
CS5238 Combinatorial methods in bioinformatics 2002/2003 Semester 1

Lecture 3: Searching biological database -August 26, 2002
Lecturer: Wing-Kin Sung Scribe: Chen Jinxiu, LanMan, Ren Li-An, FengYuan, LiQuan

3.1 INTRODUCTION

3.1.1 Biological Database

Biological database is the database of sequence. As we know,three kinds of bio-
logical sequences include protein, DNA and RNA. In recent years biological data
is doubled in size every 15 or 16 months. Since there are so many data in biology,
biology database has greatly developed and became a part of the biologist’s every-
day toolbox. The number of everyday queries has also increased to 40,000 queries
per day. So we should have some good database search methods. Otherwise, we
cannot use the biological database efficiently.

3.1.2 How To Perform a Database-searching

Considering that there is a database D of genomic sequences and a query string
Q, how can we look for string S in D which is the closest match to the query
string Q.There are two meanings for close match :

1. S and Q has a semi-global alignment( forgive the space on the two ends of
Q).

2. S and Q have a local alignment.

The main goal in searching is to find relevant information and to avoid irrelevant
information.Formally its goodness is measured by:

1. Sensitivity: The ability to detect ’true positive’ matchs.The most sen-
sitive search finds all true matches, but might have lots of ’false posi-
tives’.Sensitivity can be measured as the probability of finding the match
given the query and the database sequence has only x percent similarity.

2. Specificity: The ability to reject ’false positive’ matches. The most specific
search will return only true matches, but might have lots of ’false negatives’.

3-1
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3.1.3 Different Algorithms

There are many biological search methods. The most basic methods are ex-
haustive methods.One such example is Smith-Waterman algorithm. In the real
world ,however, implementations of these take far too long to go through the
large databases. In an attempt to gain speed with acceptable sacrifice of sensi-
tivity,heuristic methods have derived from these algorithms. These algorithms,
include FastA, BLAST and PatternHunter. And LSH and QUASTAR are filter
and refine approaches. Other approaches include CAFE, FD, RAMdb, FLASH,
suffix tree, etc.

3.1.4 Smith-Waterman Algorithm

Smith-Waterman algorithm is an exhaustive method. When given a database
of total length n and the query Q of length m, Smith-Waterman algorithm will
report all closest matches based on local alignment. This algorithm is described
as follows:

1. For every sequence S in the database

• Use Smith-Waterman algorithm to compute the best local alignment
between S and Q.

2. Return all alignments with the best score

As we learned earlier, the time complexity of Smith-Waterman algorithm is
O(nm).It is a brute force algorithm. So, it is the most sensitive algorithm. But
it is not practical.

3.2 FASTA

3.2.1 What is FASTA?

Given a database and a query, FastA does local alignment with all sequences in
the database and return some good alignments. FastA is a heuristic algorithm
which is based on assumption is that good local alignment should have some
exact match subsequences.

3.2.2 History of FASTA

In 1983, Wilbur-Lipman algorithm was proposed for the analysis of protein and
DNA sequence similarity that achieved a balance of sensitivity and selectivity on
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the one hand and speed and memory requirement on the other. In 1985, FastP
program was described for searching amino acid sequence data bases, which uses
a rapid technique for finding identities shared between two sequences and exploits
the biological constraints on molecular evolution. Then in 1988, a new version
of FastP, FastA was developed, which uses an improved algorithm that increases
sensitivity with a small loss of selectivity and a negligible decrease in speed.

3.2.3 FASTP

The search algorithm proceeds through four steps in determining a score for pair-
wise similarity.

Step1:Look for hot spots

For every k-tuple (length-k substring) of the query and every k-tuple of the
database sequence, if they are the same, the pair is called a hot spot. This
step looks for all hot spots. The parameter k determines how many consecutive
identities are required in a match. The larger the value of k, the algorithm is
faster but less sensitivity. Usually, k= 4-6 for DNA sequence and k= 1-2 for
protein sequence.

Step2:Find the 10 best diagonal runs for every database sequence

Diagonal run is a sequence of nearby hot spots on the same diagonal (spaces are
allowed between hot spots). Each hot spot is assigned a positive score. Interspot
space is given a negative score that decrease with length. The score of a diagonal
run is the sum of scores for hot spots and interspot spaces. This steps identifies
the 10 highest scoring diagonal runs for each database sequence.

Step3:Rescore the 10 best diagonal runs for every database sequence

The substitution matrix is a scoring matrix that allows conservative replacements
and runs of identities shorter than ktuple to contribute to the similarity score.
Using the substitution matrix for amino acid (or nucleotide), the diagonal runs
are rescored. For each of these vest diagonal regions, a subregion with maximal
score is identified. We will refer to this region as the ”initial region”; the best
initial regions from the diagonal run. The best score among the 10 sub-regions
is called the init1 score.

Step4:Rank the sequence

In the fourth step the sequences are ranked based on their init1 scores.
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3.2.4 FASTA

FastA uses the same first 3 steps of FastP. Then, it executes 2 more steps.

Step4:Attempt to join the sub-regions by allowing indels

FASTA goes one step further during a database search; it checks to see whether
several initial regions may be joined together. For the 10 sub-regions in Step
3, discard those with scores smaller than a given threshold. For the remaining
sub-regions, attempts to join them by allowing indels. Given the locations of
the initial regions, their respective scores, and a ”joining” penalty(analogous to a
gap penalty), FASTA calculates an optimal alignment of initial regions as a com-
bination of compatible regions with maximal score. The score of the combined
regions is the sum of the scores of the sub-regions minus the penalty for gaps.
Then FASTA uses the resulting score to rank the database sequences. The best
score can be computed using dynamic programming and it is called initn score.

Step5:Banded Smith-Waterman DP

Sequences with initns smaller than a threshold are discarded. For the remaining
sequences, apply banded Smith-Waterman dynamic programming to complete
the score opt. Finally, rank the sequences based on their opt scores.

3.3 BLAST

3.3.1 What is BLAST?

BLAST stands for Basic Local Alignment Search Tool [Gal00]. The BLAST
programs are widely used tools for searching DNA and protein databases for
sequence similarity - to identify homologies to a query sequence. It compares
against all sequences in a database D based on a heuristic algorithm and has
been designed for speed, with a minimal sacrifice of sensitivity to distant sequence
relationships.

3.3.2 History of BLAST

In 1990, BLAST1 was born, which is very fast and dedicated to the search for
regions of local similarities without gaps. In 1996-1997, BLAST2 was born, which
derives from BLAST1. BLAST2 is different from BLAST1 in that BLAST2
allows for the insertion of gaps. BLAST2 has two versions, developed by two
groups of authors independently. The first one is NCBI-BLAST2 and the other is
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WU-BLAST2 (NCBI-BLAST2 is developed by National Center for Biotechnology
Information in 1997 and WU is developed by Washington University in 1996).

3.3.3 Algorithm of BLAST1

BLAST1 is a heuristic method which searches for local similarity without gap.
There are three distinct steps, which are represented as follow:

• Step1: Query preprocessing;

• Step2: Scan the database for hits;

• Step3: Extension of hits.

Step1:Preprocessing of the query

In Figure 3.1 we can see for every position p of the query, BLAST1 finds the list
of w-tuples (strings of length w) scoring more than a threshold T when compared
with the word of the query starting at position p. This list of w-tuples are called
neighbors.

 

p-word 

p 

List of words of length w, scor ing 

more than T with the p-word. 

Figure 3.1: Preprocessing of the query

Step2:Generation of hits

After preprocessing of the query, query is now represented by lists of neighbors,
one list at each position of the query. Then we can scan the database DB to
find whether there is an exact match between the neighbors of P and a w-tuple
in DB. If it does, a hit is made, which is characterized by the positions in both
query and DB sequences (see Figure 3.2). All the possible hits between the query
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sequence and sequences from the database are calculated in that way.

Step 1 and step 2 look similar to the first step of FastA. We know that the first
step of FastA is to quickly locate ungapped similarity regions between the query
sequence and sequences from the database. Similarly, in BLAST1, all w-tuples
(the strings of length w) of the query are compared with those of the database
sequences. Unlike FastA, BLAST1 compares each word of the query with each
word of the database sequences, and calculates the similarity score for all pairs
of words (by summing the scores of the paired amino acids that are part of a
paired word). Then, if the score of any pair of words is greater than or equal to
the threshold, the pair of words is considered to be pairs of similar words. In this
way, we can obtain all the words in the database that are similar to each word of
the query.

 
 

 

 

  

DB sequences words list p-word 

Figure 3.2: Generation of hits

Step3:Extension of the hits

To determine whether each hit may be part of a longer segment pair with higher
score, every hit that has been generated is now extended in both directions,
without gaps(See Figure 3.3). To speed up this extension step, the extension
is stopped as soon as the score decreases by more than X (the value chosen for
X is a parameter of the program) from the highest value reached so far. Because
of the “no more than X” drop off requirement, this manner of searching the best
scoring paired segment containing a hit is just an approximate one. In fact, we
cannot guarantee the the resulting segment pair has the highest score.

If the extended segment pair has score better than equal to S (set as a parameter
of the program), it is called an HSP (High scoring Segment Pair). Then, they
will be reported. In a comparison, for every sequence in the database, the best
scoring HSP is called the MSP (Maximal segment pair).



Lecture 3: Searching biological database -August 26, 2002 3-7

 

 

 

 

  

���������	�

�����
��

Figure 3.3: Extension of hits

3.3.4 NCBI-BLAST2

NCBI-BLAST2 has been developed at NCBI (National Center for Biotechnology
Information).The most important feature of NCBI-BLAST2 is that it allows local
alignment with gaps. The first two steps, leading to the generation of primary hits
are the same as that of BLAST1. But there are two major differences between
them:

• Two-hits requirement

In this problem, we should take into account the selection of the hits that
are going to be extended. A requirement for a hit to be extended is that
there is another hit, on the same diagonal, within a distance smaller than
A (a parameter of the program, whose value may be changed by the user,
by default, A=40). This process is illustrated in Figure 3.4.

To make the program more sensitive, we can choose a smaller value for the
T parameter (threshold for the similarity between words, used at the first
step, when generating lists of “neighbors”) so that we can generate more
hits at the second step. Of course, these two parameters, A and T do not
influence the sensitivity at the same level.

• Gapped extension

Similar to the third step of BLAST1, all the hits that satisfying these
requirements are selected for an ungapped extension. Among the gener-
ated HSP, we perform gapped extension for those with score above some
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Figure 3.4: “two-hits” requirement

threshold: they are used as start points for performing dynamic program-
ming local alignments.

The gapped extension algorithm allows gaps (deletions and insertions) to be
introduced into the alignments that are returned. Allowing gaps means that
similar regions are not broken into several segments. The scoring of these
gapped alignments tends to reflect biological relationships more closely.

The algorithm used for computing these local gapped alignments is a mod-
ified Smith-Waterman algorithm: the Dynamic Programming matrix is ex-
plored in both directions (see Figure 3.5(d)) starting from the middle point
of the HIT. In addition, when the alignment score drops off by more than
Xg, stop.

3.3.5 BLAST1 VS. NCBI-BLAST2

The third step of the BLAST1 algorithm checks whether each hit lies within an
alignment with score sufficient to be reported. This is done by extending a hit
in both directions, until the running alignment’s score has dropped more than X
below the maximum score yet attained. This extension step is computationally
quite costly; with the T and X parameters necessary to attain reasonable sen-
sitivity to weak alignments, the extension step typically accounts for more than
90 percent of BLAST1’s execution time. It is therefore desirable to reduce the
number of extensions performed.

For NCBI-BLAST2, due to the two-hit requirement, the number of extensions is
reduced. Moreover, NCBI-BLAST2 is about 3 times faster than BLAST1 since
it is based upon the observation that an HSP of interest is much longer than a
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Ungapped Extension 
(a) 

Figure 3.5: Gapped and ungapped extensions

single word pair, and may therefore entail multiple hits on the same diagonal and
within a relatively short distance of one anther.

3.3.6 Variation of the BLAST

• PSI-BLAST (Position-specific iterated BLAST)
Position-Specific Iterated BLAST (PSI-BLAST) provides an automated
version of a “profile” search, which is a sensitive way to look for sequence ho-
mologies [AMS+97]. The program first performs a gapped BLAST database
search. The PSI-BLAST program uses the information from any significant
alignments returned to construct a position-specific score matrix, which re-
places the query sequence for the next round of searching. PSI-BLAST may
be iterated until no new significant alignments are found. PSI-BLAST is
much more sensitive to weak but biologically relevant sequences.
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• MEGABLAST Search
MegaBLAST implements a greedy algorithm for the DNA sequence gapped
alignment search. And MegaBLAST can only work with DNA sequences.
For DNA, in BLAST, set w=11 by default. To improve efficiency, MegaBLAST
uses longer w-tuples (by default, w=28).

MegaBLAST takes as input a set of FASTA formatted DNA query se-
quences. These can be either pasted into a provided text area, or down-
loaded from a file. It is preferable to submit many query sequences at a
time, but not more than 16383. The algorithm concatenates all the query se-
quences together and performs search on the obtained long single sequence.
After the search is done, the results are re-sorted by query sequence. The
database input for MegaBLAST is any “BLASTable” database, obtained
from the ftp server or via format-db program from a FASTA formatted file.

Unlike BLAST, MegaBLAST is most efficient in both speed and memory
requirements with non-affine gap penalties. These values of gapping param-
eters are default. To set the affine penalties, advanced options should be
used. It is not recommended to use the affine version of MegaBLAST with
large databases or very long query sequences. The cost of MegaBLAST is
the reduction in sensitivity.

3.4 PatternHunter

3.4.1 Introduction

For years, researchers are interested in faster and more sensitive methods for
finding all approximate repeats or homologies in one DNA sequence or between
two DNA sequences, as performed by the popular BLASTn (Altschul et al, 1990)
program.

PatternHunter [MTL01] is a highly sensitive and efficient program for finding
homologies within one, or between two DNA sequences. On very long sequences
it runs faster than MegaBLAST while being more sensitive than BLASTn (at its
default settings). It is the only software in the world that is capable of identi-
fying all approximate repeats in a complete genome in a short time on desktop
computer.

3.4.2 Two lines of existing approaches to improve

The first routine approach, such as BLAST, depends on homology searches. It is
based on the strategy of finding short exact ”seed” matches (hits) which are then
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extended into longer alignments. However, the exploding genomic data growth
presents a dilemma for DNA homology search techniques: increasing seed size
decreases sensitivity whereas decreasing seed size slows down computation.

Another line of approach, for example, MUMmer, QUASAR and REPuter, uses
suffix trees. They are very awkward in handling mismatches and have in intrinsic
large space requirement.

PatternHunter introduces novel seeding schemes and hit-processing methods to
improve sensitivity and speed simultaneously.

3.4.3 How to do it?

BLAST searches matches of W (default W =11 in BLASTn and W =28 in
MegaBLAST) consecutive letters as seeds. PatternHunter is similar to BLAST.
Moreover, it uses non-consecutive W letters as seeds. They call the relative po-
sitions of the W letters a model, and W its weight.

They found that gapped (non-consecutive) W-tuple can significantly increase
hit to homologous region while reduce bad hits. In other words, it can increase
the sensitivity and reduce the number of random hits. For W=11, they use
111010010100110111 as the optimal model.
For example ,

               111010010100110111 
   ACTCCGATATGCGGTAAC 
   |||-|--|-|--||-||| 
   ACTTCACTGTGAGGCAAC 
 

Figure 3.6: Example of two substrings which are matched according to the model

3.4.4 Advantage 1 — Increase sensitivity

The reason for the increased sensitivity is that the events, of having a match at
different positions, become more independent for spaced models.

If a model and a shifted copy share many 1s in the same position, then a base
mismatch in any of these shared positions will make both matches fail, hence the
corresponding matching events are far from independent. Independent events are
better at pooling their success probabilities together.

If the w-tuples are more independent, the probability of having at least one
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hit in a homologous region is higher. Figure 3.7 and 3.8 show the sensitivity of
different models.

 

Figure 3.7: 1-hit performance of weight 11 spaced model versus weight 11 and 10
consecutive models, coordinates in logarithmic scale

 

Figure 3.8: 2-hit performance of weight 11 spaced model versus single hit weight
11 and 12 consecutive models

3.4.5 Advantage 2 — Reduce the number of hits

For the same query length of 64, it is covered by 54 ungapped 11-tuples while
it is covered by 47 gapped 11-tuples. So, the number of random hits is smaller.
Thus, the efficiency is increased!
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The expected number of hits in a region can be easily calculated as in the follow-
ing Lemma.

Lemma 3.1 The expected number of hits of a weight W length M seed model
within a length L region with similarity p(0 ≤ p ≤ 1), is (L-M+1) pw.

Proof: The expected number of hits is the sum, over the (L-M+1) possible
positions of fitting the model within the region, of the probability of W specific
matches, the latter being pw.

Example: In a region of length 64 with 0.7 similarity, PatternHunter has proba-
bility of 0.466 to get hits while BLAST has probability of 0.3 to get hits. So the
probability of getting hits increases 50 %. On the other hand, by above lemma,
the expected number of hits in BLAST is 1.07, while the expected number of hits
in PatternHunter is 0.93. So, the expected number of hits decreases 14%.

3.4.6 Not just seed!

To improve efficiency, PatternHunter uses a variety of advanced data structures
including priority queues, a variation of red-black tree (but many times faster
than Java standard), queues, hash tables.

PatternHunter also uses a new method of sequence alignment and has several
other algorithmic improvements.

3.4.7 Results

PatternHunter is implemented in Java, hence it is cross-platform compatible. It
is able to find homologies between sequences as large as human chromosomes in
mere hours on a desktop. The following experimental result is the performance
comparison with BLASTn and MegaBLAST, which is done on Personal Com-
puter with pentium III 700MH, 1GB memory.

3.5 QUASAR

Due to the exploding genomic data growth, the expected software must be scal-
able to large datasets. Surprisingly, even the basic homology search tools (e.g.
BLAST) are not scalable. QUASAR (Q-gram Alignment based on Suffix ARrays)
is a new database searching algorithm, which was designed to quickly detect se-
quences with strong similarity to the query in a context where many searches are
conducted in one database.
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Figure 3.9: Performance comparison with BLASTn, MegaBLAST: assure score
for match 1, mismatch -1, gap open -5, gap extension -1. PH denotes Pattern-
Hunter with seed weight 11, PH2 denotes same with double hit model (sensi-
tivity similar to BLAST’s single hit size 11 seed, see Figure 3.7), MB28 denotes
MegaBLAST with default seed size 28, and default affine gap penalties. BLASTn
(via BL2SEQ) uses default seed size 11. Table entries under PH, PH2, MB28 and
BLASTn indicate time(seconds) and space (megabytes) used; ∞ means out of
memory or segmentation fault.

3.5.1 Introduction

The problem
(Approximate matching problem with k differences and window length w)

• Input: a database D, a query S, k, w

• Output: a set of (X, Y ) where

– X and Y are length-w substring in D and S, respectively

– edit dist(X, Y ) ≤ k

A pair of substrings with the above properties is called an approximate match. To
solve approximate matching, we reduce it to exact matching of short substrings
of length q (called q-grams).

The q − gram is a substring of length q. The basic q-gram method works as
follows. First, find all matching q-grams between the pattern and the text. That
is, find all pairs (i, j) such that the q-gram at position i in the pattern is identical
to the q-gram at position j in the text. We call such a pair a hit. Second, identify
the text areas that have enough hits. These areas are passed to the verification
phase. There are different ways of defining the text areas and counting the hits
in them (see, e.g., [JU91][HS94]). However, they all have the same threshold, the
significant number of q-grams. This number is given by the q-gram lemma.

The approach is based on the following observation: if two sequences have an
edit distance below a certain bound, one can guarantee that they share a certain
number of q-grams. This observation allows us to design a filter that selects
candidate positions from the database where the query sequence possibly occurs
with a high level of similarity [BCF+99].
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3.5.2 The Algorithm

Lemma 3.2 Given two length-w sequences X and Y , if their edit distance ≤ k,
then they share at least t common q-grams (length-q substrings) where t = w +
1− (k + 1)q.

Proof:

• Suppose X and Y has r differences;

• X has (w + 1− q) q-grams;

• Let X ′ be the string with the r differences annotated;

• Note that a q-gram in X overlaps with some difference if X and Y does not
share that q-gram;

• For each difference, there are at most q q-grams overlap with the difference.
In total, rq q-grams overlap with the r differences;

• Thus, X and Y share (w + 1 − q − rq) q-grams, which is larger than t =
w + 1− (k + 1)q.

The threshold given by the lemma is tight in the sense that using any lower value
might miss an occurrence. For example, strings ACAGCTTA and ACACCTTA
have edit distance 1 and have 8-3(1+1)+1 = 3 common q-grams: ACA, CTT and
TTA.

Lemma 3.2 gives a necessary condition for a subsequence of D to be a candidate
for an approximate match with S[1..w]: At least t = w + 1 − (k + 1)q of the
q-grams contained in S[1..w] occur in a substring of D with length w. Substrings
of D with this property are potential approximate matches.

Algorithm for finding potential approximate matches of S in D

For X = S[i..i + w − 1] where i = 1, 2, . . .

• For every length-w substring Y in D, associate a counter with it and ini-
tialize it to zero;

• For each q-gram Q in X

– Find the hitlist, that is, the list of positions in D so that Q occurs

– Increment the counter for every length-w substring Y in D, which
contains Q;
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• For every length-w substring Y in D with counter > t, X and Y are
a potential approximate match. This will be checked with an alignment
algorithms.

3.5.3 How to get the hitlist?

By using an index data structure for all q-grams in D we hope to direct the
search for Q towards small portions of D and thus to avoid scanning the whole
database. Since q is a parameter in the approach, we may use a full-text indexing
data structure so that it is not necessary to rebuild the index if we change q.

Use the suffix array: a suffix array SA for a database D is an array of length |D|
storing the lexicographically order of all suffixes of D. Entry SA[j] contains the
text position where the j-th smallest suffix of D starts. Therefore SA requires
storing exactly one pointer per text position (see Figure 3.10). The suffix array
for D is constructed in a preprocessing step.

 ���������
	��

Database D = C A G C A C T
idx(AC)

idx(AG)

idx(CA)

idx(CT)

idx(GC)

i SA[i]

� � ACT

� � AGCACT

� � CACT

� � CAGCACT

� � CT

� � GCACT

� � T

Figure 3.10: Suffix array SA of the database D.

We are only interested in the occurrences of q-grams, thus we may precompute
the positions of the hitlists in the suffix array SA for all possible q-grams and
store them in an auxiliary search array idx. This allows us to find the start po-
sition idx[Q] of the hitlist for any given query q-gram Q in constant time.

3.5.4 Speedup Feature

3.5.4.1 Window shifting

Previuos algorithm builds the counter list for every S[i..w + i − 1], where i =
1, 2, ..., n−w+1. It is time consuming. Given the counters list for S[i..w+ i−1],
can we determine the counters list for S[i + 1..w − i] easily?
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Suppose the counters list for the window S[1..w] are given. In order to determine
the approximate matches for the next window S[2..w+1], we only have to consider
the “old” q-gram S[1..q] and the “new” q-gram S[w−q+2..w+1] (see Figure 3.11).

Figure 3.11: Windows Shifting Example.

First we decrement the counter values of all blocks that contain the q-gram S[1..q]
and that have not reached the threshold t, i.e., if a counter for a block has already
reached t, leave it unmodified. In this way we marks all candidate blocks already
found. Then, we use the suffix array to search for all occurrences of the “new”
q-gram S[w−q+1..w+1] and increment the corresponding block counters. Shift
the window of length w over the string S until we reach its end.

3.5.4.2 Block Addressing

The other main drawback of above solution is the space required to store the
counters. We may adopt block addressing scheme to reduce the amount of coun-
ters required. The solution works as follows: The database D is conceptually
divided into blocks of fixed size b (b ≥ 2w). Assign a counter to each block.
This counter will be incremented whenever a search for a q-gram Q reports an
occurrence inside the block. After processing all q-grams in S[1..w], the counter
of a certain block indicates how many q-grams from S[1..w] are contained in this
segment of the database. These counter values are stored in an array of size
|D|/b. If a block contains more than t q-grams, this block has to be checked for
approximate matches using a sequence alignment algorithm.

On the other hand, we will miss candidates for approximate matches that cross
block boundaries. In a worst case scenario, the occurrences of q-grams from
S[1..w] are spread among two adjacent blocks and none of these block counters
reaches the threshold t. In order to avoid this problem, we use a second block
decomposition of the database, i.e. a second block array. The second block de-
composition is shifted by half the length of a block (b/2) (see Figure 3.12). Then,
if a situation as described above occurs for blocks B1 and B3, block B2 contains
the potential candidate.
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Figure 3.12: Partition of the database D into overlapping blocks of size b.

3.5.5 Complexity

The preprocessing-step (the construction of the suffix array and the precomputa-
tion of the search array) can be done in O(|D|log|D|) (where |D| is DB size) time.
Searching for a specific q-gram requires constant time but the number of reported
occurrences can be linear in |D|. There are O(|S|) q-grams, so the approach takes
O(|S| · |D|) time. If at the end c blocks reach the threshold t, the alignment with
BLAST takes further O(c · b · |S|) time. The space complexity of the algorithm
is dominated by the space used for the suffix array. At construction time this
need 9|D| space. At query time the algorithm will consume 5|D| space. And the
algorithm is not suitable for distant homologous sequences.

3.6 Locality-Sensitive Hashing

In comparisons of multimegabase genomic DNA sequences, to process long se-
quences efficiently, existing algorithms find alignments by expanding around short
runs of matching bases with no substitutions or other differences. But, such short
exact matches often arise purely by chance in the background sequence. Thus,
these algorithms must trade off between efficiency and sensitivity to features
without long exact matches.

In this section, we will introduce a new algorithm, LSH-ALL-PAIRS, to find pairs
of w−mers that differ by at most d substitutions (ungapped local alignment) in
a collection of biosequences database D.

3.6.1 Locality-Sensitive Hash Function

The LSH-ALL-PAIRS algorithm uses locality-sensitive hashing (LSH) to reduce
the problem of string matching with substitutions to a more tractable exact
matching problem.
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To detect similarity between two strings, we first construct the following random-
ized filter. Consider an w − mers s, we choose k indices i1, i2, ..., ik uniformly
at random from the set {1, 2, ..., w}; assume that the indices are sampled with
replacement, so that an index can be chosen multiple times. Define the func-
tion π(s) = (s[i1], s[i2], ..., s[ik]). This function is called the locality-sensitive hash
function.

Now, consider two w − mers s1 and s2 (see Figure 3.13), the more similar are
they, the higher probability that π(s1) = π(s2). More precisely, if the hamming
distance of s1 and s2 equals d,

Pr[π(s1) = π(s2)] =
∑

j=1,...k Pr[s1[ij] = s2[ij]] = (1− d/w)k.
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Figure 3.13: LSH Function: 2 w −mers s1 and s2.

Hence, s1 and s2 are similar if π(s1) = π(s2). However, we may have false positive
and false negative:

• False positive: s1 and s2 are dissimilar but π(s1) = π(s2).

– False positive can be distinguished from true positive by computing
hamming distance between s1 and s2.

• False negative: s1 and s2 are similar but π(s1) 6= π(s2).

– We cannot detect false negative.

– We can only reduce the number of false negative by repeating the test
using different π() functions.

3.6.2 LSH-ALL-PAIRS Algorithm

The LSH-ALL-PAIRS algorithm is presented as the following steps,

1. Generate m random locality-sensitive hash functions π1(), π2(), ..., πm();

2. For every w −mers, compute πj(s) for 1 ≤ j ≤ m;

3. For every pair of w −mers s and t such that πj(s) = πj(t) for some j,
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• If hammingDist(s, t) < d, report (s, t)-pair.

LSH-ALL-PAIRS outputs only similar pairs of w−mers. However, the algorithm
is only guaranteed to find all pairs that match exactly; it will miss similar pairs
that happen to be false negatives for every hash function chosen. The number
of missed pairs can be controlled by performing more iterations or by allowing
more w −mers to hash together in each iteration.

3.7 Conclusion

This lecture presents some database searching methods, including FASTA, BLAST,
PatternHunter, QUASAR and LSH. In fact, there are many other methods, such
as CAF, FLASH, RAMdb, FD, suffix tree, suffix array, and compressed suffix
array etc.
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