G-T----GG
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However, in some alignments one might wish to disregard flanking (i.e. start-
ing or trailing) spaces. Recall that one of the goals of sequence alignment is to
deduce evolutionary relationship. Given two sequences, we can’t say with 100%
certainty that they stemmed from exactly the same DNA region, but rather com-
ing around the same region. One of the sequences might have been padded (at
the front and/or back) with residues that has nothing to do with the region of
interest. In this case, having spaces flanking the other sequences should not be
considered as a bad thing, and thus should not be penalized.

Such feature is desirable, for example in aligning an exon to the gene’s original
DNA sequence. Spaces in front of the exon might be attributed to 5’-UTR
(Untranslated Region) ! or introns and should not be penalized. This method is
also used in locating genes in a prokaryotic genome.

Coming back to our example, the optimal semi-global alignment for S and 7T’
would be:

CAGCA-CTTGGATTCTCGG
---CAGCGTGG------—-

Another example of semi-global alignment is when we ignore starting spaces
of the first sequence and the trailing spaces of the second sequence, like in the
alignment below. This type of alignment finds application in sequence assembly.
Depending of the goodness of the alignment, we can deduce whether the two
DNA fragments are overlapping or disjoint.

————————— ACCTCACGATCCGA
TCAACGATCACCGCA--—--——-

Modifying the algorithm for global alignment to perform semi-global align-
ment is quite straightforward. Table 2.1 summarizes the neccessary changes.

| Spaces that are not charged | Action |

Spaces in the beginning of s Initialize first row with zeros

Spaces in the ending of s Look for the maximum in the last row
Spaces in the beginning of ¢ Initialize first column with zeros
Spaces in the end of ¢ Look for maximum in the column row

Table 2.1: Charging of spaces in semi-global alignment.

! For more information on Untranslated Region, refer to
http:/ /bighost.area.ba.cnr.it/BIG/UTRHome/
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2.5 Gap penalty model

Following the spirit of relaxing the cost incurred by spaces (which mark deletion
or insertion), we shall now delve into the idea of gaps. Some literatures on
bioinformatics use the term space and gap interchangibly, in this notes, we define
gap as follows:

Definition 2.1 A gap in an alignment ia a mazimal substring of contiguous
spaces in any of the aligned sequences.

By this definition, there are 3 gaps in the following alignment:

A-CAACTCGCCTCC—-
AGCA----- CCTGCAA

In the earlier discussion, we have seen that mutations normally happen in
chunks. A string of residue might be inserted or delete in one instance. Hence,
it’s only natural not to impose a penalty that is strictly propotional to the length
of the gap. Such scheme is also preferable in situations that we expect spaces to
appear contiguously, for example when aligning mRNA with its gene.

2.5.1 General gap penalty model

In general, if we define the penalty of a gap of length ¢ as ¢g(g), then we can align
S[1..n] and T[1..m] under the gap penalty model using the following dynamic
programming.

Let V (4, 7) be the global alignment score between S[1..i] and T[1..5]

Base cases:

V(0,0) =0
V(0,7) = 9(j)
V(i,0) = g(7)

Recurrence: (for i > 0 and j > 0)

V(i—1,7—1)+6(S[], T]) match/mismatch
V(Z,]) = Imax maxogksi_l{V(k,j) + g(z - k)} delete S[k + 1’L]
maXOSij_l{V(i, k) + g(] - k)} insert T[k + 1]]

In the general gap penalty model, to compute the alignment, we need to fill
in all entries in the n x m dynamic programming matrix. Each of which can be
computed in O(min{n,m}) time. In total, we need O(nm min{n,m}) time. We
also need to allocate O(nm) memory for the dynamic programming matrix.
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2.5.2 Affine gap model

How, then, should one assign a cost to a gap? In the Affine gap model, the
penalty for a gap is divided into two parts. (1) P, for initiating the gap, and (2)
P, depending on the length of the gap. The total penalty for a gap of length g
is:

Prota :Pg+qP5 (21)

The model is called ”affine” after its affine formula above. Note that the constant
gap weight model is imply the affine model with P; =0, Thus the algorithm
described below can be used for the constant gap penalty model as well.
Affine Gap Penalty Algorithm

To align sequences S, T, consider the prefixes S[1...i] of S and T'[1...5] of T. Any

alignment of these two prefixes is one of the following three types:
. §————1

T————

alignment of S[1...7] and T'[1...j] where characters S[i] and T'[j] are aligned op-
posite each other. This includes both the case that S[i| = T'[j] and that S[i] #

Tl

alignment of S[1...7] and T[1...j] where character S[i] is aligned to a character
strictly to the left of character T'[j]. Therefore, the alignment ends with a gap in

alignment of S[1...7] and T[1...j] where character S[i] is aligned to a character
strictly to the right of character T[j]. Therefore, the alignment ends with a gap
in T. We assume that

e G (i,j) is the maximum value of any alignment between S[1...7] and T71...5]
of type 1, and

e E (i,j) is the maximum value of any alignment between S[1...7] and T71...5]
of type 2, and

e F (i,j) is the maximum value of any alignment between S[1...7] and T71...5]
of type 3, and

e V (i,j) is the maximum value of an alignment between S[1...7] and T'[1...j],
which is the maximum of E(i,j), F(i,j), and G(i,j).
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In the base conditions (i=0 or j=0), we need to look at indel operations and
the correct value is not only based on the weight of the space (qP;), but also
based on the weight of ”opening the gap” (P,).

Vi,j > 0, we define 3 recurrence relations, one for each of G(i, j), E(i, j)and
F(i, j). Each will be calculated based on previously computed values. Take E
(i,j) as an example. We are looking at alignments in which S ends to the left of
T:

We identify two situations for the above alignment:

1. T[j — 1] maps with a space. In this case, we only need to add another
"extension weight” to the value, forming the new weight E(i, j -1) + P;

2. T[j—1] maps with S[i]. In this case, we need to add both the gap ”opening
weight” and the gap ”extension weight”, forming the new weight V(i,7 — 1) +
P, + P,

Taking the maximum of the two yields the value for E(, j). We could calculate
F(i,7) and G(i, 5) following the similar argument. V (7, j) is calculated by simply
taking the maximum of the three. The score for the optimal alignment is V' (n, m),
the optimal alignment can be recovered by backtracking on the 4 tables.
Dynamic programming solution:

Basis: V(0,0) =

V(i,0) = E(i,0) = P, +iP,
V(Oaj) = F(Oa]) = Pg +jP5
Recurrence: V(i,7) = max{E(i,7), F(i,5),G(i,5)} where (2.2)
G(i,5) =V(i—1,7—1)+a(S[i, T[j])
E(i,j) = maz{E(i,j — 1) + P,,V(i,j — 1) + P, + P;}
F(i,j) =maz{F(i—1,j) + P, V(i — 1,5) + P, + P}

Analysis of space and time complexity

The time complexity is as before O(nm). There is a need to save four matrices
(for E , F, G and V respectively) during the computation. Hence, the space
complexity is O(nm).

2.5.3 Concave gap model

Many people (especially the biologists) feel that affine gap penalty does not trully
represent the underlying biological mechanism. More is needed than just assign-
ing a fixed cost for opening a gap and a fixed cost for extending a gap. To answer
this, the idea of concave gap penalty function was proposed. It is said to describe
the biological behaviour better.

Convex and Concave Function

Before we elaborate on concave gap penalty model, let’s first refresh our memory
on convex and concave function.
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Definition 2.2 Convex function is a function whose value at the midpoint of
every interval in its domain does not exceed the average of its values at the ends
of the interval.

In other words, a function f(x) is convex on an interval [a, b] if for any two
points z; and x9 in [a, b],

[f (1) + f(22)] (2.3)

DO | =

flylm + )] <

[GIRI00].

If f(x) has a second derivative in [a, b], then a necessary and sufficient condi-
tion for it to be convex on that interval is that the second derivative f”(z) > 0
for all x in [a, b].

If the inequality above is strict for all z; and z,, then f(x) is called strictly
convex. Examples of convex functions include z? for p > 1 , xlnzx for z > 0,
and |z| for all x. If the sign of the inequality is reversed, the function is called
concave.

Definition 2.3 A function f(x) is said to be concave on an interval [a,b] if, for
any points x1 and xo in [a,b], the function —f(x) is convex on the interval.

If the second Derivative of f, f”(z), is bigger than 0 on an open interval
(a,b) (where f"(z) is the second Derivative), then f is convex on the interval. If
f"(z) < 0 on the interval, then f is concave on it [ERG88] [WR95].

concave convex
function function

Figure 2.7: Concave function vs. Convex function

Concave vs. convex gap model

In bioinformatics literatures, some authors prefer to use convex function instead
of concave function, for example in [G97] page 293. It is worth to note that
despite of the different functions used, the underlying motivation is the same.
When we talk about concave gap penalty, it is assumed that the function g(g) is
negative, i.e. g(¢) < 0. Whereas in discussing convex gap penalty, it is assumed
that g(g) is positive, i.e. g(q) > 0.

Alignment with concave gap model

Under the concave gap model, the gap penalty function g() employed is a concave
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function. By this, effectively, the penalty that we assign for a space in a gap is
less than the penalty assigned to the space that precede it. In other words,
additional penalty incurred by additional space in a gap decreases as the gap
gets longer. The penalty for opening a gap (i.e. the first space in the gap),
however, is constant. An example of concave gap function, as given in [LM95], is
9(q) = alogz + b.

The concave gap penalty function g(gq) could readily be applied to the dy-
namic programming algorithm for the general gap penalty. Below we restate the
algorithm for easy reference. Only a small change was made. We introduce two
substitution functions A(i, j) and B(i, j) that serve to ease the discussion of the
upcoming proof.

Let V (4, 7) be the global alignment score between S[1..i] and T'[1..5]

Base cases:
V(0,0)=0

Recurrence: (for i > 0 and j > 0)

V(i—1,j—1)+0(S[F],T]j]) match/mismatch

V(i,j) = max ¢ A(i,5) insert Tk + 1..J]
B(3,5) delete S[k + 1..]
where
A(t,5) = max {V(i,k) +9(j - k)}
B(i,j) =  max {V(k,j)+g(i—k)}

Filling up the dynamic programming matrix for this algorithm is extremely
time consuming, because it takes O(n) time to fill in each A(7, j) or each B(i, j).
Fortunately, we could speed them up. Let’s assume for a moment that we can
perform the speed up such that:

e For a fixed i, Vj € {1..m}, A(4,j) can be computed in O(mlogm) time.
Thus, Vi € {1..n},Vj € {1.m}, A(4,j) can be computed in O(nmlogm)
time.

e For a fixed j, Vi € {1...n}, B(4,j) can be computed in O(nlogn) time.
Thus, Vi € {1..n},Vj € {1..m}, B(i,j) can be computed in O(nmlogn)
time.

e Overall, all entries of V (4, j) can be filled in O(nmlog(nm)) time.
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The only remaining task now is to prove that we can achieve such speed up.
Let’s now consider algorithm for filling up A(i, j) where ¢ is fixed. Let’s also use
the following simplifying substitution functions:

B() = A(i,5)
D(k) =V (i, k)
Hence, the recurrence function of A(i, j) can now be written as

E(j) = max {D(k)+9(j —k)}

Regular dynamic programming can fill F(i),.., E(m) in O(m?) time. Here we
shall show how to fill them in O(mlogm) time. For that we need the following
lemmas. Also, from this point onwards let
C(k,5) = D(k) +9(j — k)
and thus,
E(j) = max C(k,j) (2.4)
Lemma 2.4 Yk < ko,
C(kl,]) > C(k27]) - C(klaj + 1) > C(kQaj + 1)
Proof: Assume that C(ki,7) > C(ko,j)
Cki,7+1) = Clki, ) +9(G +1 - k1) —9(f = k1)
since C(klaj) Z C(kQa])
> Clke, ) +9( +1—ki) —g(j — k1)
since g(q) is concave
> Ok, J) + 90 +1—ka) —g( — k2)
u
How would Lemma 2.4 impact the filling of the dynamic programming matrix?
Once we know that for a particular j, C(k1,j) > C(ko,j), then for any j' > j

we no longer need to consider or calculate C(kq, j') as C(ko, j') must not be the
maximum value.

Lemma 2.5 Vk; < ko,
let h(ky, ko) = argmin; {C'(k1,7) > C(ka, j)}, where ke < j < n.
Then we have:

C(kl,]) < C(kg,]) fO’f' ko <7< h(k‘l,kg) (25)

and

C(kl,]) 2 C(kg,j) fOT h(kl, kg) S] S m (26)
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Proof: It’s trivial to prove Equation 2.5 as it follows from the definition of
h(k1, k). For Equation 2.6, we can readily apply the result of Lemma 2.4 to
prove it. [

What is Lemma 2.5 trying to say? It simply says that when any two curves
C() cross, there can be only one intersection, and that happens at h(ki, k2).
Figure 2.8 explains this phenomena graphically.

r

Clky, 1)

Clky, )
ko+1  hk, k) m J

Figure 2.8: Graphical interpretation of lemma 2.5

Notice also that after the intersection, k of the top C(k, j) curve is greater than
k of the lower C(k,j) curve. Determining h(ky, k2) is known to be of O(logm)
time, utilizing a binary search approach.
Frontier of all curves
Now, given the above lemmas and the fact that, by Equation 2.4, filling in E(z)
(= A(7,x)) is essentially tracing the enveloping curve or the frontier curve that
cover all the curves C(k, j) for k < j. For example, in figure 2.5.3 the thick black
curve represent the values mazy5C(k, j') for 5 < j' < m+1. In particular, when
j' =5, E[5] = mazksC(k,j')

This black curve 1
- Value ofE(j/ Lfgifzeg(tsk,f)
% \ C(k]-’ ] , )

\ i K .
~———— ) Cky, 1)
(3,7 -
( 5 j=5 h,= h=  m+1]
j=5 m+l ) h(k,, k,) h(k,, k;)

(a) (b)

Figure 2.9: Frontier curves
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For a fixed j, the black curve can be represented by a piecewise function that
is defined over the intervals (ko, ko), (k1, h1), -.., (Ktop, Pitop)- For instance, consider
the thick black curve in figure 2.5.3. The curve can be defined as:

Clka,j) for j < hs
f(]): C(k‘l,]) for hQS] <h1
C(ko,j) forj>h

The choice of C(k,, j) for each interval is not abitrary, but rather it is chosen
to be the maximum one.

How can we utilize this? Suppose one has calculated E[z] for all z < j, and
we have max,; C(k, j'). Now, to fill E[j + 1] (i.e maxy<;+1 C(k, j')) one would
only need to overlay the curve C(j, j') with the curve max,; C(k, j'). One could
easily keep max; C(k, j') by storing the intervals {(ko, ko), --., (Kiop, Ptop) }, Which
in the algorithm below is stored in a stack with (k;op, hiop) at the top of the stack.

Two possible outcomes from the overlaying of C'(j, j') with the curve maxy; C(k, j')
are:

1. i C(j, j +1) < Clkups j + 1), then
The new curve C(j,j") can’t cross C(kip,j’) and will always be below
C(ktop, j') (by lemma 2.4). Thus, the frontier curve at j + 1 is still the
same to that of j. Figure 2.5.3 illustrates this case.

2. if C(j,j +1) > C(kspp,j + 1), then
A new curve has overtake the old frontier curve. In this case, the curve
maxy<;+1 C(k, j') is different from the maxy; C(k, j') curve. Updates would
be needed to the set of intervals. Figure 2.5.3 describes this pictorially.

N T~
RN c(2,7) N —c )
TG C A ANNERS
j=5 m+1 3 j=5 m+1 3

(a) (b)

Figure 2.10: Possible outcome of overlaying: (a) below, and (b) above.

Algorithm
Having discussed the way to exploit inherent properties of concave gap penalty
function, below it the algorithm for finding the frontier curve:
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Push (1,m + 1) onto stack S
E[1] = C(kiop, 1)
Forj=1tom—1{
if C(i,7 +1) > C(ktop, j + 1) then{
while S # 0 and C(J, htop — 1) > C(kiop, hiop — 1) do
pop S
if S = then
push (j,m + 1) onto S
else
) push (j, h(kiop, 7))
| D)= Cllugi+ )

It is easy to see that for every j, we push at most one pair onto stack S and
thus, overall, we push at most m pairs onto stack S, which in turn limits the
number of pops from stack S to m pops. Since the k() value for each pair can
be computed in O(logm) time, as discussed earlier, the total time to fill E[j] is
O(mlogm). By this, we have now established that indeed V' (7, j) can be filled in
O(nmlog(nm)) time.
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