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SUMMARY 

Nuclear receptors (NRs) are a special class of transcription factors (TF) whose primary 

function is to allow cells to react to chemical changes in the environment or to respond to 

hormones produced by other parts of the body. The response is mediated by the 

interaction with its cofactors and co-regulators. Sufficiently disrupted transcriptional 

network involving NRs could jeopardise a cell’s functionality and lead to disastrous 

outcome such as cancer.  

Our lab’s focus is in understanding the development and progression of prostate cancer 

and breast cancer for which the nuclear receptors androgen receptor (AR) and estrogen 

receptor (ER) play central roles. ChIP-seq of AR in prostate cancer cell lines LNCaP and 

VCaP and that of ER in MCF-7 cell line was performed to obtain a genome-wide view of 

the binding sites of these NRs in their respective cancer cell-lines. These data allows us to 

further study the transcriptional network mediated by these NRs in their respective cancer 

cell-lines.  

Genes in a transcriptional network are regulated by regions with TF binding motif 

clusters referred to as cis-regulatory modules (CRMs), with CRMs near the transcription 

start site (TSS) of a gene being known as promoters while distal ones being known as 

enhancers or silencers. The activity of a CRM is often being likened to a binary switch 

that depends on the binding presence of its members as inputs.  
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This implies that TFs that are involved in co-regulating a set of genes tend to occur 

within close vicinity. Having obtained the location of the binding sites of an NR in the 

genome, we may now predict what are the cofactors of the NRs, i.e other TFs that works 

closely with the NR in the same CRM to co-regulate target genes, and thus expand our 

knowledge of the transcriptional network. Henceforth, in-silico screening of probable 

cofactors of the NR can be performed by looking for over-represented known TF motifs 

in the vicinity of the NR binding sites using databases of known TF motifs actively 

deposited in JASPAR and TRANSFAC. Novel motifs could also be discovered using de 

novo motif discovery tools such as MEME, Weeder and Bioprospector. 

Motifs have long been used to predict the presence of TF binding sites. However, to date, 

analysis had been mostly restricted to promoter regions of regulated genes. The main 

reason is that prediction by motif alone on the entire stretch of genome rarely gives 

satisfactory results, yielding unacceptable rates of false positives, i.e. most regions that 

contain motif along the DNA are not bound by the TF, possibly due to closed chromatin 

or some other biological reasons.  

ChIP-seq is a revolutionary assay used to detect the binding sites of TF in the entire 

genome, made possible through the rapid advancement in high-throughput sequencing 

technology. The precision of the binding location of TF can be detected within positional 

accuracy of +/-200 bp.  Motif predictions of TF binding sites tend to yield a much greater 

accuracy when restricted to regions near ChIP-seq peaks. Moreover, observation of the 

motif distribution profile of known cofactor around ChIP-seq peaks suggests that true 
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cofactors tend to exhibit certain imbalanced distribution around ChIP-seq peaks. Utilizing 

this property, we developed CENTDIST that ranks TF candidates based on the 

imbalanced distribution around ChIP-seq peaks. CENTDIST performs positively in 

comparison with existing tools of similar nature such as CEAS and CORE_TF using 

mouse ES cells. By applying CENTDIST to our inhouse generated AR and ER ChIP-seq 

in LNCaP and MCF7 respectively, we managed to uncover novel co-factors that 

potentially play important roles in prostate and breast cancer. 

Though CENTDIST is well suited for identifying enriched motif, it is not suitable for 

comparing enrichment among sets of peaks. As such, we developed MOTIFDIFF with 

the aim of comparing motif enrichment between peak sets. As with CENTDIST, 

MOTIFDIFF makes use of the motif to accurately quantify the motif in the sets which 

can then be used for comparison. Validating using large number of ChIP-seq datasets 

from ENCODE, we showed that MOTIFDIFF is able to correctly predict the relative 

abundance of TFs using motifs. Applying MOTIFDIFF to our in-house ER and AP2 

ChIP-Seq, we identify several potential candidates that play specific roles in ER in the 

presence of AP2 and those in the absence of AP2.  
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ABBREVIATIONS 
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CHAPTER 1 Introduction 

1.1 Background 

1.1.1 Central Dogma of Molecular Biology 

Following the completion of the Human Genome Project (Venter et al. 2001), the 

understanding of human biology had grown by leaps and bounds. It has enabled us to 

finally study and understand human genetic diseases such as cancer and eventually 

develop treatments for them. This is particularly accelerated by the development of 

computational technology which is well suited to tackle the combinatorial complexities 

that have been encoded in the depths of human genome. One of the earliest concepts that 

we learnt through genetics is that each individual has a unique genetic makeup which 

translates to specific phenotypic characteristics and this information is contained in the 

genes which represent a mere 3% of the entire genome.  

The genome comprises of deoxyribonucleic acid (DNA) molecules made up of 

nucleotide bases: A, C, G, T (viz. Adenine, Cytosine, Guanine, and Thymine) stringed 

together along a phosphate backbone. DNA molecules occur in paired strands with 

complementary pairing of A to T, G to C, forming a double helix.  

The idea of how DNA and protein are related has been ingeniously represented by the 

central dogma of molecular biology proposed by Crick. The central dogma describes 

major transitions among the three key entities in the cell: DNA, ribonucleic acid (RNA) 

and protein. Within each cell, the DNA is organized into chromosomes residing within 
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the nucleus. A cell divides to produce two daughter cells. Prior to the cellular division 

(also known as mitosis), the genomic DNA replicates so that each daughter cell receives 

exactly 23 pairs of chromosomes. The chromosomal DNA ranges from 50Mb to 250Mb 

in size and, to date, is punctuated with more than 30, 000 genes. In the event of 

transcription, the DNA sequence within each gene is converted to pre-messenger RNA 

(pre-mRNA) through complementary pairing. This RNA molecule typically consists of 

coding regions, known as exons, interspersed with non-coding intronic fragments. In 

order to produce mature RNA, spliceosome removes the introns to form a continuous 

string of exons which is then exported out of the nucleus to the cytoplasm. Ribosomes 

then “decode” the genetic information stored in mature RNA by systematically recruiting 

amino acids which eventually leads to formation of polypeptide and folded protein. 

However, multiple non-coding RNAs which do not get translated to proteins also exist. 

Some of the well-known examples include ribosomal RNA (rRNA) which is a core 

component of the ribosome, and transfer RNA (tRNA) which is responsible for bringing 

appropriate amino acids to mature messenger RNA (mRNA) during peptide synthesis. 

1.1.2 Gene Regulation by Transcription Factors  

Despite the fact that the entire human genome carries 30,000 genes, only a fraction of 

these genes are actually actively transcribed in a particular cell. This is essential 

considering the fact that protein determines the cells functionality and the functionality of 

cells are tissue-specific. Special mechanisms are in place to control for the amount of 

proteins to be produced in the cell, depending on the environment it is in. These 

mechanisms generally involve various proteins such as RNA polymerases, histones, 
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histone modifiers, transcription factors, and co-factors. Among these, transcription 

factors (TFs) play a central role. TFs are proteins containing DNA binding domain (DBD) 

that recognise specific sequences in the genome which are commonly referred to as the 

TFs’ motifs. TFs typically bind closely together at motif clusters known as cis-regulatory 

modules (CRMs).  CRMs are typically 100-1000bp in length and can be found at gene 

promoters within 3000 bp from the gene TSS or at distal regions in general which could 

be located anywhere on the genome. The distal regions can in turn be classified into one 

of the following a) enhancers that promote the expression of the target genes, b) 

insulators that indirectly affect gene regulation by interacting with nearby CRMs and c) 

silencers which repress the expression of the target genes. Several CRMs consisting of 

various TFs are typically involved in the regulation of a particular gene. Knowing how 

and when genes are activated is of particular importance; particularly for those disease-

causing ones as we can then study the regulatory network and design a remedy that 

selectively target their aberrant expression. We are still a long way from knowing exactly 

how and when genes are activated, but following the sequencing of an organism’s 

genome, we can predict regions that are potentially bound by the regulating TFs.  The 

existence of motifs however, is insufficient to determine whether a particular TF will 

bind at a particular genomic location. It also depends on several other epigenetic factors 

such as nucleosome positioning and histone marks involving the methylation and 

acetylation of any of the four cores of the histones. 
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1.1.3 Transcription Factor  

Because of its relation to gene transcription, much emphasis had been placed towards 

studying them. The primary questions are where they bind and what the regulated genes 

are. To answer the first question, we could use the motifs they recognized once we have 

identified their motifs. Special assays such as SELEX (Selection of aptamers by 

systematic evolution of ligands by exponential enrichment) and PBM (Protein Binding 

microarray) have been developed specifically for this purpose. SELEX involves the 

progressive selection and amplification of an initial random pool of DNA towards a final 

pool of DNA with optimized ability to bind a specific TF (Ellington et al. 1990) whereas 

PBMs are special microarrays consisting of probes covering all 8-mer motifs and give out 

fluorescent signal in response to protein binding events (Mukherjee et al. 2004).  

Other than from experimental assays described above, another strategy is to look at the 

promoters of homologous genes across multiple species or genes with correlated 

expressions in a microarray experiment. The reason why this works is because promoters 

are typically functional cis-regulatory element where TFs bind. However such 

approaches typically work well only for simpler organisms such as bacteria and yeast 

because in these organisms promoters are primarily where TFs bind. For complex 

eukaryotes such as human and mouse, gene regulation involves interplay of enhancers 

and silencers which can be located anywhere in the genome. Certain classes of TFs such 

as nuclear receptors are known not to bind preferentially at promoters.  
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In recent years, the development of an enabling technology ChIP (Chromatin-

Immunoprecipitation) drives the study of transcription factor to a whole new level. Using 

ChIP, coupled with high throughput sequencing assay (ChIP-seq) (Barski et al. 2007) or 

with high throughput assays such as chip hybridization (ChIP-chip) (Aparicio et al. 2004), 

we can now retrieve the genome-wide binding of a target transcription factor in-vivo. 

ChIP-seq has now become the de-facto standard for identifying genome-wide binding of 

a particular TF in vivo due to its higher resolution, quality and cost effectiveness. 

Analysing the data churned from ChIP-seq, we could obtain primary information such as 

the binding location in the genome, the binding affinity, as well as secondary information 

such as the motif and their likely target genes which are often assumed to be within 50kb 

from their binding. 

The task of determining the motif of a transcription factor from a set of putative binding 

sequence is a non-trivial problem and is about one of the oldest and most actively studied 

bioinformatics problems known as de novo motif finding.  

1.1.3.1 Motif Model 

Before proceeding, we need to first decide how the motif is to be represented. There are 

various methods to represent the motif, ranging from simple consensus, to positional 

weight matrix (PWM) , to dinucleotide weight matrix (DWM) (Siddharthan 2010), to 

Hidden Markov Model (HMM) (Gelfond et al. 2009). These methods are increasingly 

complex motif representation trading off between simplicity and ability to accurately 

capture the motif’s degeneracy and further capturing positional dependencies. Overly 
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complex models however may not be beneficial, as there is a risk of over-fitting while not 

necessarily improving the general prediction accuracy. To date, such advanced method 

has yet to show much benefit. In this thesis, we will mainly focus on using PWM as the 

preferred way of representing motifs as it is the most popular way and there are many 

usable motifs deposited in this format in the literature. Moreover it is observed that in 

reality, PWM and consensus sequence usually provides a good enough approximation 

(Benos et al. 2002). 

We use Figure 1.1 to illustrate how a motif is represented as a PWM. Figure 1.1A shows 

the binding sequences of a TF recognising a 7bp sequence coloured in blue. Once the 

sequences are being aligned, we obtain the positional count matrix (PCM) as in Figure 

1.1B. The simplest way to represent the motif is by using consensus, i.e. the nucleotide 

with the highest occurrence. In the example, the consensus sequence is AGCTCAC. 

However, we note that the TF seems to prefer C and G equally at the second position. In 

general, within the region that the TF recognises, there could be certain positions that are 

more tolerant, allowing for degeneracies, ranging from having no preference to any 

nucleotide at all to strictly preferring only one of the nucleotide. To rectify this issue, 

instead of the single consensus using the most frequently occurring nucleotide, we allow 

the base at a particular position to be within a subset of all possible nucleotides [A, C, G, 

T] (i.e. [A], [C], [G] ,[T], [A,C], [A,G], [A,T], [G,T], [A,C,G], [A,C,T], [A,G,T], [C,G,T], 

[A,C,G,T]). For succinctness, there is a single letter representation for all possible subsets, 

represented by the IUPAC coding (see Table 1).  IUPAC consensus gives a compact 

representation of the motif but suffers from being unable to fully capture the degeneracy, 
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however it is computationally more efficient to work with and is well suited for a number 

of data structures that allow for optimisation of algorithms such as suffix array and hash 

tables. The discrete solution space also allows the possibility of exhaustive enumeration 

for shorter motifs. It is bulky and less informative to display a motif as a matrix. 

Therefore, a graphical way of representing the motif, weblogo (Crooks et al. 2004) is 

developed, where the height of each base corresponds to the information content of that 

base (see Figure 1.1C). For a base that has no preferences for any nucleotides (i.e. the 

probability of each nucleotide is 0.25), the information content is 0. If the base is biased 

to only one particular nucleotide, then the information content achieves its maximum at 2. 

Information content is a good measure of degeneracy as it intuitively gives us the level of 

importance and tolerance for mismatch at a particular base. In the example we see that 

position two has the greatest degeneracy as its information content is the lowest. 

Precisely, the information content at base i is calculated as −∑ ��,� log
��,���∈[�,�,�,�] ,  

where ��,� represent the empirical probability of the nucleotide j occurring at base i. 
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Figure 1.1 Motif model.  

A) Sequences colored in blue are where TF binds. B) Alignment of sequence bound by TF are 

counted to produce the position weight matrix (PWM) of aligned sequences and the IUPAC 

representation in the last column consisting of the allowed base in the position consensus. 

Consensus of the sequence is ASCTCAC. C) The sequence logo representation of the aligned 

sequence using weblogo tool (http://weblogo.berkeley.edu) 
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Table 1 IUPAC codes for nucleic acids 

 

code Description 

A Adenine 

C Cytosine 

G Guanine 

T Thymine 

U Uracil 

R Purine (A or G) 

Y Pyrimidine (C, T, or U) 

M C or A 

K T, U, or G 

W T, U, or A 

S C or G 

B C, T, U, or G (not A) 

D A, T, U, or G (not C) 

H A, T, U, or C (not G) 

V A, C, or G (not T, not U) 

N Any base (A, C, G, T, or U) 

 

1.1.3.2 Predicting TF binding using IUPAC consensus and PWM 

To predict TF binding at an arbitrary sequence using our model, first we need to define a 

measure of goodness for matching. For consensus sequence, the measure of goodness is 

simply defined by the number of mismatches, the lower the better. The problem with this 

is granularity. A single increase in the number of mismatches raises the admissible 

predictions by many folds. For example a length 7bp motif with no degenerate base, 

admits 1 sequence with no mismatch, 22 sequences with at most one mismatch and 211 

sequences with at most two mismatches.  
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The measure of goodness of matching using PWM is computed using the log likelihood 

ratio. In other words, we are comparing how good the fit is using our model as compared 

with a background model with no preference for nucleotides at every position.  

The formula for the score is: 

 ∑ log� ���,�[�]�.�� �� = ∑ log�
��,�[�]�� − � ∗ log� 0.25 = ∑ log�
��,�[�]�� + 2�  

where S[i] is the ith  position of the sequence we would like to measure, ��,�[�] is the 

probability that the ith  position is S[i], and L is the length of the motif. To compute this 

score, first we need to convert our PWM into a table of log probability. 

Figure 1.2 shows the log probability of our PWM in Figure 1.1B after adding a 

pseudocount of 0.25 to each cell in the table. This is a standard method to avoid 

overfitting since the observed zero count is possibly due to a lack of data. Note that the 

contribution of pseudocount decreases as the sample sequences aligned increases. 

Using this table with row i and column j being represented by M[i,j], the score of a 

sequence AGCTCAC is M[1,A] + M[2,G] + M[3,C] + M[4,T] + M[5,C] + M[6,A] + 

M[7,C] +2*7 =-0.03067 + -0.3123 + -.12494 + -0.03067+ -0.03067+ -0.07525 + -

0.07525  + 14 = 13.32 which is the maximum score attainable by any sequence.  
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The corresponding score of a change of the relative weak base at position 2 from G to A 

(AACTCAC) is 12 and of a change of the strong base as position 5 from G to A 

(AGCTAAC) is 11.7, fitting our intuition of a higher penalty for mismatches at stronger 

bases. Analogous to the number of mismatch cut-off for consensus sequence is the PWM 

cut-off score. All in all, PWM offers a much higher granularity and better handling of 

mismatches at degenerate bases than consensus.  

 

 

Figure 1.2 Log probability of PWM with pseudocount added.  

Lookup entry for computing PWM score of AGCTCAC  

 

1.1.3.3 Precision and Recall of Prediction 

An important measure of the goodness of prediction is the precision and recall. Precision 

measures the chance that a sequence being predicted is truly being bound, in other words 

a precise prediction is one that do not report many spurious predictions; whereas recall or 

sensitivity measures how much of the true bindings we can recover. By relaxing our 
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criteria for the prediction, (i.e. increasing the number of mismatch or lowering our PWM 

cut-off score) we decrease the precision as we will likely be reporting more false 

positives while we increase the recall as we can recover more instances. This trade-off 

between precision and recall is a constant decision to be made. Other than the cut-off 

criteria, a weaker motif model (one with more degenerated bases) will have both lower 

precision and recall than a stronger motif model. 

1.1.3.4 De novo motif finding 

De novo motif finding is the process of identifying over-represented patterns in a set of 

sequence. Suppose we are given a set of sequences that we know are bound (or partially) 

by some DNA-binding protein which binds onto certain specific motif, but we do not 

know what the motif is. The problem then is to try to describe the motif that is being 

bound by the protein (based on one of the models described in Section 1.1.3.1) based on 

the set of sequences given. The following general methodologies are commonly used to 

solve de novo motif finding problem. 

Word-based motif 

We can efficiently enumerate frequently occurring words in a set of sequences using 

special data structures such as suffix tree, suffix arrays or hash table. These words with 

high frequencies are likely instances of certain motif occurrences. By combining and 

clustering words that differ by only a few bases, the PWM of the motif could be inferred. 

Examples of existing de novo motif finding tools that utilize this methods include RSAT 

(van Helden et al. 1998), YMF (Sinha et al. 2003) and CisFinder (Sharov et al. 2009).  
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One of the problems with this approach is that when the length of the motif is long, the 

word instances of the motif may not occur frequently enough to be identified. And hence 

the de novo motif finding could fail. To rectify this problem, motif finders directly find 

PWM models instead of indirectly combining from separate word instances. There are 

two general methods to go about doing this: Gibbs sampling and expectation 

maximisation (EM). 

Gibbs Sampling 

We use Figure 1.3 to illustrate the Gibbs sampling algorithm. Gibbs sampling assumes 

that each sequence has a motif occurrence. Initially the position of the motif occurrence 

in each sequence is randomly initialised. Assuming that each sequence has a motif 

occurrence coming from an assumed PWM model, we can iteratively refine the model to 

one that is slightly better by repeatedly applying the following step. Take turn leaving out 

each sequence, find the segment that has the highest score using the PWM aligned using 

the occurrences in the other sequences and then update the motif position to the highest 

scoring segment scored using the PWM. After repeating this process several times, at 

some point, the motif position of all sequences the motif score will remain unchanged. At 

this point, the PWM aligned using all the sequences will be reported. As the algorithm 

requires an initial randomized initialization, this PWM reported may not be optimum as it 

is possible that the algorithm may get stuck at a local optimum. Several modifications to 

the algorithm were employed by different variants to address and relax several 

assumptions such as the restriction of having exactly one motif occurrence per sequence. 

Examples of de novo motif finders utilising the Gibbs sampling approach are: 
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GibbsDNA(Lawrence et al. 1993), AlignACE(Roth et al. 1998), MotifSampler(Thijs et al. 

2001), BioProspector(Liu et al. 2002) and ANN-spec(Workman et al. 2000). 

 

Figure 1.3 Illustration of Gibbs sampling algorithm.  

In the current iteration, it is the fourth sequence’s turn to be updated. The new position of 

the motif is being updated for the fourth sequence to the red motif which is the best 

scoring position using the PWM aligned using the other blue motifs. In next iteration, the 

fifth sequence is being considered. 

 

Expectation Maximisation 

Expectation maximisation is a standard statistical tool used to estimate the prior’s 

unknown parameters that give the maximum likelihood i.e. the best explaining model that 

gives the highest probability of observing the given data. In the context of de novo motif 

finding problem, the unknown prior we are interested in is the PWM motif model. The 

statistical formulation is as follows: Given N sequences s1, s2, s3, …, sN , each length L 

substring of these N sequences are presumed to come from either the motif model Θ or 

the background model Θ0.  The EM algorithm will try to iteratively update the motif 

model Θ to obtain one in which using the model, the probability of observing the input 

sequences is maximised. In the EM algorithm there are two phases. In the E-phase 

(Expectation phase) we use the current motif model to compute for each position the 
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probability that it comes from the motif model. In the M-phase (Maximisation phase) we 

use differentiation to obtain the stationary point of the expectation function. These 

parameters are then evaluated to obtain the new motif model. The MEME suite consists 

of a large arsenal of de novo motif finders catered towards different purposes (Bailey et al. 

2009). 

Graph-based 

In graph-based de novo finder, each sequence is represented by a node and pairs of 

sequences sharing certain substrings that are close in terms of Hamming distance from 

one another will be represented as an edge in a graph. The problem then translates into a 

problem of cliques finding (Liang et al. 2004; Zhang et al. 2011) or dense subgraph 

(Zhang et al. 2011).  

1.1.3.5 Existing curated Protein-DNA binding motif databases 

Motifs of TFs have been actively published and curated by the scientific community. 

TRANSFAC and JASPAR are two of the most commonly used TF motif databases of 

mammals.   
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Table 2 shows a list of available curated TF PWM databases for various organisms. The 

analysis in this thesis is based mostly on TRANSFAC for comparisons with other 

methods. 
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Table 2 List of curated TF PWM databases 

Name Organisms 

RegPrecise(Qi et al. 2014) Prokaryotes 

RegTransBase(He et al. 2013) Prokaryotes 

RegulonDB(Xu et al. 2013) Escherichia coli 

PRODORIC(Machiels et al. 2013) Prokaryotes 

TRANSFAC(Dai et al. 2012) Mammals, Bacteria, Plant 

JASPAR(Sandelin et al. 2004) Mammals, Bacteria, Plant 

TRED(Akutsu et al. 2012) Human, Mouse, Rat 

HOCOMOCO(Iwagami et al. 

2012) 

Human 

 

 

1.1.4 ChIP-Sequencing 

1.1.4.1 The Experiment 

When the project started, chromatin immuno-precipitation followed by sequencing 

(ChIP-seq) (Johnson et al. 2007) is the de facto standard for the identification of TF 

binding in cells in vivo. It is the combination of two techniques, namely chromatin 

immuno-precipitation (ChIP) and high throughput sequencing. Figure 1.4 consists of the 

steps for ChIP-seq. First, formaldehyde is added to crosslink the protein to the DNA 
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which would enable the proteins to stick to the DNA while the fragments are being 

sonicated in step two. Subsequently, antibody for the target TF is being added to separate 

the DNA fragments bound by target TF from other fragments. After that the extracted 

fragments are decrosslinked to remove the protein from the DNA and sequenced by a 

sequencing machine.  

 

Figure 1.4 Steps in ChIP-seq assay. 

 

1.1.4.2 Mapping 

Subsequently reads have to first be mapped onto the genome. The reads are typically of 

the order of tens of millions of length 30-80 bp. Mapping is a process of converting a 

sequence into a location in the genome. The main idea behind mapping is that reads that 
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are long enough eventually will be uniquely represented on the genome. The longer the 

sequenced read, the higher the chance that the read will be uniquely identifiable in the 

genome. Typically, sequence mappers will allow for a number of mismatches due to 

sequencing error and mutations in DNA relative to the reference genome. Some of the 

popular mappers are BWA (Li et al. 2009), Bowtie (Langmead et al. 2012) and BatMis 

(Tennakoon et al. 2012).  

1.1.4.3 Peak Calling 

The objective of ChIP-seq is to identify regions in the genome that have been bound by 

target TF. Peak callers do so by identifying regions in the genome with mapped read 

counts that are statistically over-represented relative to a background run in which ChIP 

is not performed. The local maximum of a statistically over-represented region is called a 

peak. Examples of popular peak calling programs includes SISSRs (Narlikar et al. 2012), 

MACS (Zhang et al. 2008) and CCAT (Xu et al. 2010).  

1.2 Research Problems  

1.2.1 Identifying co-TF from ChIP-seq datasets 

1.2.1.1 Description 

Once the ChIP-seq of a particular TF is generated, we could try to answer the question of 

what are the potential cofactors which frequently cooperate with the TF without further 

performing experiments. The reason is because cofactors reside in the same cis-

regulatory modules and hence the motifs occur closely around one another. Therefore, we 

expect to be able to find comotifs at close vicinity (+/- 500bp) around the peaks. There 
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are three approaches to this problem: 1) perform de novo motif finding algorithms to see 

what motifs are enriched and then match the motif to motif database, 2) scan the 

sequences using all motifs from the motif database and look for those that are enriched, 

3) scan the sequences using all motifs from the motif database and look for sets of motifs 

that that are combinatorially enriched. 

1.2.1.2 Literature Review of Existing Methods 

1.2.1.3 Large scale de novo motif finding 

By performing de novo motif finding on the set of ChIP-seq peaks, we would identify 

ChIPed TF motif as well as the motifs of its co-factors. However because of the large size 

of ChIP-seq data sets, most of the older generation de novo motif finders such as MEME 

and YMF that were designed for promoter analysis could not handle such big datasets 

and typically only restricted to just the top binding sites and therefore unable to 

comprehensively obtain all the co-TFs that the primary TF potentially works with. Recent 

de novo motif finding algorithms that are tailored toward large datasets include MDScan 

(Liu et al. 2002), Trawler (Ettwiller et al. 2007), Amadeus (Linhart et al. 2008), DREME 

(Bailey 2011) and CisFinder (Sharov et al. 2009). These tools typically tapped on data 

structures such as suffix tree, suffix array and hash tables to speed up searches. 

1.2.1.3.1 Motif Scanning followed by Motif Enrichment Scoring 

Instead of performing de novo motif finding, using the various motif databases available 

such as TRANSFAC and JASPAR, we can perform motif scan to predict cofactors whose 

motif is available.  
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This process typically consists of two phases: motif scanning and motif enrichment 

scoring. We will explore the existing tools that can be used for this purpose. In the 

subsequent section we will first separately look at the various ways of performing motif 

scanning and motif enrichment scoring.  

1.2.1.3.1.1 Variations in Motif Scanning 

Section 1.1.3.2 describes one of the ways of performing motif scan based on PWM. To 

recap, to determine whether a particular string of nucleotides belongs to the motif model, 

first the log-likelihood score is being computed. We can do likewise for each position in a 

relevant background (e.g. a set of genomic or promoter sequences). The stringency can be 

set by deciding the number of occurrences we expect to observe in the background, say 1 

occurrence per 10000 bp. The score corresponding to this expected occurrence is used as 

the cutoff. In this case, we say the pvalue cutoff is 0.0001. In the method described in 

Section 1.1.3.2, we assumed a background probability for the nucleotides to be uniformly 

0.25 each. Another approach is to estimate the background nucleotide probability based 

on the individual counts of the nucleotides in the genome of the studied organism. The 

rationale for this is that in a genome that is GC rich, it is not surprising to observe a GC 

rich motif, and hence we would expect a greater penalty in the denominator. Though it is 

more accurate to account for, it suffers from having to use a separate formula when 

applying to different contexts and we shall later see that the choice of background, 

whether promoter or global plays a part as well. The method in Section 1.1.3.2 is 

preferred because of its simplicity and also background biases will be accounted for by 

using the p-value as the cutoff.  
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Other than using p-value as cutoff, other scoring method includes TRANSFAC Match 

which tries to minimise false positive and negative using the set of positive and negative 

sequences supplied for training. Firstly, the log-likelihood score are rescaled linearly such 

that the minimum and maximum achievable score corresponds to 0 and 1. To determine 

if there is a match, TRANSFAC also tracks the score for the most informative 5bp 

segment in the entire motif called the core of the motif. For each of the positive and 

negative sequences supplied during training, the highest score is being computed and 

corresponding core score of the best alignment recorded. Using these scores TRANSFAC 

Match computes separate cutoffs that minimise false positive rate, or false negative rate, 

or the sum of these rates.  

1.2.1.3.1.2 Common Motif Enrichment Scoring 

To determine whether a particular motif is interesting within a set of sequences, we make 

use of p-value. To explain what p-value is, we make use of a coin-flipping example. 

Suppose we flipped 10 coins and 9 of them turned out to be heads. Had each of the coins 

been a fair coin, the chance of observing at least 9 heads would have been	%&9	ℎ)*+,- +
%&10	ℎ)*+,- = 
/�0 �0.500.5 + 
/�/��0.500.5 ≈ 0.0107 , which is rather unlikely. This 

therefore gives us evidence to suspect that not all the coins are fair coins. In this case, 

0.0107 is our p-value and the smaller this value, the more “surprising” our observation 

and the more evidence we have to suspect that at least some of the coins are biased 

towards heads. P-value is computed with respected to a null hypothesis which is a 

reasonable model to explain the observation when there is nothing special. In our coin 
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flipping example, our null hypothesis is the background model that all the 10 coins are 

fair, with a 50% probability of coming up head.  

Motif enrichment analysis in general consists of three steps: 1) perform motif scan to 

determine motif hits, 2) compute enrichment score and 3) report enriched motifs. 

The enrichment score used by motif enrichment analysis tools is usually a p-value. 

Binom1 

Total number of motifs in input sequences follows the distribution 345674*8&9, �-  
where  

9 = Total	length	of	input	sequences	
and	
� = GHIJKL	MN	IMO�NP	�Q	JRSTULMHQV	PKWHKQSKP

�MORX	XKQUOY	MN	JRSTULMHQV	PKWHKQSKP   

Binom2 

Total number of input sequences with motifs follows the distribution  

345674*8&9, �-   

where  

9 = Number	of	input	sequences	
and	
� = ^_`abc	de	afghicd_jk	lbm_bjgb	nopq	`dpoe

^_`abc	de	afghicd_jk	lbm_bjgbl   



 37 

 

Hypergeom  

Total number of input sequences with motif follows the distribution 

rs�)tu)67)vt4w&9, x, 5, y-   

where  

9 = Total	number	of	sequences	which	includes	input	and	background	sequences 
5 = Number	of	input	sequences	
y = Number	of	input	sequences	with	motifs 

1.2.1.3.1.3 Existing tools 

The existing tools differ in the way motif scan and motif enrichment scoring are being 

performed. Moreover, before high throughput experiments such as ChIP-seq and ChIP-chip 

chip became popular, genomic analysis is restricted to the promoter of genes, typically guided 

guided by gene co-expression obtained by microarray experiments. Promoter of groups of genes 

genes that are co-expressed will be subjected to motif enrichment analysis to predict candidate 

candidate TFs that explain the co-expression. Up till recently, most motif enrichment tools had 

tools had been restricted to just the analysis of promoters.  

Table 3 shows a list of motif enrichment tools comprising of ConTra (Hooghe et al. 

2008), CORE_TF (Hestand et al. 2008), oPOSSUM (Ho Sui et al. 2005), PASTAA 

(Roider et al. 2009), GATHER (Chang et al. 2006) and CEAS (Ji et al. 2006). 
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Table 3 List of existing motif enrichment tools 

WebTools Promoter/ 

Genomewide 

Motif Scanning Motif Enrichment Background 

ConTra Promoter TRANSFAC MATCH Binom1 Selected Promoters 

oPOSSUM Promoter TRANSFAC MATCH Binom1 Selected Promoters 

PASTAA Promoter TRANSFAC MATCH Binom1 Selected Promoters 

GATHER Promoter TRANSFAC MATCH Hypergeom All Promoters 

CEAS Genomewide EVALUE Binom1 Whole Genome 

CORE_TF Promoter/ 

Custom Sequence 

TRANSFAC MATCH Binom1,Binom2 Selected Promoters/ 

Custom Sequence 

 

Though these tools could be used for motif enrichment analysis, most of them will 

provide interface for further analysis. For example, ConTra, oPOSSUM and PASTAA 

allow the user to zoom into the promoter regions containing motifs. ConTra and 

CORE_TF will use the TF candidates reported for further analysis. 

1.2.1.4 Summary 

De novo motif finding in general is time consuming especially for large number of 

datasets and has difficulty in detecting subtle signals. As for motif enrichment, there are 

no hard and fast rules of how to perform and there are lots of parameters that average 

biologists have difficulty understanding and fiddling with. Some of these parameters are 

1. the background (which models the non-binding sites), 2. the enrichment window size 

(which models the distance between the co-TF and the peak), and 3. the PWM score 

(Stormo 2000) cut-off (which determines if a site can be bound by the co-TF or not). 
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To provide biologists with an easy to use interface to predict candidate TF binding in 

target set, we develop CENTDIST in CHAPTER 2. 

1.2.2 Identify Differential Motif Enrichment between two sets of 

ChIP-seq peaks 

1.2.2.1 Description 

In certain situations, we are interested in comparing two sets of genomic regions for 

differences in motif that could explain the underlying differential properties 

distinguishing the two sets. For example if we had two sets of ChIP-seq peaks that were 

performed under two different conditions, such as under two types of drug treatments, we 

could perform differential motif analysis to help predict the transcription factors that are 

active in each scenario.  This can be done in several ways: 1) Discriminative de novo 

motif finding, 2) Using motif enrichment tools to compare the list that are filtered based 

on certain cut-off criteria, 3) Perform motif scanning and derive a differential motif 

enrichment score based on the counts. 

1.2.2.2 Literature Review of Existing Methods 

1.2.2.2.1 Discriminative De Novo Motif Discovery 

Unlike usual de novo motif discovery algorithms as illustrated in Section 1.1.3.4, 

discriminative motif finding algorithms take into consideration of an additional negative 

set of sequences to be discriminated against. For a motif to be enriched, not only must it 

occur frequently in the positive set, it should also not occur frequently in the negative set.  
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Discriminative motif finders are typically designed to compare bound set with an 

unbound control set(Barash et al. 2001; Smith et al. 2005; Elemento et al. 2007; Redhead 

et al. 2007; Bailey 2011). Recently contrast motif finder (CMF) (Mason et al. 2010) has 

been developed to compare two sets of arbitrary binding peak sets and identify context-

dependent motifs.  

1.2.2.2.2 Motif Scanning Based 

Suppose we are given two sets of ChIP-seq datasets and a database of PWMs, as with for 

single set, we would first perform motif scan for each set of ChIP-seq dataset for each 

PWM. General ways of identifying differentially enriched motifs: 1) Applying Motif 

Enrichment on each set and compare reported results 2) Applying Motif Enrichment on 

each set and comparing the scores reported.  

1.2.2.2.2.1 Comparing Motif Enrichment Result List 

We perform motif enrichment as per section 1.2.1 for each data set. Using the default 

cutoff for the motif enrichment analysis to determine enriched motifs in each set, we then 

decide whether a motif is differentially enriched by checking whether they appear in the 

other set. 

1.2.2.2.2.2 Comparing Motif Enrichment Scores 

After performing motif enrichment as per section 1.2.1 for each data set. Instead of cutoff, 

we compare the enrichment score reported. This approach is most popular and has been 

adopted by Wang et al. (2011)  and represented by a heat map (see Figure 1.5). 
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Figure 1.5 Example differential motif comparison illustration using heatmap based 
on enrichment pvalue score.  

 

 

1.2.2.3 Summary 

Though several de novo based algorithms exist to identify differential motifs in two sets, 

no tool exists that is based on PWM database scanning. As such, we proceed to develop 

MOTIFDIFF in CHAPTER 3.  
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CHAPTER 2 CENTDIST – Web-based tool for Motif 
Enrichment 

This chapter describes CENTDIST, a user friendly tool we developed to identify 

colocalized motifs. This is a joint work between Zhang Zhizhuo and me. Parts of the 

material covered in this chapter were originally published in (Zhang et al. 2011). 

2.1 Introduction 

With the revolutionary improvements of high throughput sequencing technologies, ChIP-

seq has become increasingly affordable and effective to the extent of becoming the de 

facto standard for identifying the genome-wide binding profile of a particular TF in-vivo 

under a specific cell condition. Large amounts of high quality cistromic data rapidly 

produced by the biology research community calls forth effective, efficient and easy-to-

use computational tools so that biologists can easily perform useful computational 

analyses without requiring much computational knowledge. One such important analysis 

is the identification of co-TFs, the cooperative partners in gene transcriptional regulation. 

Recent advances in ChIP-seq and the wide adoption of the technology in mapping TF 

binding sites have allowed researchers to identify novel co-TFs (Johnson et al. 2007).  

Currently, co-TFs of a selected TF are identified in the following manner. First, a peak 

calling program such as MACS (Zhang et al. 2008) or CCAT (Xu et al. 2010) is used to 

determine which peaks in the ChIP-seq data are binding sites. Next, candidate co-TFs are 

predicted by examining if their motifs (position weight matrix, PWM) are enriched near 

the ChIP-seq peaks after normalizing against a chosen background model. TFs with 
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enriched motifs are classified as potential co-TF candidates and subsequently validated 

experimentally. This approach, known as the enrichment based method, has been widely 

used to identify novel co-TFs in web-based programs such as CEAS (Shin et al. 2009), 

CORE_TF(Hestand et al. 2008), ConTra (Hooghe et al. 2008), and oPOSSUM(Ho Sui et 

al. 2007). However, there are occasions when this approach fails to find co-TFs. This is 

because the accuracy of enrichment-based methods is highly dependent on several user-

specific parameters including: 1. the background (which models the non-binding sites), 2. 

the enrichment window size (which models the distance between the co-TF and the peak), 

and 3. the PWM score (Stormo 2000) cut-off (which determines if a site can be bound by 

the co-TF or not). Since different co-TFs require different parameters, existing methods 

can only identify co-TFs that satisfy the parameters specified by the user. This restriction 

thus limits the accuracy of existing methods. To avoid this problem, it would be ideal to 

have a method that does not require the user to specify a background while the method 

automatically estimates the enrichment window size as well as the PWM score cut-off for 

every co-TF. 

Accurately predicting the co-TFs of a particular TF from a ChIP-seq experiment is 

computationally challenging because some co-TFs may occur infrequently while the 

location of others are less certain than that of the ChIPed TF (Chromatin Immuno-

precipitated TF in ChIP-seq experiment). Previous reports suggested that motifs of co-

TFs are enriched around ChIP-seq peaks (Wederell et al. 2008; Sharov et al. 2009). 

Several studies also showed that if two TFs are co-associated, their ChIP-seq peaks (or 

their binding sites) are not only in close proximity with each other, but the relative 
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distance of each TF with respect to the other exhibits a peak-like distribution (Chen et al. 

2008; Cheung et al. 2010; He et al. 2010) We call this property the center distribution. 

Herein, we examine whether center distribution can be utilized for co-TF discovery.  

2.2 Results  

2.2.1 Development of CENTDIST 

We utilised our inhouse generated AR ChIP-seq and its cofactor FOXA1 ChIP-seq to 

gain some insights on true co-motif distribution. We first look at the AR motif 

distribution around ChIP-Seq peaks. Figure 2.1 shows the distribution of AR motif 

(V$AR_02) around the AR ChIP-seq peak. Strong motif enrichment can be seen within 

100bp away from the peak center, peaking at the ChIP-seq peak center and practically 

flat elsewhere. 

We plotted the histogram for both FOXA1 ChIP-seq peak (Figure 2.2a) and FOXA1 

motif (Figure 2.2b) around AR ChIP-seq peaks. As compared to AR motif, similar 

enrichment can be observed for FOXA1 motif peaking at the AR ChIP-seq peak center 

though the width of enrichment is wider, extending to 200bp from AR ChIP-seq peak 

center. In addition, we observe that the distribution of FOXA1 motif closely resemble the 

distribution of FOXA1 ChIP-seq peak, albeit with higher background, showing that motif 

is a good predictor for the distribution of actual TF binding. 

This observation of co-motif distribution is what we called center distribution and we 

proceed to develop an algorithm called CENTDIST around this idea. 
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Figure 2.1 AR motif distribution around AR ChIP-seq peaks.  

The histogram of AR motif matches (V$AR_02) around AR ChIP-seq peaks, binned at 

50bp intervals. Motif enrichment can be observed within 100bp from peak center. 
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Figure 2.2 FOXA1 ChIP-seq and motif distributions around AR ChIP-seq peaks.  

a) Histogram of FOXA1 ChIP-seq peak around AR ChIP-seq peak. b) Histogram of 

FOXA1 motif matches (V$HNF3ALPHA_Q6) around AR ChIP-seq peaks, binned at 

50bp intervals.  

2.2.1.1 Algorithm behind CENTDIST 

2.2.1.1.1 Strategy for Removing the Need for Secondary 

Parameters 

As previously mentioned, earlier methods require users to decide on the background 

model, the PWM cut-off and the proper enrichment window size for scanning. One of the 

aims of CENTDIST is to seek to take these responsibilities off users and simplify the 

analysis process by helping to select the optimal recommended parameters automatically. 

As such, users should only be required to input a set of genomic locations representing 



 47 

 

ChIP-seq peaks (chromosome-peak summit position) and a list of candidate PWM motifs 

(provided by users or obtained from either the TRANSFAC (Matys et al. 2003) or 

JASPAR (Sandelin et al. 2004) databases representing co-TF binding sites. Utilising a 

fast motif scanning approach employed in CISFINDER (Sharov et al. 2009), we can scan 

for good matches of large number of motifs in a fraction of time compared with the naïve 

approach. This is possible because for the purpose of motif enrichment in high 

throughput data, we believe we should not go beyond an E-value (see Section 1.2.1.3.1.1 

for description of E-value) of 0.001 which is roughly 3000000 hits in the entire human 

genome.  

This allowed us to be able to scan over a larger region and focus on analysing the motif 

histogram over a larger window instead of just looking at the counts in a specific small 

window. We employed a score maximisation strategy to automatically determine the best 

parameters for the enrichment window and the motif score threshold.  The score that 

CENTDIST tries to maximise, the frequency score, will be described in the next section. 

2.2.1.1.2 Frequency Score 

The core of the CENTDIST algorithm is the analysis of the frequency graph of TF motif 

matches with respect to the distance to the ChIP-seq peak center. As seen in Figure 2.1 

and Figure 2.2(a) and (b), we observe symmetry about the ChIP-seq peak center 

indicating there is no directional bias of the motif with respect to the ChIP-seq peaks, 

equally likely to occur on either side. For the purpose of score computation, we consider 

only the magnitude of the distance from the peak center, ignoring the direction of 
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occurrence. We use a bin size of 20bp to obtain the histogram which can subsequently be 

represented by a vector of frequencies fi for i=1,2,…,50 corresponding to the count of 

motifs within the range of distance from ChIP-seq peak center 20i-20 to 20i respectively, 

covering distances up to 1000bp from the ChIP-seq peak center.  

 

After obtaining the frequency graph, we compute the frequency score, Zfrequency by the 

formula, }NLKWHKQS~ = } �7� , I�
&I��I�- , 7� +7M� = &7� −7�-�I��I�

I�I�
 , where mi is the 

number of motif occurrences within a distance d (which will be varied to obtain the best 

score) from the ChIP-seq peak centers and m0 is the number of motif occurrences that are 

not within distance d from the peak center and the function Z(x,p,n) = (x – np) / 

sqrt(np(1-p)) measures the number of standard deviations count x is from the expected 

value. This statistic is frequently used as the normal approximation to the probability of 

observing at least x successes in a binomial distribution with parameters n and p.  

As an example, we look at the frequency graph of AR motif distribution about AR ChIP-

seq peaks. (see Figure 2.3(a)) We represent the motif occurrences by balls and illustrate 

for two different partition sizes, d1(see Figure 2.3(b)) and d2(see Figure 2.3(c)), where 

the number of balls in each partition is derived from the frequency graph in Figure 2.3(a). 

The event represented by Figure 2.3(c) is harder to observe than that in Figure 2.3(b) (i.e. 

lower p-value). Hence, enrichment window d2 is chosen over d1. The best such 

enrichment window will be determined by trying all possible distance d. Figure 2.3(a) 

shows the best enrichment window obtained, where the enriched region is colored red. 
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Figure 2.3 Determining the frequency score of AR motif around AR ChIP-seq peaks.  

a) Frequency graph of AR motif around AR ChIP-seq peak (best scoring partition colored red). b) 

Treating motif occurrences as balls that are randomly dropped into two partitions d1 and 1000-

d1 with the probability of being dropped in the partition being proportional to the width of the 

partitions. c) Using a smaller enrichment window d2, we obtain better p-value (more 

unexpected), hence enrichment window d2 is preferred over d1. The best such enrichment 

window will be determined by trying all possible windows. 
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2.2.1.1.3 Velocity Score 

For both the motif distribution of the primary TF, AR seen in Figure 2.1 and the co-TF, 

FOXA1 seen in Figure 2.2, not only do we observe enrichment of frequency near the 

peak center, we could also observe an increasing gradient towards the center. This is 

another feature that could be used to discern the differences among real motif and 

biological artifacts primarily brought about by GC or AT bias. We illustrate using RNA 

PolII ChIP-seq in K562 cells (Raha et al. 2010) (GEO accession numbers: GSM487431) 

as an example for which this feature is particularly beneficial. PolII, being the main 

protein responsible for transcription of genes are expected to bind near gene TSS. As 

such, it is situated within a promoter CpG island with much higher density of C/G then 

A/T (see Figure 2.4(a)) and hence is likely to be enriched by GC rich motifs, while the 

enrichment of TATA-box motif, a well-known binding anchor for PolII which is AT-rich 

is likely to be suppressed.  To demonstrate, we examined the occurrences of the string 

pattern “CC” (not a real TF motif) and the TATA-box motif (Transfac ID: V$TATA_01) 

within the vicinity of the RNA PolII ChIP-seq peaks. Comparing the frequency 

distribution of “CC” (Figure 2.4(b)) and TATA-box (Figure 2.4(c)), using frequency 

score, we would have obtained a higher score for “CC”. However, we see that for the 

TATA-box motif, we observe increasing gradient towards the center, just like our model 

TF and co-TF distribution we looked at earlier, whereas the observation is absent for the 

false motif “CC”. To utilize this feature of increasing gradient towards the center, we first 

compute the velocity which is a smoothed gradient for the underlying frequency graph. 

Given the frequency graph represented by a vector of frequencies fi for i=1,2,…,50. The 

velocity graph is defined to be the vector of differences vi=(fi-fi+5)/5 for i=1,2,…45. 
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Figure 2.4(d) and Figure 2.4(e) shows the velocity graph of “CC” di-nucleotide and 

TATA-box motif respectively. We see that the velocity graph is color-coded with red and 

green. Roughly speaking, the bars colored red are “good” velocities and the bars colored 

green are “bad” velocities. With respect to the best partition obtained for the frequency 

score, we define “good” velocities to contain the positive velocities within the enrichment 

partition and the negative velocities within the non-enrichment partition, and vice versa. 

Velocity score is highest when there is a decrease towards the center outside the 

enrichment partition and increase towards the center within the enrichment partition. 

Denoting the sum of good velocity as G and sum of bad velocity as B, the velocity score 

is then calculated by: }�KXMS�O~ = }&�, �
��� , 3 + �- = &� − 3-����

��  where the function 

Z(x,p,n) is as described previously. 
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Figure 2.4 Analysis of motifs around RNA  PolII ChIP-seq peaks.  

(a)  A/T or C/G density changes when approaching the PolII peak. (b)  Frequency graph of the 

“CC” di-nucleotide distribution around PolII peak. (c) Frequency graph of TATA-box motif 

distribution around PolII peak. (d) Velocity graph of the “CC” di-nucleotide distribution around 

PolII peak. (Red are “good” velocities and green are “bad” velocities”) (e) Velocity graph of 

TATA-box motif distribution around PolII peak. (Red are “good” velocities and green are “bad” 

velocities”) 
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The velocity score serves to correct the frequency score biases due to CG (or AT) 

variation in the regions around the ChIP-seq peaks. The overall scoring function used by 

CENTDIST to assess motif distribution which is basically the sum of Zfrequency and Zvelocity, 

is hereby called the center distribution score. As a summary, Figure 2.5 demonstrates the 

capability of CENTDIST to promote true positive and repress false positive. To 

demonstrate the former, we consider the motif occurrence of V$AR_02 around AR ChIP-

seq peaks. As shown in Figure 2.5(a), the Z-score progressively increases as we use 

flanking region as background (instead of promoter or random region), select the optimal 

window, the optimal PWM cut-off and finally considering the velocity. To demonstrate 

the latter, we study the CG-rich yeast TF motif, F$ADR1_01, which would have been 

determined incorrectly to be enriched around the PolII (RNA polymerase II) ChIP-seq 

peaks in human K562 cells using traditional approach. We know this motif is not actually 

enriched because PolII-binding sites are enriched for CpG islands, which are regions 

known to contain many CG repeats. As shown in Figure Figure 2.5(b), this motif has a 

modest center distribution score based on only the frequency score, but the final center 

distribution score was significantly lower after taking the velocity score into 

consideration. 
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Figure 2.5 Demonstration of CENTDIST Capability  

(a) CENTDIST enhances the Z-score of the AR motif in the AR ChIP-seq data set (LNCaP cell line). 

The blue bar and red bar show the Z-scores of the AR motif computed using the traditional 



 55 

 

enrichment method under the window size of 200 bp and the default PWM cut-off (1.32), 

respectively. The green bars show the Z-score of the AR motif computed by CENTDIST after it 

optimized different parameters. In the initial stage, the frequency Z-score was calculated using 

flanking regions at 200 bp as background and default PWM cut-off. In the second stage (window 

size), CENTDIST finds the best window size to maximize the Z-Score, in which the enrichment 

window size of AR is changed from 200 to 60 bp. In the third stage (cut-off), CENTDIST finds the 

best PWM cut-off to maximize the Z-Score, which leads to the flanking region noise level 

dropping significantly. In the fourth stage, CENTDIST combines the Z-scores of both the 

frequency graph and the velocity graph, thus further increasing the Z-Score. (b) CENTDIST can 

repress the Z-score of the false CG-rich motif in the PolII ChIP-seq data set compared to the 

traditional overrepresentation methods. All Z-scores are computed exactly as in (a). Since 

CENTDIST considers the velocity graph of the false CG-rich motif, the combined Z-score of 

CENTDIST finally drops and is significantly lower than that computed by the traditional 

enrichment based method. As a side note, this figure also showed that random background can 

produce quite different results compared to promoter background, which highlights the 

difficulty of choosing a correct background in existing enrichment based methods. 

 

2.2.1.2 Comparison with Existing Tools 

To assess CENTDIST’s performance with respect to CEAS and CORE_TF, and also to 

discover potential new co-TFs of AR, we compared the performance of CENTDIST 

against two enrichment-based programs, CEAS and CORE_TF, on our AR ChIP-seq 

dataset. To ensure version compatibility among TRANSFAC databases used, we restrict 

the matrices used in the comparison to only those in TRANSFAC 11.2 which was used 

by CORE_TF while CEAS used an older version. CENTDIST was sensitive enough to 

discover AR and all seven known co-TFs within top 20 hits (first two columns in Table 

4). Well-characterised AR co-factors such as FOXA1, Oct1 and Ets1, were among some 

of the highly ranked factors in our analysis (Cheung et al. 2010; He et al. 2010). This 

result was significantly better than CEAS, which failed to find 5 of the known AR co-TFs. 

To make sure that the failure to identify the TFs is not due to using an older version of 
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TRANSFAC, we checked that the database used by CEAS contain matrices for these TFs 

by generating genomic locations corresponding to perfect match of the individual 

matrices as input to CEAS for verification. CORE_TF, optimized with a random 

background setting and 400 bp extracted window size, identified all known AR co-TFs, 

however, this was within the top 37 hits. AUC analysis also indicated that CENTDIST 

outperformed the other motif enrichment tools even under their best configurations (see 

Table 4).  

Table 4 The ranking of the known co-TFs of AR for each motif enrichment tool. 

  

CENTDIST* CENTDIST 

CORE_TF 

prombg 

200 

CORE_TF 

prombg 

400 

CORE_TF 

prombg 

1000 

CORE_TF 

randbg 

200 

CORE_TF 

randbg 

400 

CORE_TF 

randbg 

1000 

CEAS 

200 

CEAS 

400 

CEAS 

1000 

AR 1 1 2 2 6 1 1 1 2 2 1 

CEBP 14 14 12 16 25 20 15 7       

ETS 10 9 64 61 66 37 37 47       

FOX 2 2 1 1 1 2 2 2 1 1 2 

GATA 12 10 10 13 12 16 12 14       

NF1 9 11 40 60 70 10 21 31 3 3   

NKX 7 8 11 5 2 12 4 3       

OCT 19 19 4 8 5 15 19 26       

AP4 25 21       65 70         

AUC† 0.9683 0.9683 0.91 0.8917 0.8742 0.9358 0.9375 0.9208 0.6854 0.6875 0.625 

 

* The output result of CENTDIST* is ranked by the Z-score of frequency graph only. 

† The AUC score computation excludes AP4. 

The columns 4th-6th are the results for CORE_TF using promoter background (default background for CORE_TF) with 

window size 200-1000 respectively, and the column 7th-9th are the result of CORE_TF using random genome 
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background with window size 200-1000 respectively. The last three columns are the results of CEAS with window size 

200-1000 respectively. 

CENTDIST discovered 10 co-TFs that were unique to the program. For five of these co-

TFs, evidence from literature suggests that they play a functional role in prostate cancer 

development (Table 5). Among the other five for which link with prostate cancer is not 

well established, we focused on AP4 to validate it as a potential co-TF of AR.  From 

Table 4 we could see that AP4 motif is ranked 21 in CENTDIST but is not reported 

within top 50 by the other enrichment tools.  

Table 5 Novel co-TF candidates of AR predicted by CENTDIST. 

Family Best Motif RANK Function 

CACCT V$AREB6_04 29 AREB6 also known as ZEB1 has a role in prostate cancer, 

which enhances transendothelial migration and represses the 

epithelial phenotype; ZEB1 and AR regulate each other to 

promote cell migration in triple negative breast cancer cells. 

(Park et al. 2000; Ergen et al. 2007) 

BRCA V$BRCA_01 34 BRCA1/BRCA2 is BReast CAncer genes, and mutation in these 

genes increase risk of prostate cancer; BRCA1 is coactivator of 

the androgen receptor in both transfected prostate and breast 

cancer cell lines.(Chi et al. 1994; Maggiolini et al. 2004) 

P53 V$P53_02 42 p53 in prostate cancer: frequent expressed transition mutations. 

(Kang et al. 2004)  

ERE V$T3R_Q6 13 Oestrogen receptor beta (ERbeta) is necessary for androgen-

stimulated proliferation of LNCaP prostate cancer cells.(He et 

al. 2010) 

CDX V$CDX_Q5 12 CDX can form complex with AR in LNCaP cell lines.  (Cheung 

et al. 2010) 
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In Figure 2.6, we observed that both the frequency and the velocity of most co-TF motifs 

with respect to the AR peaks have good shape even though their enrichment were not as 

significant as that of AR. Taken together, our observation suggests that the frequency and 

velocity of co-motifs are useful information for determining true motif signals.  

 

Figure 2.6 Frequency and velocity graphs of AR and its co-TFs including the newly 
discovered AP4.  
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2.2.1.3 Validation of AP4 as a novel cofactor of AR 

AP4 belongs to the basic helix-loop-helix (bHLH) family of transcription factors. It 

functions as a homodimer and is known to play important roles in colorectal cancer(Cao 

et al. 2009), however our understanding of this TF in prostate cancer is limited. To test if 

AP4 is a co-TF of AR, we randomly selected 22 AR ChIP-seq peaks that contain the AP4 

motif and performed ChIP-qPCR in LNCaP cells treated with and without DHT. As 

shown in Figure 2.8(a), all 22 binding sites showed enrichment compared to the genomic 

control site, suggesting that AP4 is co-localized at AR binding sites. Furthermore, under 

DHT treatment (which recruits AR), the binding of AP4 was enhanced compared to 

vehicle (Ethanol) treatment. To further validate whether AP4 and AR are co-binding, we 

took an unbiased approach and performed a ChIP-seq of AP4. As shown in Figure 2.8(b), 

a large number (2,296 out of 6082/38%) of AP4 ChIP-seq peaks overlapped with AR. A 

distribution analysis of AP4 ChIP-seq peaks around AR bindings sites confirmed that 

AP4 binds in close proximity (within ±200 bp) to AR (Figure 2.8(c)). We scanned for the 

AP4 motif in the ChIP-seq peaks and found that 79.4% of the AR-AP4 overlapping peaks 

contain AP4 motif. In contrast, although 40.8% of the AR only peaks contain AP4 motif, 

the center distribution score for the AP4 motif around these peaks was low (see Figure 

2.7). 
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Figure 2.7 Uniform distribution of AP4 motifs around the AR only ChIP-seq peaks.   

We scanned the  AR-only ChIP-seq peaks (excluding the peaks overlapping with AP4 ChIP-seq 

peaks) with AP4 motif and found the motif distribution look like a uniform distribution. The left 

panel is the frequency graph, which shows frequency uniformly distributed across the different 

distance range. The right panel is the velocity graph, which shows the different color velocities 

distributed equally. 

Finally, we examined the fraction of androgen up-regulated genes near AR and AP4 

peaks. Genes are defined as up-regulated if there exist at least one probe having a fold 

change of 1.5 or above at one of the three time points 3, 6 and 12 hours upon DHT 

treatment compared to vehicle treatment. We divided the genes into three groups: genes 

with AR+AP4 peaks, genes with AR only peaks, and genes with no AR peaks. We found 

that the proportion of up-regulated genes in group 1 is 1.6 fold and 3.7 fold more than 

that in groups 2 and 3, respectively (Figure 2.8(d)), suggesting that AP4 may co-localize 

with AR to directly up-regulate the transcription of androgen target genes.  
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Figure 2.8 AP4 is a novel co-TF of AR.  

(a) ChIP-qPCR of AP4 was performed on 22 randomly selected AR peaks containing AP4 motifs in 

LNCaP cells before and after 2 h of DHT treatment. (b) Venn Diagram depicting the overlap 

between the ChIP-seq peaks of AR and AP4. (c) AP4 ChIP-seq peak distribution around AR ChIP-

seq peak. (d) Association of up-regulated genes with binding sites containing AR+AP4, AR only, 

or others. 

 

2.2.1.4 Validation of AP2 as a novel cofactor of ER 

Parts of the results in this section are due to my fellow lab mate Tan Si Kee. 

One of the nuclear hormone receptors that our lab studies extensively other than AR is 

estrogen receptor (ER). It is often highly expressed in breast cancer cells and plays an 

important role in the progression of breast cancer (Turner et al. 1998). In hoping to find 
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novel cofactors of ER, we performed CENTDIST on ER ChIA-PET (a technique similar 

to ChIP-seq) peaks (Fullwood et al. 2009). 

Figure 2.9 shows the top 10 motif hits as reported by CENTDIST. CENTDIST ranks 

ERE top and also reported binding motifs of known collaborative factors of ERα such as 

AP-1, BACH1 and FOXA1.  In addition we also found the AP-2 family of transcription 

factors to be highly enriched within the set of ER binding sites. This preliminary finding 

led us to investigate the role of AP-2γ in detail, specifically to address its functions in 

hormone-responsive breast cancers.  

Of particular interest is the AP2 family which was ranked 5th. Activating Protein 2 (AP-

2) is a family of transcription factors which is known to be mainly involved in the gene 

expression regulation during early developmental stage. Among the AP-2 family of 

transcription factors, AP-2γ is the most commonly expressed protein in breast cancer 

cells and has been known to be the main driver of mammary oncogenesis. Its role as a 

cofactor of ER, however, has yet to be discovered. We validated AP-2’s co-localization 

with ER by performing ChIP-qPCR at ten ER binding sites which contain AP-2 motifs. 

Figure 2.10(a) shows that all ten binding sites have increased AP-2γ ChIP enrichment 

with respect to genomic control site. Moreover, it can be seen that its enrichment is 

independent of E2 treatment, suggesting that AP-2γ possibly plays some role prior to the 

binding of ER. 
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Figure 2.9 Top 10 motif hits reported by CENTDIST showing the score and 
distribution of best motif within each TF family 
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Figure 2.10 AP-2γ is identified as a potential collaborative factor of ERα. 

(a) ChIP-qPCR of AP-2γ was performed on ten ChIA-PET ERBS with predicted AP-2 motifs in 

MCF7 cells before and after 45 mins of E2 treatment. (b) Venn Diagram showing the overlap 

between the ChIP-PET peaks of ERα and ChIP-Seq peaks of AP-2γ. (c) ) AP-2γ ChIP-seq peak 

distribution around ERα ChIA-PET peaks. 

 

Following the successful ChIP-qPCR validation of AP-2γ, we performed a ChIP-seq of 

AP-2γ. Overlapping the AP-2γ ChIP-Seq binding sites with the ER ChIA-PET binding 

sites revealed that roughly half of all ER binding sites contain AP-2γ, and one-fifth of 

AP-2γ binding sites contain ER (See Figure 2.10(b)). Distribution analysis of AP-2γ 

ChIP-seq peaks around ER bindings sites confirmed that AP2 binds in close proximity 

(within ±200 bp) to ER (See Figure 2.10(c)). We performed microarray with AP-2γ 

knockdown to identify genes that are regulated differently in the absence of AP-2γ. One 

such gene is REarranged after Transfection (RET) proto-oncogene. Our microarray shows 
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that RET is E2-induced, but became less activated upon the knockdown of AP-2γ. 

Another interesting thing about RET is that around RET gene locus, there are six ERBS 

and all six of them harbours AP-2γ motifs. Previous studies showed that RET expression 

was up-regulated by estrogen, which is verified by our microarray and correlates with 

ERα expression in primary breast tumors and cell lines (Frasor et al. 2003; Tozlu et al. 

2006; Boulay et al. 2008), and that mutation of this gene has also been shown to be 

involved in the progression of thyroid carcinoma (Boulay et al. 2008). 

To validate the observation from our microarray, we performed experiment to measure 

the mRNA expression of RET upon knockdown of AP-2γ and observed a significant drop 

in its expression when compared to control. Next we performed ChIP-qPCR on the six 

ERBS mentioned above to assess the effect of the presence of AP-2γ on ERα binding. As 

seen in Figure 2.11, all six binding sites show sharp decrease in ChIP enrichment upon 

the knock down of AP-2γ. This shows that AP-2γ is in fact required for the efficient 

binding of ER. This suggests a model for a mechanism of gene transcription by which 

AP-2γ is first present at the locus and serves to promote the recruitment of ER and 

subsequently regulate the transcription of the gene. 
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Figure 2.11 AP-2γ is required for the efficient binding of ERα.  

ERα ChIP was performed on MCF-7 cells transfected with control or AP-2γ siRNA and treated 

with or without E2 for 45 mins. ERα binding was assessed at the RET-associated ERBS (top panel) 

and at control ERBS that do not coincide with AP-2γ binding (bottom panel) 

2.2.2 CENTDIST Web Server 

We developed a method called CENTDIST which can be accessible at 

http://compbio.ddns.comp.nus.edu.sg/~chipseq/centdist/.  CENTDIST is a novel web-

application for identifying co-localized transcription factors around ChIP-seq peaks based 
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on the skewness of their motif distribution around the peaks. The general pipeline of 

CENTDIST is shown in Figure 2.12.  

ChIP-seq

Peaks

Extracting 

Sequences

Transfac DB

/JASPAR DB

Motif 

Scanning

Distribution 

Analysis

Output

Ranked By Center Distribution Score

chr11   113555375

chr8   39808935

chr1   8241935

chr1   94982285

chr7   103613225

chr1   68783115

chr12   71734125

 

Figure 2.12 CENTDIST web interface and program procedure. 

Users can input or upload ChIP-seq peak locations or the bed format peak region data, and 

select the corresponding reference genome and the motif candidates (TRANSFAC, JASPAR, or 

custom database).  

After submitting the job, the data will automatically be processed according to the 

CENTDIST analysis pipeline. Specifically, CENTDIST will scan the sequences (±1000 

bp around the peaks) and obtain the occurrences of each PWM motif to generate the 

frequency graph and the velocity graph. Z-score is used to assess the enrichment around 

peaks for each graph. The center distribution score of each PWM motif is calculated as 
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the sum of the two Z-scores. Finally, CENTDIST outputs a list of TF families ranked by 

the center distribution scores.  

CENTDIST is designed for analyzing high-throughput ChIP-seq data. Its web user 

interface contains three main parts: input, job management, and output. For input, 

CENTDIST accepts a list of ChIP-seq peaks. The ChIP-seq peak information can be 

formatted in the form of chromosome-position pairs or BED format genomic regions. 

CENTDIST is capable of supporting more than 1 million peak coordinates. The motifs 

used for scanning can be entered in the form of PWM or selected from either the 

TRANSFAC database (version 11.3), which contains 849 matrices or the JASPAR 

database, which has 459 matrices. CENTDIST also provides options for users to easily 

filter PWM motif candidates by string pattern, taxonomy, or transcription factor (TF) 

family. Finally, unlike other motif scanning programs, CENTDIST is totally parameter 

free. Users are not required to provide the background, the enrichment window size, or 

even choose the FDR or PWM cut-off for the PWM motifs. All these parameters will be 

estimated by CENTDIST automatically. 

With regards to job management, submitted jobs will be sent to the job queue on the 

server and processed based on a first come first serve policy. Users can view the status of 

their submitted jobs, and access or delete the results of previous runs at the ‘viewjob’ 

page. The page refreshes automatically and email notifications will be sent to users once 

the jobs are completed.  
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The main output page for CENTDIST is a table containing PWM motifs ranked 

according to center distribution scores. Each row in the table presents the enriched TF 

family, and user can click on a link associated with each TF family to browse the result of 

each individual member. The output also contains visualization features like the PWM 

logo (Schneider and Stephens, 1990) of the motif, the frequency graph (center view and 

folding view), and other useful numeric features like binding range (the enrichment 

window size), PWM threshold (the cut-off that maximizes the center distribution score), 

center distribution score, and p-value. In addition, the output page provides the motif 

distribution across different peak ranks (column 7 and 8 in Figure 2.13), which is useful 

when the input peaks are sorted by some quality measure like ChIP-seq intensity. 

 

 

Figure 2.13 Sample Output page of CENTDIST. 

 

 



 70 

 

2.3 Discussion 

In this chapter, we presented a new computational method called CENTDIST that utilizes 

frequency information as well as slope information (velocity) to predict whether a motif 

is real or not. CENTDIST does not require an explicit background model. Using the 

velocity score, CENTDIST is also insensitive to CG- or AT-biases. Because CENTDIST 

automatically selects the optimal configuration, minimal expert knowledge is required by 

the user. From the ChIP-seq of AR in LNCaP cells, CENTDIST discovered AP4 as a 

novel co-TF of AR, which was missed by existing enrichment based methods. 

(Validation of AP4 is discussed in section 2.2.1.3). Other than AP4, CENTDIST also 

predicted 9 additional co-TFs that were missed by the other programs. For 5 of these co-

TFs, evidence from literature suggests that they could be potential collaborators of AR. 

A reason for the poor performance of existing motif enrichment tools is because of the 

heavy reliance on the selection of the proper background and other parameter settings. 

Choosing the correct background, however, is currently considered an art. What’s more is 

that there is no one set of parameters that can satisfy all co-TFs. Stronger evidence of this 

point can be seen in the comparison of 14 ChIP-seq of mouse ES cells described in Zhang 

et al. (2011). Finally, the assumption that noise is uniformly distributed may not be true 

when CG (or AT) content varies in ChIP-enriched regions.  

CENTDIST does have certain limitations. For example, CENTDIST may fail to identify 

co-TFs whose binding site distribution does not follow the proximity assumption (i.e. co-

TFs that are not co-localized with the ChIPed TF). However, the latter would not be 
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found by traditional enrichment based methods either since their binding sites are not 

enriched. 

CENTDIST is a user-friendly web-based application that is capable of analyzing large-

scale ChIP-seq datasets. It can scan approximately seven hundred TRANSFAC motifs 

over a ChIP-seq dataset containing 10,000 peaks in only 10 minutes. With CENTDIST, 

users do not have to set any parameters except to upload the ChIP-seq peak locations and 

select the PWM motif library they wish to use for scanning. The output of CENTDIST 

contains clean and rich information for users. Specifically, it groups the list of enriched 

motifs into TF families, and provides other information including PWM logo, motif 

distribution graph, enrichment P-value, and the enriched window size of the enriched 

motifs. 

To the best of our knowledge, CENTDIST is the first motif enrichment tool for ChIP-seq 

data that utilizes the shape information (velocity) of the motif distribution, and 

automatically detects the size of the motif enriched region and PWM score cut-off. It 

compares the enrichment inside/outside of the enriched motif region without the need for 

additional background information. Although there is still room to improve the 

methodology, this study opens a new door for utilizing the shape information to extract 

biologically meaningful co-TFs in a ChIP-seq data set. 

  



 72 

 

CHAPTER 3 MOTIFDIFF – Web-based tool for Differential 
Motif Enrichment 

3.1 Introduction 

In the previous chapter, we developed a tool, CENTDIST that utilizes the imbalance of 

co-motif's distribution around ChIP-seq peaks to help identify potential co-TFs with high 

accuracy. The method is resistant to biases brought about by window size selection and 

choice of background. CENTDIST had been designed with the aim of identifying 

enriched motifs that would be difficult to detect by existing methods that relied on 

enrichment over a predetermined background. 

Although CENTDIST is useful for finding enriched motifs, CENTDIST cannot help to 

compare if two sets of ChIP-seq peaks have different composition of motifs. Moreover, 

identifying differential motifs between two sets of ChIP-seq peaks is useful since it 

allows us to predict specific co-TFs that play a more significant role in one set than the 

other. In general, the target is to compare two sets of ChIP-seq peaks with mostly 

common properties, differing by some specific property. This analysis can then lead us to 

correlate the differential property of the ChIP-seq sets with the predicted differential co-

TFs reported. For example, it could be ChIP-seq performed on a single TF in different 

signaling pathways and we want to determine what are the specific co-factors exclusively 

active in the respective cell lines; or perhaps we can partition a set of ChIP-seq peaks into 

two sets based on certain property such as whether the peaks are co-bound by a second 

TF (for which ChIP-seq data is available) and ask what are the specific co-factors that are 

involved in each partition.  
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The two examples described above are in fact two types of comparison. For the first type 

of comparison, we are comparing two sets of ChIP-seq peaks, SA and SB. Peaks common 

to both sets correspond to the common TF binding sites. Typically, we group peaks 500 

bp apart as same peak, or we say the two peaks overlap. After we perform overlap on the 

two peak sets, we will in general obtain three sets of mutually exclusive peaks, namely: 

the set of peaks in SA but not in SB (SAunique), the set of peaks in both SA and SB (SAB), and 

the set of peaks in SB but not in SA (SBunique). (See Figure 3.1(a)) For the second type of 

comparison, we partition a single set S into two subsets SA and SB based on certain 

property.  In this case, there are no overlapping peaks and therefore only two sets of 

mutually exclusive peak sets: SAunique and SBunique corresponding to SA and SB respectively. 

(See Figure 3.1(b)) 

For the first scenario, as the overlapping peak sets (SAB) are common in both sets and our 

purpose is to discern the difference among set SA and SB, these common regions are 

ignored in our analysis. However, suppose we are interested in for example comparing 

SAunique and SAB, it can be reformulated as a partition of SA using the property of whether 

the peaks overlap with peaks in SB. Upon doing so, both will just be a comparison 

between two mutually exclusive sets. The problem then is to search for interesting co-TFs 

that are significantly differentially enriched in SAunique and SBunique. This can be achieved 

by analyzing the motifs in SAunique and SBunique.  
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Figure 3.1 Types of comparison.  

a) The three mutually exclusive sets formed by overlapping SA with SB are SAunique, SAB and SBunique.  

b) The two mutually exclusive sets formed by partitioning peaks that satisfy a particular property 

versus peaks that do not. 
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One of the ways to perform this is by performing de novo motif finding that are specially 

designed to identify discriminative motif using some measure of separation between two 

sequence set. Such tools include CMF (Mason et al. 2010), DEME (Redhead et al. 2007), 

DME  (Smith et al. 2005), FIRE (Elemento et al. 2007).  Background CG/AT content of 

sequences could bias the occurrence of CG/AT rich motifs, resulting in spurious false 

positives, posing a large problem for de novo finders in general. The more recent tools, 

CMF attempts to account for such enrichment by normalizing against the respective 

background model using Markov models of individual sets. However we show using a 

simulated example in Section 3.3 that such consideration is still insufficient to take into 

account of biases due to background. Also, as usual, de novo motif finding is typically 

computationally intensive and time consuming and limited to finding motifs at within 

100-200bp from the ChIP-seq peaks due to the sheer size when in general the interactions 

between TF can have much greater range.  

Other than de novo motif finding, another option to approach this problem is to predict 

enrichment of co-TF using known motifs. This can be done in two ways: 1) to perform 

motif enrichment analysis such as CENTDIST separately on the two sets of ChIP-seq 

peak list and then compare the resulting lists with certain cutoff in place and 2) to 

perform motif scan for each known motif and then to compare the enrichment scores 

among the two sets obtained using the counts in the sets against appropriate background. 

We will discuss the drawbacks of the various comparison measures using the simulated 

example in Section 3.3. 
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3.2 Additive nature of motif background 

As we have discussed before, the background noise level of a motif is highly dependent 

on the GC content in the region. To illustrate this, we look at the distribution of FOXA1 

motifs around AR ChIP-seq peaks in LNCaP. We first obtain two sets of AR ChIP-seq 

peaks, one set with high GC content (above 75th percentile) within 1000bp from peak 

center and the other with low GC content (below 25th percentile). As FOXA1 motif is AT 

rich (see Figure 3.2 (a)), it tends to occur less in GC-rich regions. We see the frequency 

of FOXA1 motif at the flanking region of the low GC set of AR peaks is much higher 

than that of the high GC ones. As a result, we also notice the frequency close to peak 

center to be additionally enriched by the same amount (see Figure 3.2 (b)  and (c)).  This 

observation suggests the additive nature of background motif to the true FOXA1FOXA1 

motifs corresponding to true ChIP-seq binding. 

3.3 Difficulties in identifying differential motifs 

We proceed to generate simulated datasets based on the additive model suggested in 

Section 3.2. The simulated datasets are designed to have varying amounts of SP1 motifs 

implanted on two sets of artificially generated ChIP-seq peak regions, one generated from 

promoter background and the other generated from genomic background using 

chromosome 1. SP1 (V$SP1_Q6) having the sequence GGGGGGCGGGGCC (motif 

logo shown in Figure 3.3) has a GC rich motif that has a high chance of being reported in 

a GC-rich background. 
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Figure 3.2 Histograms of FOXA1 (V$HNF3ALPHA_Q6) motif around AR ChIP-
seq peaks in LNCaP with different GC content plotted using the same scale shows 
the additive nature of background motifs.  

a) FOXA1 motif is AT-rich. b) Histogram about AR ChIP-seq peaks with high GC content within +/-

1000bp from peak center. c) Histogram about AR ChIP-seq peaks with low GC content within +/-

1000bp from peak center. 

  



 78 

 

 

Figure 3.3 SP1 motif logo is GC rich. 

We would like to investigate the effects of GC contents in the background on the 

enrichment scores of GC-rich motifs such as SP1. In the genome, there exist GC-rich 

regions such as the promoter regions and CpG islands, and the non-GC-rich regions 

which form the majority. Markov models are often used to model the inherent nucleotide 

dependencies observed in these regions that are not due to motif enrichments. In general 

higher order Markov models are better (Thijs et al. 2001), but practically it is limited by 

technical constraints in terms of computation time and space, and depending on the 

amount of training data available, high orders also suffer from overtraining. To generate 

backgrounds corresponding to these two types of regions, we constructed two 7th order 

Markov models, one from the entire of chromosome 1 (calling it genomic background) 

and the other from the 1000 bp upstream of all non-redundant REFSEQ genes (calling it 

promoter background), and from these we generate 10000 random promoter background 

sequences and 10000 random genomic background sequences of length 4000bp using 

GenRGenS program (Ponty et al. 2006).  

Next, for each of the two different backgrounds, we implant two levels of SP1 motifs 

such that 25% and 50% respectively contains SP1 motifs, simulating corresponding 

amount of SP1 TF binding in the peak sets. The rseq function of ‘cosmo’ package in R 

(Bembom et al. 2007) is used to generate motifs instance from the PWM, and 
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subsequently implanted into the background sequences such that the distance from the 

peak center follows a normal distribution such that 99.9% of all motifs fall within 500bp 

from the peak center.  

Upon doing so, there will now be four sets of 10000 sequences of length 4000bp: 

promoter background with 50% SP1 motifs (Promoter High=PH), promoter background 

with 25% SP1 motifs (Promoter Low=PL), genomic background with 50% SP1 motifs 

(Genomic High=GH) and genomic background with 25% SP1 motifs (Genomic 

Low=GL). Based on our simulation, we would expect GH and PH to have similar level 

of SP1 motifs, and that GL and PL to have similar level of SP1 motif. We also expect 

SP1 motifs to be more enriched in GH and PH when compare to GL and PL.  

Table 6 Table describing the four sets of simulated SP1 ChIP-seq sequences. 

  Genomic Background, 
Low GC 

Promoter Background, 
High GC 

Low Level of SP1 
implanted (25%)  

GL PL 
 

High Level of SP1 
implanted (50%) 

GH PH 

 

As mentioned in the introduction, there are several ways one may approach the problem 

of comparing motif enrichments in two sets: 1) Discriminative de novo motif finding, 2) 

Using motif enrichment tools such as CENTDIST and compare the list that are being 
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reported to be enriched (cut-off using p-value and/or score), 3) Perform motif scanning 

and derive a differential motif enrichment score based on the counts. 

To study the effectiveness of de novo motif finders in this situation, we chose CMF out of 

the various motif finders due to it being one of the most recent discriminative motif 

finders developed and that it has features designed to account for different backgrounds. 

Out of all the comparisons, of particular interest is the comparison between GH and PL. 

Because we have implanted higher amount of SP1 motifs in GH, we would expect the de 

novo motif finder to report the SP1 motif as one of its candidates. However, on the 

contrary, CMF reported AT rich motifs such AAATAAATAAA, ATATATA and 

AAAAATAAATA instead. This shows that under this circumstance, de novo motif 

finders fail to identify the correct motif. 

Next we would like to discuss the drawbacks of comparing list of enriched motifs output 

by motif enrichment tools. We input the four sets PH, PL, GH and GL individually into 

CENTDIST. SP1 showed up as the top motif in all four sets, which is expected as 25% 

sequence with implanted motifs is definitely considered significant, though not as 

significant as compared to a set with 50% implanted motifs. This is not favourable for the 

purpose of comparison as we would not know which of these sets are more enriched. We 

may then ask what if we compare the scores reported by CENTDIST. The scores reported 

by CENTDIST are shown in Figure 3.4. Using the scores, we will falsely report that SP1 

is more enriched in GH (having a score of 48.919) than in PH (having a score of 

26.6835), similarly GL (having a score of 27.9512) as compared to PL (having a score of 
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14.8564), giving rise to false positive when SP1 is equally enriched in both of the 

comparisons resulting in false negative. This shows that the problem could not be solved 

by comparing the candidate list from motif enrichment tools. 

 

Figure 3.4 Enrichment score of CENTDIST fails to provide necessary information 
to determine differential enrichment among simulated datasets.  

CENTDIST score and optimal histogram for (a)PH: promoter background with 50% SP1 motifs 

implanted, (b)PL: promoter background with 25% SP1 motifs implanted, (c) GH: genomic 

background with 50% SP1 motifs implanted and (d) GL: genomic background with 25% SP1 

motifs implanted. 

To illustrate the problem further, we investigate various other enrichment scores based on 

the motif counts that are frequently used such as hypergeometric and binomial p-value 

against appropriate backgrounds, and fold overrepresentation, that similarly face the 

drawbacks experienced by CENTDIST’s scoring function. The appropriate backgrounds 

to use are naturally the Markov model in which the sequences had been generated from.  

Table 7 shows the counts of SP1 motifs in the four sets of sequences PL, GL, PH and GH. 

The counts of the respective promoter and genomic Markov-generated backgrounds 
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(same number of sequence and length) are also shown in the last two columns Pbg and 

Gbg respectively. While GH is consistently higher than GL, and PH is consistently higher 

than PL in all enrichment statistics which includes Binomial P-value using counts within 

200bp, Hypergeometric Pvalue within 200bp and Fold Enrichment over background 

count. We see that there enrichment scores are significantly downplayed for the promoter 

backgrounds, leading to PH to be less enriched than GL when in fact PH has higher 

number of implanted motifs. The results using 100bp, 500bp and 1000bp window sizes 

(not shown) are similar. This shows the inherent problem when comparing motif 

enrichments among sets having different background.  

 

Table 7 The counts and respective enrichment P-value of SP1 in the four sets of 
sequences.  

  PL GL PH GH Pbg Gbg 

motif count 

within 200 bp 2340 621 2835 1072 1897 159 

numseq with 

motif within 200 

bp 2099 604 2517 1050 1718 158 

Binomial Pvalue 

using 200 bp 
5.23E-23 3.24E-169 9.11E-90 0 

    

Hypergeometric 

Pvalue using 200 

bp 

3.90E-12 9.33E-65 6.85E-44 1.85E-171 

    

Fold count 

within 200bp 

over background 
1.233527 3.90566 1.494465 6.742138 
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3.4 HISTSCORE: An Alternative Enrichment Statistic 

3.4.1 Overview 

The previous section showed that the various statistics that are commonly used for 

enrichment cannot give an accurate representation of the TF abundance in the simulated 

peak sets for comparison. In this section we attempt to develop an enrichment score that 

quantify the goodness of a given histogram based on our notion of center distribution.  

One statistic not often used is the normalised count which is the difference between the 

counts in the enrichment region and the background count. It is in fact closely related to 

the Z-score, with Z-score being computed by dividing the standard deviation of the 

background after obtaining the difference. Z-score is commonly used to provide 

estimation for Binomial P-value and this also explains why the enrichment score in PH 

and PL are greatly penalised (as compared to GH and GL) as the high motif counts in 

the promoter backgrounds are associated with much higher standard deviation. Because 

dividing the difference by the standard deviation makes the statistic too conservative, we 

chose to forgo the division.  

To justify that this statistic is a better choice compared with p-value based statistic, in 

Table 8 we computed the normalised count within 200bp after subtracting the respective 

background counts.  We see that using this, we managed to recover the actual relative TF 

abundance with PH and GH having normalised count of 938 and 913 compared with the 

normalised counts of 443 and 462 of PL and GL respectively, being roughly twice as 

enriched, which is as expected. Figure 3.5 shows the SP1 motif distribution around 



respective ChIP-seq peaks before and after subtracting the background when comparing 

enrichment between GH

(b)). Because of this favourable property, we therefore chose

improve upon for developing our enrichment score.

Table 8 The counts and normalised count of 

  PL 

motif count 

within 200 bp 

normalised 

count within 200 

bp after 

subtracting 

background 

Figure 3.5 Normalisation by subtracting the background enables the accurate 
comparison of enrichment.

a) Motif density of SP1 in GH (red) and PH (green) before normalization b) Motif density overlay 

of SP1 in GH (red) and PH (green) after normalization c) Motif density overlay of 

and PL (green) before normalization d) Motif density overlay 

after normalization 

 

seq peaks before and after subtracting the background when comparing 

GH and PH (Figure 3.5 (a)), and between GH

(b)). Because of this favourable property, we therefore chose this statistic as the basis to 

improve upon for developing our enrichment score. 

The counts and normalised count of SP1 in the four sets of sequences.

GL PH GH Pbg

2340 621 2835 1072 

443 462 938 913 

Normalisation by subtracting the background enables the accurate 
comparison of enrichment.  

in GH (red) and PH (green) before normalization b) Motif density overlay 

in GH (red) and PH (green) after normalization c) Motif density overlay of 

and PL (green) before normalization d) Motif density overlay of SP1 in GH (red) and PL (green) 
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seq peaks before and after subtracting the background when comparing 

GH and PL (Figure 3.5 

this statistic as the basis to 

in the four sets of sequences. 

Pbg Gbg 

1897 159 

  

 

Normalisation by subtracting the background enables the accurate 

in GH (red) and PH (green) before normalization b) Motif density overlay 

in GH (red) and PH (green) after normalization c) Motif density overlay of SP1 in GH (red) 

in GH (red) and PL (green) 
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3.4.2 Insight from ENCODE datasets 

Recently, the ENCODE project (Bernstein et al. 2012) released a large number of ChIP-

seq datasets performed on various cell lines and TFs with pilot emphasis on the following 

five cell lines: K562, GM12878, Hela-S3, H1-Hesc and HepG2, and the TF CTCF (see 

Figure 3.6). Using the most comprehensive cell line K562, we wish to first look at the 

different types of ChIP-seq peak profiles we could observe relative to another set of 

ChIP-seq peaks. We generated the profiles for all ChIP-seq dataset pairs in K562. On the 

whole, the main types of profiles we observed are single peak profiles of various widths 

(Figure 3.7 (a) and (b)), double-peak profiles peaking at various distances (Figure 3.7 (c) 

and (d)) and profiles that are flat without enrichment (Figure 3.7 (e)). In particular, Figure 

3.7 (c) shows MAZ around CHD1 having a double peak profile. Plotting MAZ motif 

(V$MAZR_01) in place of MAZ ChIP-seq also yield the same double peak profile 

(Figure 3.8). This observation also motivates the idea of predicting ChIP-seq distribution 

using motifs. 
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Figure 3.6 ENCODE TF ChIP-seq Experimental Matrix across 91 Cell Lines and 
161 TF.  

ENCODE ChIP-seq data matrix with pilot emphasis on CTCF and five cell lines, namely K562, 

GM12878, Hela-S3, H1-Hesc and HepG2 (boxed).  
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Figure 3.7 Different peak distribution profiles observed for pairs of TFs ChIP-seq 
performed in K562. The graphs have been normalised by dividing by the number of 
peaks in the ChIP-seq data to be centered upon.  

(a) JUN around ATF1 showing narrow sharp peak profile. (b) HMGN3 around SIX5 showing wide 

peak profile. (c) GTF3C2 around BRF1 showing double peak profile with a dip in the center. (d) 

MAZ around CHD1 showing another double peak profile peaking at a further distance (500bp) 

from the center. (e) E2F4 around BRF2 showing no enrichment.  
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Figure 3.8 Motif distribution profile of MAZ motif (V$MAZR_01) around CHD1 
ChIP-seq peaks in K562.  

Double peak profile of MAZ motif corresponding to the double peak profile seen in Figure 3.7 (d) 

 

Using the profiles which have been normalized by dividing the number of peaks in the 

ChIP-seq data to be centered upon, we can essentially infer the percentage of the ChIP-

seq peaks containing the secondary ChIP-seq peak (or motif) at a certain distance from 

the center. This in turns enables us to infer the strength of the interaction among the 

primary TF (the one being centered) and the secondary TF (being counted). Throughout 

this chapter, all such distribution graph seen, be it for motif or ChIP-seq peaks are binned 

at 50bp and scaled by dividing by the number of ChIP-seq peaks centered upon, and then 

multiplying by 10. A height of 1 is considered very good. The maximum of the Y-axis is 

being set to 1 or the maximum height of the graph if greater than 1. 

Judging by the shapes of distributions we observed, especially those with distal 

enrichment having double peak profile such as in Figure 3.7 (d), the strength of 

interaction cannot be naively considered to be based on the enrichment at the center. 
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Hence, it is necessary to develop a scoring based on the distribution graph that enables 

double peak profile to be scored appropriately. We shall call this scoring HISTSCORE 

(short for histogram score). 

We shall now describe how HISTSCORE is being calculated based on the histogram 

counts (of motifs or peaks binned at 50bp over +/-2000 bp) around our set of ChIP-seq 

peaks of interest. Co-TF peak or motif distributions around ChIP-seq peaks can have 

single peak profile like Figure 3.9(a) or double peak profile like Figure 3.9(d). These two 

types of profiles will be scored separately and the better of these two scores will be used 

as the final HISTSCORE for that profile.  

To compute the score for the single peak profile, we first fold the graph representing the 

histogram counts in Figure 3.9(a) such that the points on the left of the y-axis are 

reflected along the y-axis as in Figure 3.9(b).  Fixing a certain distance D, we can fit a 

regression line over the points not more than D from the center. For that D we take note 

of the value F0 where the line cuts the y-axis. This is repeated for various D up to 500bp. 

The maximum such F0 obtained is then subtracted by the background mean comprising of 

points greater than 1000bp from the center to obtain the single peak profile score. 

Likewise, to determine the double peak profile score, the graph representing the 

histogram counts which typically look like Figure 3.9(c) is folded such that the points on 

the left of the y-axis are reflected along the y-axis as in Figure 3.9(d).  Fixing a certain 

distance D, we can fit a regression line over the points not more than D from the center. 
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But this time, for that D we take note of the value FD where the line cuts the line x=D 

instead. This is repeated for various D up to 500bp. The maximum such FD obtained is 

then subtracted by the background mean comprising of points greater than 1000bp from 

the center to obtain the double peak profile score. 

The rationale behind HISTSCORE is to tap on the notion of measuring the goodness of 

the histogram taking the whole histogram into account rather than focusing on counts 

within a specific window. This HISTSCORE focuses on the highest point of the graph 

which could be at the center or some distance D from the center. The reason for not 

taking just the maximum is because the method has been intentionally designed to be 

robust and penalize against irregularly shaped graphs that may spike at certain points for 

some reasons.  
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Figure 3.9 The calculation of HISTSCORE from histogram counts. The histogram 
counts have been scaled by dividing by the number of peaks and multiplying by 10. 

(a) Typical histogram count graph with single peak profile. Each dot represent the count of motif 

at 50bp bin at the respective distance from the peak denoted by the x-axis. 

(b) Folded version of (a) with black dots on the left reflected to the right along the y-axis. Blue 

line shows the best fitted line which maximises the y-intercept F0. Green line is the mean of 

points greater than 1000 bp from center. 

(c) Typical histogram count graph with double peak profile. Each dot represent the count of 

motif at 50bp bin at the respective distance from the peak denoted by the x-axis. 

(d) Folded version of (c) with black dots on the left reflected to the right along the y-axis. Blue 

line shows the best fitted line which maximises the y-intercept FD. Green line is the mean of 

points greater than 1000 bp from center. 
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3.5 MOTIFDIFF Algorithm 

Having defined our appropriate enrichment statistic, HISTSCORE, we can now proceed 

to describe our algorithm to determine differentially enriched motifs in two contrasting 

sets for a set of known motifs. The essential input of MOTIFDIFF are two sets of 

genomic locations representing ChIP-seq peaks (chromosome-peak summit position) 

denoted by SA and SB that are to be compared to find the list of differential motifs, and a 

list of candidate PWM motifs (provided by users or obtained from either the TRANSFAC 

(Matys et al., 2003) or JASPAR(Sandelin et al., 2004) databases). 

Given SA and SB, we obtain the set SAunique by filtering those peaks in SA that are not 

within 500bp from any peaks in SB and likewise, SBunique by filtering those peaks in SB 

that are not within 500bp from any peaks in SA. Next, we extract +/- 2000bp from each of 

the two sets SAunique and SBunique from the reference genome and proceed to scan the 

sequence using each PWM in the input motif database. The E-value cutoff for the motif 

scan is set at 0.00025 in the flanking background where we limit the number of motif hits 

to 2.5 motif hits per 10000 bp in the flanking background region. The rationale for setting 

Evalue cutoff of 0.00025 is that it gives sufficient hits for analysis of peak size larger 

than 1000 while enabling our motif scanning algorithm to take advantage of the relative 

stringent cutoff to speed up the search. Moreover, it is roughly the probability of a perfect 

6-mer match, which is a typical baseline for a proper motif.  

Using the motif hits of motif M, we can then generate the histogram graphs (50 bp bins 

dividing the counts by the number of peaks and multiplying by 10), HA,M and HB,M of 
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motif M in SAunique and SBunique respectively and compute MDscore which is a simple ratio 

test of the HISTSCORE of HA,M over HB,M, with a small pseudocount added to numerator 

and denominator to avoid division by zero, i.e. 

��,w6t)�&�, 3- = r��������
r�,�� + �
r��������
r�,�� + � 

where � is some small pseudocount (chosen to be 0.0025). 

We utilize a Z-score-like measure to help us filter noisy results. We define: 

���,w6t)�&�, 3- = r��������
r�,�� − r��������
r�,��
3�+)�&r�,�-  

where 3�+)�&��HQ�WHK- is the standard deviation of the flanking background of SBunique 

made up of bins more than 500bp away from the center.  

We reject the result if the MDzscore is below 3.719 corresponding to a Z-test pvalue of 

0.0001. This is so as to reduce the false positives due to noisy background. In addition to 

MDzscore, we arbitrarily set our cutoff for MDscore to 1.3.  
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3.6 Results 

3.6.1 Motif HISTSCORE have good correlation with ChIP-seq 

HISTSCORE 

We make use of the large number of CTCF ChIP-seq data in ENCODE to help evaluate 

HISTSCORE as a good measure of ChIP-seq localization signal by showing that the 

HISTSCORE using CTCF motif correlates well with the HISTSCORE computing using 

CTCF ChIP-seq compared with other measures.  

Using the binding peaks of all other TFs in ENCODE, we can obtain sets of regions of 

various backgrounds by performing clustering of all TF ChIP-seq peaks (other than 

CTCF) in a particular cell line. For example, the cell line NB4 has 4 TF ChIP-seq peak 

sets, namely: CTCF, POLR2A, MAX and MYC. Excluding CTCF, using the peaks of 

POLR2A, MAX and MYC, we can cluster sets of peaks together if they are within 500bp 

from some peak in the cluster.  After clustering, we will have 7 cluster groups containing: 

POLR2A only (cluster100), MAX only (cluster010), MYC only (cluster001), POLR2A and 

MAX only (cluster110), POLR2A and MYC only (cluster101), MYC and MAX only 

(cluster011) and all POLR2A, MYC and MAX. (cluster111)  

We perform clustering for all cell lines and then select only those sets of clusters which 

have at least 1000 clusters in the set. The mean coordinate of the cluster will then be 

treated as a ChIP-seq peak. For each of these clusters, we plot the histogram using CTCF 

motif to obtain Hmotif and using the CTCF ChIP-seq peaks in the cell line to obtain Hchipseq. 
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We then try to correlate the three different scores COUNT100, COUNT100-BG and 

HISTSCORE applied onto Hmotif and Hchipseq. COUNT100 takes the sum of count within 

100bp from center. COUNT100-BG takes the sum of count within 100bp from center and 

subtract the expected background using bins 1000bp away from the center. The scatter 

plots for the three scores COUNT100, COUNT100-BG and HISTSCORE are shown in 

Figure 3.10. We also perform with other window sizes but do not show them as 

COUNT100 has the best correlation (0.973, see Figure 3.10(a)) among them. 

COUNT100-BG has slightly better correlation (0.979, see Figure 3.10(b)) but 

HISTSCORE has the highest correlation (0.987, see Figure 3.10(c)). 
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Figure 3.10 HISTSCORE of motif correlates better with actual ChIP-seq peak 
distribution signal than other score.  

Scatterplot of (a) count of CTCF chipseq peaks within 100bp of cluster center against count of 

CTCF motif within 100bp of cluster center. (b) count of CTCF chipseq peaks within 100bp of 

cluster center with flanking background subtracted against count of CTCF motif within 100bp of 

cluster center with flanking background subtracted. (c) HISTSCORE(HChIPseq) against 

HISTSCORE(Hmotif). 

3.6.2 Large scale validation of MOTIFDIFF using ENCODE 

One of the applications of MOTIFDIFF is to identify the differential co-TF partners of a 

particular TF in two different cell lines. For example say we have two cell lines C1 and 

C2 and we have performed ChIP-seq experiment on a particular factor TF1 for both cell 

lines, calling the ChIP-seq peak sets corresponding to the above two cell lines C1TF1 and 
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C2TF1. MOTIFDIFF will try to predict a factor TF2 which is specifically enriched in one 

of the two cell lines. Suppose we have the ChIP-seq for TF2 in both cell lines as well, say 

C1TF2 and C2TF2, then we can try to define enrichment using these ChIP-seq libraries 

as follows. The peak sets C1TF1 and C2TF1 may not be disjoint. The set of peaks 

exclusive to C1TF1 is named C1TF1unique and the set of peaks exclusive to C2TF1 is 

named C2TF1unique. Using the actual ChIP-seq data, we define the gold standard to be: 

�r�%�������/,�/,��&��2- = r��������&r�/��/HQ�WHK,�/���- + �
r��������&r����/HQ�WHK,�/���- + � 

where � is set to be 0.0025. HA,M is the histogram of M around A as defined in Section 

3.5 (also see ChIP-seq HISTSCORE in Section 3.6.1).  Note the asymmetric definition of 

the function and therefore �r�%�������/,�/,��&��2-  is not the reciprocal of 

�r�%�������/,��,�/&��2-. When computing the enrichment of C1 over C2, we make 

use of the TF2 ChIP-seq datasets for C1 and ignore the TF2 ChIP-seq for C2. 

Since we require the ChIP-seq of the predicted TF in both cell lines to be able to validate 

the predictions reported by MOTIFDIFF, we need to use pairs of cell lines with high 

degree of overlapping ChIP-Seq experiments. As seen in Figure 3.6, the concentration of 

experimental data in the five cell lines namely: GM12878, Hela-S3, H1-hESC, K562 and 

HepG2, make the cross product of these cell lines a great choice.  
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As with CENTDIST, due to the similarities among motifs of the same family such as the 

various FOX motifs, we are satisfied when the predicted motif family is correct. For 

those TF families which have multiple encode data, the encode fold score used is the 

maximum score within the TF family. Motif family assignment of TRANSFAC is as per 

Zhang et al. (2011). Each TF in ENCODE datasets is assigned to a TRANSFAC family if 

its motif can be found in TRANSFAC. We get the best score in the FAMILY as the 

representative score for the FAMILY, i.e. 

�r�%�������/,�/,��&������- = max���∈������ �r�%�������/,�/,��&��2-  

From the output of MOTIFDIFF, we also have 

���������/,�/,��&������- = max���∈���������������/,�/,��&��2-  

For this calculation, we only consider those TF2 that have passed our MDzscore cutoff of 

3.719.  

We deem a FAMILY to be correct by gold standard in the direction of C1 over C2 if 

�r�%�������/,�/,��&������- ≥ 2 

We deem a FAMILY to be positively predicted by MOTIFDIFF in the direction of C1 

over C2 if 



 99 

 

���������/,�/,��&������- ≥ 1.3	 

3.6.2.1 Prediction of differential CTCF binding in all common TF 

peak sets in selected cell line pairs 

As CTCF has been performed on all cells studied in ENCODE project has a specific 

conserved motif, we first decide to look at the prediction accuracy of CTCF (considering 

TF2=CTCF) for all comparisons of C1TF1 versus C2TF1 (TF1 not CTCF). Table 9 

shows the prediction’s precision and recall is 84.3% and 88.2% respectively, meaning 

that the enrichment determined by MOTIFDIFF is correct 84.3% of the time, while it is 

able to accurately identify 88.2% of the total true enrichments as defined by our gold 

standard.  

 

Table 9 Performance of MOTIFDIFF in predicting CTCF using CHIPSCORE as 
gold standard 

  

Pass MOTIFDIFF 

 

 

  FALSE TRUE 

 CHIPSCORE>2 FALSE 336 20 

 

 

TRUE 28 150 recall=84.3% 

   

precision=88.2% 

 

3.6.2.2 Prediction of differential binding of other TF in all common 

TF peak sets in selected cell line pairs 

Next, we proceed to determine the prediction accuracy of all TFs that had been assigned a 

TF family. Table 10 shows the prediction performance of MOTIFDIFF. The result shows 

the overall prediction’s precision and recall are only 76.8% and 51.1% respectively. 
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Though precision of 76.8% is still roughly acceptable, but we observe that the recall of 

51.1% is rather low.  

Table 10 Performance of MOTIFDIFF in predicting all TF by FAMILY using 
CHIPSCORE as gold standard 

  

Pass MOTIFDIFF 

 

 

  FALSE TRUE 

 CHIPSCORE>2 FALSE 3150 945 

 

 

TRUE 2991 3122 recall=51.1% 

   

precision=76.8% 

 

To investigate why, we look at some example of situation where CHIPSCORE is high 

but MDSCORE is low. Figure 3.11 shows the histogram of TF CEBPB in respective 

regions of the overlap between the MAX sites of HepG2 and K562. CEBPB ChIP-seq 

performed in HepG2 is enriched preferentially in the HepG2 unique regions while 

CEBPB ChIP-seq performed in K562 is enriched preferentially in the K562 unique 

regions. This is caused by the inherent problem that existence of motif does not perfectly 

determine the binding of the corresponding TF at a particular region. Other factors such 

as epigenetics, chromatin conformation, histone modifications etc play important roles 

especially when we are looking at completely different cell types. 
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Figure 3.11 CEBPB is preferentially enriched in different regions depending on the 
Cell Line in which the ChIP is performed.  

(a) Venn diagram color-coded to represent the partition of MAX binding used for the plot in (b). 

(b) The left plot shows the distribution of CEBPB (performed in HepG2 cell line) around 

respective groups of MAX TF binding while the right plot shows the distribution of CEBPB 

(performed in K562 cell line) around MAX TF binding in K562 cell line. With reference to 

CHIPSCORE, the C1, C2, TF1, TF2 for the left plot are HepG2, K562, MAX, CEBPB respectively and 

CHIPSCORE is the enrichment of red graph over the green graph. For the right plot, C1, C2, TF1, 

TF2 are K562, HepG2, MAX, CEBPB respectively, and the CHIPSCORE is the enrichment of green 

graph over the red graph. The CHIPSCORE of the right plot is CHIPSCOREREV corresponding to 

parameters for the left plot. 



 102 

 

We define the reverse CHIPSCORE, CHIPSCOREREV as: 

�r�%����������/,�/,��&������- = �r�%�������/,��,�/&������- 

which is the corresponding highest family score in the reverse direction of the 

comparison. We therefore plot the scatter plot of �r�%����� against �r�%�������� 

over all TF1, C1 and C2 and mark the point as red if it the enrichment is being reported 

by MOTIFDIFF. (See Figure 3.12) From the plot we see that in the lower right quadrant 

which is where �r�%�����  is high and �r�%��������  is low, we have a high 

proportion of accurate prediction by MOTIFDIFF and the accuracy decreases as 

�r�%�������� increases.  Another thing that can be seen on the diagram is that when 

�r�%����� is low, MOTIFDIFF seldom predict the enrichment to be positive. Table 11 

represents the scatterplot in the form of a table containing the percentage positive 

prediction in the respective section on the graph. From this table, we see that the TF’s 

�r�%�������� in the two sets affects whether MOTIFDIFF can accurately predict its 

enrichment.  
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Figure 3.12 Scatterplot of CHIPSCOREREV against CHIPSCORE to show the 
accuracy in relation to the bidirectionality of gold standard enrichment.  

Scatter plot of �r�%����� against �r�%�������� for all the comparisons. Points are 

marked red if the enrichment is being reported by MOTIFDIFF. Observe that higher proportion 

of points is marked red at the lower right region of the plot. 
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Table 11 Accuracy of MOTIFDIFF with respect to the bidirectionality of gold 
standard enrichment. The number of points are shown in bracket.   

Prediction reported by MOTIFDIFF when CHIPSCORE>2 is true positives and when CHIPSCORE<2 

is false positives. We observe that the true positive is highest when CHIPSCOREREV is low. 

 

CHIPSCORE 

CHIPSCOREREV 

 
(-Inf,1] (FP) (1,2] (FP) (2, Inf] (TP) 

(-Inf,1] 0.269 ( 26 ) 0.335 ( 248 ) 0.731 ( 1325 ) 

(1,2] 0.222 ( 248 ) 0.309 ( 754 ) 0.579 ( 1494 ) 

(2, Inf] 0.171 ( 1325 ) 0.228 ( 1494 ) 0.391 ( 3294 ) 

3.6.3 Application 

Having evaluated the performance using large scale datasets from ENCODE, we proceed 

to apply our method on some existing comparison study performed by other researchers 

and also on our in-house generated data. 

3.6.3.1 Cofactors in different Signaling Pathway: MCF7 ERE2 vs 

EREGF 

Lupien et al. (2009) showed that ER-alpha binds at different locations corresponding to 

E2 signaling and EGF-signaling in MCF7 cell lines. In the paper, it was found that 

FOXA1 and AP-1 motifs were enriched in the shared as well as EGF-unique binding sites.  

We performed MOTIFDIFF analysis on the ER-alpha binding sites under E2 and EGF 

treatment. We observed FOXA1 (rank 3) and AP-1 (rank 1) are enriched preferentially in 

ER-alpha binding in EGF-treated cells (see Figure 3.14). It agrees with the finding of 

Lupien et al. In addition, we also observed GATA motif (rank 2) to be enriched in the 

binding sites unique to EGF. This probably suggests that some member of GATA Family 

may likely interact with ER in the EGF signaling pathway. GATA3 has previously been 
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shown to be required for the luminal A type of breast cancer. Dydensborg et al. (2009) 

showed that GATA3 interact with LMO1, ER and FOXA1 whereas Albergaria et al. 

(2009) showed that the nuclear expression of GATA3 in breast cancer is considered a 

marker of luminal cancer in ER+ cancer and luminal androgen responsive cancer in ER-

/AR+ tumors. It is highly coexpressed with FOXA1 and serves as negative predictor of 

basal subtype and ERBB2 subtype. Hence, it is likely that GATA3 may mediate gene 

regulation in some specific way unique to EGF signaling. 
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Figure 3.13 Differentially enriched motifs found in ERE2unique over 
EREGFunique 

The top 5 reported TF families are shown. Total number of families that are above cutoff is 31. 
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Figure 3.14 Differentially enriched motifs found in EREGFunique over 
ERE2unique 

The top 5 reported TF families are shown. Total number of families that are above cutoff is 25. 

 

3.6.3.2 Knockdown study: LNCaP SiFoxA1 vs SiCtrl 

Wang et al. (2011) showed that the presence of FOXA1 in LNCaP cells determines the 

mode of AR binding. In an attempt to figure out what other potential TFs are involved in 

such a change, we performed MOTIFDIFF analysis on two ChIP-seq datasets from the 

paper, i.e. the AR ChIP-seq peak sets before (siCTRL) and after knockdown of FOXA1 
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(SiFoxA1). Figure 3.15 shows the MOTIFDIFF comparison results reporting the motif 

families that are enriched in normal over FOXA1 knockdown AR peaks. The result 

shows the forkhead (FOX) family to be highly differentially enriched, which is not 

surprising as in the presence of FOXA1, AR binding is highly dependent on FOXA1 as 

FOXA1 acts as a pioneering factor (Qiao et al. 2011). In the absence of the factor, AR no 

longer depends on FOXA1 for binding and hence do not occur preferentially near 

FOXA1 motifs. 

As for the enrichment of FOXA1 knockdown AR peaks over normal (see Figure 3.16), in 

agreement with the paper’s result, we found NF1 (MDscore=1.92, Zscore=19.385 or 

Pvalue=5e-84) and AR (MDscore=1.8, Zscore=101.51 or Pvalue<1e-300) motifs to be 

preferentially enriched. Interestingly, however NF1 and AR though highly enriched are 

not the highest ranked factors, at 14 and 18 respectively. We feel that those ranked at the 

top are potentially important factors too. Using ONCOMINE (Choi et al. 2011), we found 

Myc belonging to the EBOX family which is reported as the 2nd most enriched family, to 

be up-expressed in five Prostate cancer vs normal studies (Varambally, LaTulippe, 

Grasso, Lapointe and Tomlins), suggesting its importance in the development of Prostate 

cancer.  Pax3 belonging to the PAX family which is reported as the 3rd most enriched 

family by MOTIFDIFF is found to be up-regulated upon DHT treatment in LNCaP using 

our in-house generated microarray data, suggesting a feedback mechanism involving 

Pax3 in the absence of FOXA1. 
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Figure 3.15 Differentially enriched motifs found in siCTRL unique over SiFoxA1 
unique.  

The top 5 reported TF families are shown, together with CDX which has been reported by the 

author of the study. Total number of families that are above cutoff is 29. 
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Figure 3.16 Differentially enriched motifs found in SiFoxA1 unique over siCTRL 
unique 

The top 5 reported TF families are shown, together with AR and NF1 which has been reported by 

the author of the study. Total number of families that are above cutoff is 54. 
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3.6.3.3 Cofactor modules: MCF7 ER vs ERAP2 

Previously, using CENTDIST, we discovered AP2 gamma as a co-factor of ERa in 

MCF7. By partitioning the ERa peaks into those that contains AP2 gamma and those 

without, we can learn more about the role of AP2 gamma and what factors interacts 

specifically with AP2 gamma. Figure 3.17 shows the MOTIFDIFF comparison results. 

From the result, we see several enriched factors in the ERa AP2 overlapping set, 

noticeably E2F1 and SP1. Both of them have previously been found to be important co-

factors of ERa. Using MOTIFDIFF, we manage to show that these factors possibly act in 

tandem with AP2 gamma since in the absence of AP2 gamma there is minimal 

enrichments of the factors.  

Recently, Cao et al. (2011) performed E2F1 ChIP-seq in MCF7 cell line. To verify our 

findings, we perform overlap using the E2F1 ChIP-seq (see Figure 3.19(b)), and as we 

would expect, we found a large proportion of the ER AP2 overlapping sites to contain 

E2F1 binding peaks in comparison with the ER unique sites. Moreover, it also verified 

our assumption that our MOTIFDIFF raw scores is correlated with the actual percentage 

of peaks containing the co-TF. 

As for SP1, no ChIP-seq has yet been performed in MCF7 cell line. However, 

interestingly the three transcription factors E2F, AP2 and SP1 are closely involved in the 

development of squamous cell carcinoma cell line. (Wong et al. 2005) 
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Figure 3.17 Differentially enriched motifs found in ER unique sets over ERAP2. 

The top 5 reported TF families are shown. Total number of families that are above cutoff is 5. 
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Figure 3.18 Differentially enriched motifs found in ERAP2 over ERunique. 

The top 5 reported TF families are shown. Total number of families that are above cutoff is 27. 
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Figure 3.19 Verification that E2F is more enriched in ER AP2 overlapping sites as 
compared to ER unique sites 

a) Normalised motif histogram of E2F in ER containing AP2 binding (green) and those that do not 

(red). b) Percentage of ER binding containing E2F. We see that a higher percentage of ER 

colocalising with AP2 are bound with E2F as compared with those that do not. 

 

3.7 Discussion 

In this chapter, we developed a method that given two sets of ChIP-seq peaks attempt to 

predict the set of differentially enriched co-TFs in the two sets. Two main approaches are 

de novo motif finding and perform scanning using known motifs. Using a simulated 

example of varying degree of SP1 motifs implanted on two types of background: 

promoter and genomic, we show the various drawbacks of de novo motif finding and 

comparison using popular enrichment statistics such as binomial test pvalue and 

hypergeometric test pvalue and also overrepresentation against background. The main 

problems with these methods are the overpenalisation when background count is high. 

We consider the unpopular option of subtracting the background count without 
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penalisation and showed it is a good statistic for comparing actual abundance of TF in a 

set. Developing upon this statistic, we introduce HISTSCORE which assigns a score 

taking into account the shape of the entire histogram in general. Using large number of 

CTCF ChIP-seq experiments from ENCODE, we proved that HISTSCORE obtained 

using motif can predict the corresponding abundance using ChIP-seq peaks. Moving on, 

we set up an experiment using all ENCODE ChIP-seq in the five cell lines: K562, 

GM12878, Hela-S3, H1-Hesc and HepG2 to test the overall prediction accuracy of 

MOTIFDIFF. We showed that under good circumstance where the motif is specific and 

of high quality such as CTCF, the prediction accuracy is good, having a precision and 

recall of 88.2% and 84.3% respectively. The ultimate downfall in the method however 

lies in the fact that not all bindings could be satisfactorily explained by motif. There are 

other factors in consideration such as chromatin structures, epigenetics, histone 

modification etc. Because of these factors, the general sensitivity of our method is not 

impressive. However, we showed that if we condition our predictions on just those “well-

behaved” ones (i.e. those TFs for which CHIPSCOREREV<1 and CHIPSCORE>2) our 

sensitivity is still quite acceptable at 73.1%. (as seen in Table 11) 

Next, we applied MOTIFDIFF on several existing studies and verified their findings. In 

addition, we showed some potential co-TFs that are not reported by their studies that may 

have biological significance. Utilising our in-house generated AP2 and ER ChIP-seq in 

MCF7, we discovered two highly potential co-TF candidates E2F1 and SP1 that are 

likely to interact closely with AP2 and ER in MCF7. As a strong validation using E2F1 

ChIP-seq generated in MCF7 by Cao et al. (2011), we see a significantly larger 
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percentage of ER in ERAP2 overlapping with E2F1 than those ER binding that do not 

contain AP2. As for SP1, no ChIP-seq on MCF7 has yet been performed but we show 

significant evidence using gene association that suggests its biological significance. 

Though prediction using motifs alone are inherently weak, they are useful in giving 

insights and directions for later studies without incurring much experimental costs.  
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CHAPTER 4 Conclusions 

4.1 Summary of Contributions 

In this thesis, the topic is mainly to develop tools to aid biologist to identify potentially 

novel transcription factors making use of the high accuracy and precision of ChIP-seq 

and similar high throughput technology such as ChIA-pet. Making use of the high 

resolution of ChIP-seq (ability to predict the location of binding site to within a few 

hundred base pairs), we expect to be able to improve the sensitivity of co-TFs prediction 

using motifs. By analyzing the motif distribution around the ChIP-seq peaks, we are able 

to identify co-TFs with strong confidence. CENTDIST was thus developed to perform 

this. We showed that existing methods perform poorly as there was a need to specify a 

background. The selection of background greatly affects whether a motif would be 

enriched in a set of genomic regions. In addition to background selection, other 

parameters that need to be considered are the window size of the targeted regions and the 

motif matching score cutoff. Varying these parameters is not an easy task and also 

laborious for the average biologist. Henceforth, we develop CENTDIST as a user-

friendly tool that is implemented as a web server and utilizes a scoring function that 

maximizes across all possible parameters. The method had been proven to perform 

significantly better than existing approaches, being able to identify the cofactors of AR in 

LNCaP prostate cancer cells with better accuracy than the existing methods. With the 

accuracy proven using known cofactors, we decide to look at novel co-TFs not yet known. 

One such candidate is AP4 which was chosen because it was not identified by the other 

motif enrichment programs. Our web lab validation and gene association suggests AP4 to 

be a probable co-factor of AR. We also performed motif enrichment analysis using 



 118 

 

CENTDIST to identify novel cofactors of ER in MCF7 breast cancer cells. Our result 

identified AP2 gamma as a novel cofactor, and subsequent validation concludes that AP2 

gamma potentially plays a pioneering role in the development of breast cancer, 

comparable to FOXA1. 

Though CENTDIST solves the problem of identifying novel cofactors in a set of genomic 

regions, it cannot effectively compare motif enrichments among multiple sets of genomic 

regions. In Section 3.3 we discussed the difficulties in finding differential motifs. A 

common problem faced by existing motif enrichment methods is that their enrichment 

scores or pvalues cannot be compared directly. This therefore calls for a need to develop 

alternative method to perform such task, and hence we develop MOTIFDIFF to address 

this issue. MOTIFDIFF aims to solve the problem by doing normalizing to account for 

the background it resides in. The normalized enrichment score of a co-TF in a set of 

regions is the highest enrichment subtracted by the background noise. This score is 

designed to be correlated with the percentage of regions containing the actual co-TF 

binding. Using datasets from existing literature and our own in-house generated datasets, 

we verified MOTIFDIFF with the results obtained by them, and in addition we suggested 

several co-TFs that are potentially important specifically to a particular set. In particular, 

when comparing the cofactors in ER binding peaks for those that contain AP2 binding 

peaks and those that don’t, we identified E2F and SP1 as cofactors that potentially works 

specifically in the presence of AP2. Using E2F ChIP-seq recently performed in MCF7, 

we verified the accuracy of our MOTIFDIFF model which asserted that the score 

reported by MOTIFDIFF is correlated and provide an accurate estimate of the percentage 
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of binding peaks containing the co-TF. For SP1, though no ChIP-seq has yet been 

performed. We decide to verify it using microarray. As we only have motif prediction of 

SP1 binding, usual gene association analysis is not sensitive enough to be able to detect 

the association of SP1 binding. As such, we devised a new method of performing gene 

association enrichment by considering the improvements introduced by subsequently 

adding more information. The approach is being verified by E2F which had been shown 

to be preferentially enriched in ERAP2 overlapping peaks. Using this approach, we show 

that the additional information of SP1 leads to improved prediction of the upregulation of 

genes by E2 at 6h. Precisely how and why they interact specifically with AP2 are yet to 

be known, but there are studies that showed that the three transcription factors E2F, AP2 

and SP1 are closely involved in the development of squamous cell carcinoma cell line. 

(Wong et al. 2005) 

Accompanying each tool is a web interface that enables biologist with no computational 

background to use with. These tools will greatly help advance biologists to develop 

understanding in transcription factors related to their area of study. 

4.2 Future Directions 

Though we managed to show the merits of our two developed tools CENTDIST and 

MOTIFDIFF, there is still much room left for improvements. In the following sections, 

we will describe some of the ways that we could improve them.  
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4.2.1 CENTDIST 

4.2.1.1 Comotif rank preference 

In our current implementation of CENTDIST, though we provided a histogram 

displaying comotif occurrence preference with respect to the ranking of ChIP-seq peak 

intensities as an additional output for users to consider in their assessment, we did not 

incorporate it into our CENTDIST scoring.  Certain co-TFs exhibit a preference to TFs 

having stronger ChIP-seq intensity, while some exhibit preference towards lower ChIP-

seq intensity. An explanation for why some co-TFs preferentially bound to low intensity 

ChIP-seq peak is that the lower intensity ChIP-seq peaks are indirectly bound that are 

picked up subtly via the ChIP-seq protocol. At the moment this feature serves as extra 

information for user’s assessments. Given more observations we could possibly devise a 

scoring function that incorporate it so as to improve the sensitivity and specificity of our 

method.  

4.2.1.2 Utilise conservation scores 

Motifs occurring in highly conserved DNA regions are more likely to be functional and 

that is the reason why many methods had been developed to zoom in on conserved 

regions. Utilising conservation scores such as PHASTCONS (Siepel et al. 2005) in 

conjunction with motif scanning may help to improve the specificity of motif predictions 

which in turn improve the sensitivity and specificity of co-TFs identified.  
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4.2.2 MOTIFDIFF 

4.2.2.1 More Validations for MOTIFDIFF 

Due to lack of studies with appropriate validations, we do not yet have very solid 

evidence to prove the effectiveness of MOTIFDIFF in identifying novel differential 

motifs. In section 3.6.3.1 and 3.6.3.2 we predicted a number of candidate differential 

motifs that are not being reported by the respective studies. Given more time and 

resources, we would hope to perform ChIP-seq on the respective conditions to help 

validate our findings.  

4.2.2.2 Differential de novo motif finding 

After developing a method to screen database of motifs to determine differential 

enrichments, the next step would be to extend the idea to identify motifs a priori. While 

there are already several algorithms performing discriminative motif finding, none utilize 

the motif shape information around ChIP-seq peak as done by MOTIFDIFF. We believe 

that utilizing such information could improve the sensitivity and specificity in which 

novel interesting motifs could be detected. 

4.2.2.3 Utilising quantitative differential ChIP-seq signal obtained 

using MAnorm(Shao et al. 2012) 

Currently in MOTIFDIFF, given two sets of ChIP-seq peaks that are called using some 

peak calling programs, we perform peak overlap to categorize the peak sets as described 

in Section 3.1 into three mutually exclusive sets, consisting of one overlapping sets and 

two non-overlapping sets. MOTIFDIFF will then proceed to compare the motif signals in 

the two non-overlapping sets. The downside of this is that in doing so, we discard a large 
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portion of the peak sets which belong to the overlapping sets.  One way to overcome this 

problem is to have a way of quantifying the level of differential ChIP-seq signal among 

the two ChIP-seq libraries. Shao et al. (2012) describe a novel methodology to do that 

called MAnorm. MAnorm utilizes the raw reads of the two ChIP-seq libraries in addition 

to their peak coordinates to obtain the differential ChIP-seq signal among the two ChIP-

seq libraries that are normalized to account for biases due to sequencing depth and 

background noise etc. One down side is that to perform MAnorm we require the original 

reads in addition to the peak coordinates, which may not be readily available and would 

require a long time to be uploaded to the server. Alternatively we could accept the 

outputs of MAnorm which had been run separately on the user’s computer as inputs for 

MOTIFDIFF. 

4.2.2.4 Compare across multiple peak sets 

As described in Section 3.4, the HISTSCORE derived in MOTIFDIFF is suitable for 

comparison among multiple libraries. This can then be plotted using a heat map and for 

clustering. HISTSCORE suffer less from background-related issues and sample-size 

related issues than p-value-based enrichment statistics and several statistics discussed in 

the section.  

  



 123 

 

PUBLICATIONS 

First author papers 

 

Zhang Z*, Chang CW*, Goh WL, Sung WK and Cheung E (2011). "CENTDIST: discovery of co-

associated factors by motif distribution." Nucleic Acids Res 39(Web Server issue): W391-

399. 

 

Co-author papers 

 

Chng KR, Chang CW, Tan SK, Yang C, Hong SZ, Sng NY and Cheung E (2012). "A transcriptional 

repressor co-regulatory network governing androgen response in prostate cancers." 

EMBO J 31(12): 2810-2823. 

 

Tan PY, Chang CW, Chng KR, Wansa KD, Sung WK and Cheung E (2012). "Integration of 

regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer 

survival." Mol Cell Biol 32(2): 399-414. 

 

Tan SK, Lin ZH, Chang CW, Varang V, Chng KR, Pan YF, Yong EL, Sung WK and Cheung E (2011). 

"AP-2gamma regulates oestrogen receptor-mediated long-range chromatin interaction 

and gene transcription." EMBO J 30(13): 2569-2581. 

 

Zhang Z, Chang CW, Hugo W, Cheung E and Sung WK (2013). "Simultaneously learning DNA 

motif along with its position and sequence rank preferences through expectation 

maximization algorithm." J Comput Biol 20(3): 237-248. 

 

 
 

 

 

 
 

  



 124 

 

BIBLIOGRAPHY 

Akutsu Y, Shuto K, Kono T, Uesato M, Hoshino I, Shiratori T, Miyazawa Y, Isozaki Y, 
Akanuma N and Matsubara H (2012). "A phase 1/11 study of second-line 
chemotherapy with fractionated docetaxel and nedaplatin for 5-FU/cisplatin-
resistant esophageal squamous cell carcinoma." Hepatogastroenterology 59(119): 
2095-2098. 

Albergaria A, Paredes J, Sousa B, Milanezi F, Carneiro V, Bastos J, Costa S, Vieira D, 
Lopes N, Lam EW, Lunet N and Schmitt F (2009). "Expression of FOXA1 and 
GATA-3 in breast cancer: the prognostic significance in hormone receptor-
negative tumours." Breast Cancer Res 11(3): R40. 

Aparicio O, Geisberg JV and Struhl K (2004). "Chromatin immunoprecipitation for 
determining the association of proteins with specific genomic sequences in vivo." 
Curr Protoc Cell Biol Chapter 17: Unit 17 17. 

Bailey TL (2011). "DREME: motif discovery in transcription factor ChIP-seq data." 
Bioinformatics 27(12): 1653-1659. 

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW and 
Noble WS (2009). "MEME SUITE: tools for motif discovery and searching." 
Nucleic Acids Res 37(Web Server issue): W202-208. 

Barash Y, Bejerano G and Friedman N (2001). A Simple Hyper-Geometric Approach for 
Discovering Putative Transcription Factor Binding Sites. Proceedings of the First 
International Workshop on Algorithms in Bioinformatics, Springer-Verlag: 278-
293. 

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I and 
Zhao K (2007). "High-resolution profiling of histone methylations in the human 
genome." Cell 129(4): 823-837. 

Bembom O, Keles S and van der Laan MJ (2007). "Supervised detection of conserved 
motifs in DNA sequences with cosmo." Stat Appl Genet Mol Biol 6: Article8. 

Benos PV, Bulyk ML and Stormo GD (2002). "Additivity in protein-DNA interactions: 
how good an approximation is it?" Nucleic Acids Res 30(20): 4442-4451. 

Bernstein BE, Birney E, Dunham I, Green ED, Gunter C and Snyder M (2012). "An 
integrated encyclopedia of DNA elements in the human genome." Nature 
489(7414): 57-74. 

Boulay A, Breuleux M, Stephan C, Fux C, Brisken C, Fiche M, Wartmann M, Stumm M, 
Lane HA and Hynes NE (2008). "The Ret receptor tyrosine kinase pathway 
functionally interacts with the ERalpha pathway in breast cancer." Cancer Res 
68(10): 3743-3751. 

Cao AR, Rabinovich R, Xu M, Xu X, Jin VX and Farnham PJ (2011). "Genome-wide 
analysis of transcription factor E2F1 mutant proteins reveals that N- and C-
terminal protein interaction domains do not participate in targeting E2F1 to the 
human genome." J Biol Chem 286(14): 11985-11996. 

Cao J, Tang M, Li WL, Xie J, Du H, Tang WB, Wang H, Chen XW, Xiao H and Li Y 
(2009). "Upregulation of activator protein-4 in human colorectal cancer with 
metastasis." International journal of surgical pathology 17(1): 16-21. 



 125 

 

Chang JT and Nevins JR (2006). "GATHER: a systems approach to interpreting genomic 
signatures." Bioinformatics 22(23): 2926-2933. 

Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang 
J, Loh Y-H, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, 
Ruan Y, Bourque G, Sung W-K, Clarke ND, Wei C-L and Ng H-H (2008). 
"Integration of external signaling pathways with the core transcriptional network 
in embryonic stem cells." Cell 133(6): 1106-1117. 

Cheung E and Kraus WL (2010). "Genomic analyses of hormone signaling and gene 
regulation." Annual review of physiology 72: 191-218. 

Chi SG, deVere White RW, Meyers FJ, Siders DB, Lee F and Gumerlock PH (1994). 
"p53 in prostate cancer: frequent expressed transition mutations." Journal of the 
National Cancer Institute 86(12): 926-933. 

Choi J, Lee MK, Oh KH, Kim YS, Choi HY, Baek SK, Jung KY, Woo JS, Lee SH and 
Kwon SY (2011). "Interaction effect between the receptor for advanced glycation 
end products (RAGE) and high-mobility group box-1 (HMGB-1) for the 
migration of a squamous cell carcinoma cell line." Tumori 97(2): 196-202. 

Crooks GE, Hon G, Chandonia JM and Brenner SE (2004). "WebLogo: a sequence logo 
generator." Genome Res 14(6): 1188-1190. 

Dai W, Zhang EJ, Duan WY and Zhou Q (2012). "[Overexpression of Twist1 promotes 
tumor invasion in human tongue squamous cell carcinoma cell line Tca8113]." Xi 
Bao Yu Fen Zi Mian Yi Xue Za Zhi 28(12): 1246-1249. 

Dydensborg AB, Rose AA, Wilson BJ, Grote D, Paquet M, Giguere V, Siegel PM and 
Bouchard M (2009). "GATA3 inhibits breast cancer growth and pulmonary breast 
cancer metastasis." Oncogene 28(29): 2634-2642. 

Elemento O, Slonim N and Tavazoie S (2007). "A universal framework for regulatory 
element discovery across all genomes and data types." Mol Cell 28(2): 337-350. 

Ellington AD and Szostak JW (1990). "In vitro selection of RNA molecules that bind 
specific ligands." Nature 346(6287): 818-822. 

Ergen HA, Narter F, Timirci O and Isbir T (2007). "Effects of manganase superoxide 
dismutase Ala-9Val polymorphism on prostate cancer: a case-control study." 
Anticancer research 27(2): 1227-1230. 

Ettwiller L, Paten B, Ramialison M, Birney E and Wittbrodt J (2007). "Trawler: de novo 
regulatory motif discovery pipeline for chromatin immunoprecipitation." Nat 
Methods 4(7): 563-565. 

Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR and Katzenellenbogen BS (2003). 
"Profiling of estrogen up- and down-regulated gene expression in human breast 
cancer cells: insights into gene networks and pathways underlying estrogenic 
control of proliferation and cell phenotype." Endocrinology 144(10): 4562-4574. 

Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, 
Mei PH, Chew EG, Huang PY, Welboren WJ, Han Y, Ooi HS, Ariyaratne PN, 
Vega VB, Luo Y, Tan PY, Choy PY, Wansa KD, Zhao B, Lim KS, Leow SC, 
Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK, Karuturi RK, Herve T, 
Bourque G, Stunnenberg HG, Ruan X, Cacheux-Rataboul V, Sung WK, Liu ET, 
Wei CL, Cheung E and Ruan Y (2009). "An oestrogen-receptor-alpha-bound 
human chromatin interactome." Nature 462(7269): 58-64. 



 126 

 

Gelfond JA, Gupta M and Ibrahim JG (2009). "A Bayesian hidden Markov model for 
motif discovery through joint modeling of genomic sequence and ChIP-chip 
data." Biometrics 65(4): 1087-1095. 

He HH, Meyer CA, Shin H, Bailey ST, Wei G, Wang Q, Zhang Y, Xu K, Ni M, Lupien 
M, Mieczkowski P, Lieb JD, Zhao K, Brown M and Liu XS (2010). "Nucleosome 
dynamics define transcriptional enhancers." Nature genetics 42(4): 343-347. 

He YF, Ji CS, Hu B, Fan PS, Hu CL, Jiang FS, Chen J, Zhu L, Yao YW and Wang W 
(2013). "A phase II study of paclitaxel and nedaplatin as front-line chemotherapy 
in Chinese patients with metastatic esophageal squamous cell carcinoma." World 
J Gastroenterol 19(35): 5910-5916. 

Hestand MS, van Galen M, Villerius MP, van Ommen GJ, den Dunnen JT and t Hoen PA 
(2008). "CORE_TF: a user-friendly interface to identify evolutionary conserved 
transcription factor binding sites in sets of co-regulated genes." BMC 
Bioinformatics 9: 495. 

Ho Sui SJ, Fulton DL, Arenillas DJ, Kwon AT and Wasserman WW (2007). "oPOSSUM: 
integrated tools for analysis of regulatory motif over-representation." Nucleic 
Acids Res 35(Web Server issue): W245-252. 

Ho Sui SJ, Mortimer JR, Arenillas DJ, Brumm J, Walsh CJ, Kennedy BP and Wasserman 
WW (2005). "oPOSSUM: identification of over-represented transcription factor 
binding sites in co-expressed genes." Nucleic Acids Res 33(10): 3154-3164. 

Hooghe B, Hulpiau P, van Roy F and De Bleser P (2008). "ConTra: a promoter 
alignment analysis tool for identification of transcription factor binding sites 
across species." Nucleic Acids Res 36(Web Server issue): W128-132. 

Iwagami S, Baba Y, Watanabe M, Shigaki H, Miyake K, Ida S, Nagai Y, Ishimoto T, 
Iwatsuki M, Sakamoto Y, Miyamoto Y and Baba H (2012). "Pyrosequencing 
assay to measure LINE-1 methylation level in esophageal squamous cell 
carcinoma." Ann Surg Oncol 19(8): 2726-2732. 

Ji X, Li W, Song J, Wei L and Liu XS (2006). "CEAS: cis-regulatory element annotation 
system." Nucleic Acids Res 34(Web Server issue): W551-554. 

Johnson DS, Mortazavi A, Myers RM and Wold B (2007). "Genome-wide mapping of in 
vivo protein-DNA interactions." Science 316(5830): 1497-1502. 

Kang Z, Jänne OA and Palvimo JJ (2004). "Coregulator recruitment and histone 
modifications in transcriptional regulation by the androgen receptor." Molecular 
endocrinology (Baltimore, Md.) 18(11): 2633-2648. 

Langmead B and Salzberg SL (2012). "Fast gapped-read alignment with Bowtie 2." Nat 
Methods 9(4): 357-359. 

Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF and Wootton JC (1993). 
"Detecting subtle sequence signals: a Gibbs sampling strategy for multiple 
alignment." Science 262(5131): 208-214. 

Li H and Durbin R (2009). "Fast and accurate short read alignment with Burrows-
Wheeler transform." Bioinformatics 25(14): 1754-1760. 

Liang S, Samanta MP and Biegel BA (2004). "cWINNOWER algorithm for finding 
fuzzy dna motifs." J Bioinform Comput Biol 2(1): 47-60. 

Linhart C, Halperin Y and Shamir R (2008). "Transcription factor and microRNA motif 
discovery: the Amadeus platform and a compendium of metazoan target sets." 
Genome Res 18(7): 1180-1189. 



 127 

 

Liu XS, Brutlag DL and Liu JS (2002). "An algorithm for finding protein-DNA binding 
sites with applications to chromatin-immunoprecipitation microarray 
experiments." Nat Biotechnol 20(8): 835-839. 

Lupien M, Eeckhoute J, Meyer CA, Krum SA, Rhodes DR, Liu XS and Brown M (2009). 
"Coactivator function defines the active estrogen receptor alpha cistrome." Mol 
Cell Biol 29(12): 3413-3423. 

Machiels JP, Kaminsky MC, Keller U, Brummendorf TH, Goddemeier T, Forssmann U 
and Delord JP (2013). "Phase Ib trial of the Toll-like receptor 9 agonist IMO-
2055 in combination with 5-fluorouracil, cisplatin, and cetuximab as first-line 
palliative treatment in patients with recurrent/metastatic squamous cell carcinoma 
of the head and neck." Invest New Drugs 31(5): 1207-1216. 

Maggiolini M, Recchia AG, Carpino A, Vivacqua A, Fasanella G, Rago V, Pezzi V, 
Briand P-A, Picard D and Andò S (2004). "Oestrogen receptor beta is required for 
androgen-stimulated proliferation of LNCaP prostate cancer cells." Journal of 
molecular endocrinology 32(3): 777-791. 

Mason MJ, Plath K and Zhou Q (2010). "Identification of context-dependent motifs by 
contrasting ChIP binding data." Bioinformatics 26(22): 2826-2832. 

Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, 
Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, 
Munch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S and Wingender E 
(2003). "TRANSFAC: transcriptional regulation, from patterns to profiles." 
Nucleic Acids Res 31(1): 374-378. 

Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D, Snyder M, Young RA and 
Bulyk ML (2004). "Rapid analysis of the DNA-binding specificities of 
transcription factors with DNA microarrays." Nat Genet 36(12): 1331-1339. 

Narlikar L and Jothi R (2012). "ChIP-Seq data analysis: identification of protein-DNA 
binding sites with SISSRs peak-finder." Methods Mol Biol 802: 305-322. 

Park JJ, Irvine RA, Buchanan G, Koh SS, Park JM, Tilley WD, Stallcup MR, Press MF 
and Coetzee GA (2000). "Breast cancer susceptibility gene 1 (BRCAI) is a 
coactivator of the androgen receptor." Cancer research 60(21): 5946-5949. 

Ponty Y, Termier M and Denise A (2006). "GenRGenS: software for generating random 
genomic sequences and structures." Bioinformatics 22(12): 1534-1535. 

Qi L and Zhang Y (2014). "Truncation of inhibitor of growth family protein 5 effectively 
induces senescence, but not apoptosis in human tongue squamous cell carcinoma 
cell line." Tumour Biol 35(4): 3139-3144. 

Qiao B, Johnson NW, Chen X, Li R, Tao Q and Gao J (2011). "Disclosure of a stem cell 
phenotype in an oral squamous cell carcinoma cell line induced by BMP-4 via an 
epithelial-mesenchymal transition." Oncol Rep 26(2): 455-461. 

Raha D, Wang Z, Moqtaderi Z, Wu L, Zhong G, Gerstein M, Struhl K and Snyder M 
(2010). "Close association of RNA polymerase II and many transcription factors 
with Pol III genes." Proceedings of the National Academy of Sciences of the 
United States of America 107(8): 3639-3644. 

Redhead E and Bailey TL (2007). "Discriminative motif discovery in DNA and protein 
sequences using the DEME algorithm." BMC Bioinformatics 8: 385. 



 128 

 

Roider HG, Manke T, O'Keeffe S, Vingron M and Haas SA (2009). "PASTAA: 
identifying transcription factors associated with sets of co-regulated genes." 
Bioinformatics 25(4): 435-442. 

Roth FP, Hughes JD, Estep PW and Church GM (1998). "Finding DNA regulatory motifs 
within unaligned noncoding sequences clustered by whole-genome mRNA 
quantitation." Nat Biotechnol 16(10): 939-945. 

Sandelin A, Alkema W, Engstrom P, Wasserman WW and Lenhard B (2004). "JASPAR: 
an open-access database for eukaryotic transcription factor binding profiles." 
Nucleic Acids Res 32(Database issue): D91-94. 

Sandelin A, Alkema W, Engström P, Wasserman WW and Lenhard B (2004). "JASPAR: 
an open-access database for eukaryotic transcription factor binding profiles." 
Nucleic Acids Research 32(Database issue): D91-94. 

Shao Z, Zhang Y, Yuan GC, Orkin SH and Waxman DJ (2012). "MAnorm: a robust 
model for quantitative comparison of ChIP-Seq data sets." Genome Biol 13(3): 
R16. 

Sharov AA and Ko MS (2009). "Exhaustive search for over-represented DNA sequence 
motifs with CisFinder." DNA Res 16(5): 261-273. 

Sharov AA and Ko MSH (2009). "Exhaustive search for over-represented DNA sequence 
motifs with CisFinder." DNA research : an international journal for rapid 
publication of reports on genes and genomes 16(5): 261-273. 

Shin H, Liu T, Manrai AK and Liu XS (2009). "CEAS: cis-regulatory element annotation 
system." Bioinformatics 25(19): 2605-2606. 

Siddharthan R (2010). "Dinucleotide weight matrices for predicting transcription factor 
binding sites: generalizing the position weight matrix." PLoS One 5(3): e9722. 

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, 
Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent 
WJ, Miller W and Haussler D (2005). "Evolutionarily conserved elements in 
vertebrate, insect, worm, and yeast genomes." Genome Res 15(8): 1034-1050. 

Sinha S and Tompa M (2003). "YMF: A program for discovery of novel transcription 
factor binding sites by statistical overrepresentation." Nucleic Acids Res 31(13): 
3586-3588. 

Smith AD, Sumazin P and Zhang MQ (2005). "Identifying tissue-selective transcription 
factor binding sites in vertebrate promoters." Proc Natl Acad Sci U S A 102(5): 
1560-1565. 

Stormo GD (2000). "DNA binding sites: representation and discovery." Bioinformatics 
16(1): 16-23. 

Tennakoon C, Purbojati RW and Sung WK (2012). "BatMis: a fast algorithm for k-
mismatch mapping." Bioinformatics 28(16): 2122-2128. 

Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouze P and Moreau Y (2001). 
"A higher-order background model improves the detection of promoter regulatory 
elements by Gibbs sampling." Bioinformatics 17(12): 1113-1122. 

Tozlu S, Girault I, Vacher S, Vendrell J, Andrieu C, Spyratos F, Cohen P, Lidereau R and 
Bieche I (2006). "Identification of novel genes that co-cluster with estrogen 
receptor alpha in breast tumor biopsy specimens, using a large-scale real-time 
reverse transcription-PCR approach." Endocr Relat Cancer 13(4): 1109-1120. 



 129 

 

Turner BC, Zhang J, Gumbs AA, Maher MG, Kaplan L, Carter D, Glazer PM, Hurst HC, 
Haffty BG and Williams T (1998). "Expression of AP-2 transcription factors in 
human breast cancer correlates with the regulation of multiple growth factor 
signalling pathways." Cancer research 58(23): 5466-5472. 

van Helden J, Andre B and Collado-Vides J (1998). "Extracting regulatory sites from the 
upstream region of yeast genes by computational analysis of oligonucleotide 
frequencies." J Mol Biol 281(5): 827-842. 

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, 
Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, 
Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian 
G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, 
Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, 
Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, 
Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington 
K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, 
Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn 
P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan 
P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, 
Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan 
VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, 
Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, 
Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, 
Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali 
F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam 
D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, 
Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes 
J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, 
Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, 
McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, 
Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, 
Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, 
Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, 
Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, 
Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, 
Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, 
Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, 
Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, 
Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, 
Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, 
Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft 
C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy 
S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, 
Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, 
Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A and Zhu 
X (2001). "The sequence of the human genome." Science (New York, N.Y.) 
291(5507): 1304-1351. 



 130 

 

Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, Qiu J, Liu W, Kaikkonen MU, 
Ohgi KA, Glass CK, Rosenfeld MG and Fu XD (2011). "Reprogramming 
transcription by distinct classes of enhancers functionally defined by eRNA." 
Nature 474(7351): 390-394. 

Wederell ED, Bilenky M, Cullum R, Thiessen N, Dagpinar M, Delaney A, Varhol R, 
Zhao Y, Zeng T, Bernier B, Ingham M, Hirst M, Robertson G, Marra MA, Jones 
S and Hoodless PA (2008). "Global analysis of in vivo Foxa2-binding sites in 
mouse adult liver using massively parallel sequencing." Nucleic Acids Res 36(14): 
4549-4564. 

Wong CF, Barnes LM, Dahler AL, Smith L, Popa C, Serewko-Auret MM and Saunders 
NA (2005). "E2F suppression and Sp1 overexpression are sufficient to induce the 
differentiation-specific marker, transglutaminase type 1, in a squamous cell 
carcinoma cell line." Oncogene 24(21): 3525-3534. 

Workman CT and Stormo GD (2000). "ANN-Spec: a method for discovering 
transcription factor binding sites with improved specificity." Pac Symp 
Biocomput: 467-478. 

Xu H, Handoko L, Wei X, Ye C, Sheng J, Wei CL, Lin F and Sung WK (2010). "A 
signal-noise model for significance analysis of ChIP-seq with negative control." 
Bioinformatics 26(9): 1199-1204. 

Xu JY, Yang LL, Ma C, Huang YL, Zhu GX and Chen QL (2013). "MiR-25-3p 
attenuates the proliferation of tongue squamous cell carcinoma cell line Tca8113." 
Asian Pac J Trop Med 6(9): 743-747. 

Zhang S, Li S, Niu M, Pham PT and Su Z (2011). "MotifClick: prediction of cis-
regulatory binding sites via merging cliques." BMC Bioinformatics 12: 238. 

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers 
RM, Brown M, Li W and Liu XS (2008). "Model-based analysis of ChIP-Seq 
(MACS)." Genome Biol 9(9): R137. 

Zhang Z, Chang CW, Goh WL, Sung WK and Cheung E (2011). "CENTDIST: discovery 
of co-associated factors by motif distribution." Nucleic Acids Res 39(Web Server 
issue): W391-399. 

 

 

 

 


