Current Approaches
o XML Management

XML management systems vary widely in their expressive

power and query-processing efficiency, and users should

choose the XMLMS that best meets their needs.

he Extensible Markup Language
I has become the standard for infor-
mation interchange on the Web.
Developed primarily as a document mark-
up language more powerful than HTML
yet less complex than SGML, XML does
not require content to adhere to structur-
al rules. XML gives a single, human-read-
able syntax for representing data, includ-
ing data in relational format. Hence XML
appeals to both the document and the
database communities.

Early developers of XML content stor-
age tools, who came from the database
community, regarded XML as yet another
data format for adapting relational and
sometimes object-relational data-process-
ing tools. While this use of XML is accept-
able, it does not harness XML'’s full power.
XML is inherently semistructured. How-
ever, documents subscribing to the data-
centric view of XML are highly structured
and can be represented equivalently in
tables or in XML with document type def-
initions (DTDs) or XML schema specifica-
tions (see the sidebar, “Related W3C Doc-
uments,” for this and other XML spe-

1EEE INTERNET COMPUTING

cifications). As in traditional relational
databases, sibling element order is unim-
portant in such documents.

We refer to documents with implicitly
ordered XML content as document-centric.
The file’s element order (as siblings in a
tree-like representation) conveys its
implicit order, whereas a document
attribute or tag expresses an explicit order.
Although it is easy to express explicit
order in relational databases, capturing
the implicit order while converting a doc-
ument-centric XML document into a rela-
tional database is a problem. Besides the
implicit order, document-centric XML
documents allow little or no structure,
deep nesting, and hyperlinked compo-
nents. Tables can represent implicit order,
nesting, and hyperlinks but only with
costly time and space transformations.

This article studies the data- and docu-
ment-centric uses of XML management
systems (XMLMS). We want to provide
XML data users with a guideline for
choosing the data management system
that best meets their needs. Because the
systems we test are first-generation

1089-7801/02/$17.0092002 IEEE

http://computer.org/internet/

Database Technology on the Web

Ullas Nambial
and Zoé Lacro
Arizona State Uni

Stéphane Bres
Mong Li Lee,

andYingguang
National Universit

Database Technology on the Web

Table |. XML query language functionalities, or requirements, by query type supported.

Relational

Support all data types under XML schema specification
Process collections of XML documents and data types
Accept streaming data

Manipulate NULL values

Support quantifiers (V, 3, and ~) in queries

Allow queries that combine different document parts
Support aggregation

Sort results

Document

Support type coercion

information

Support operation composition

Allow use of environmental information in queries
Allow operations on document schema if available
Support updates if data model allows

Transform and create XML structures

Allow conditions/constraints on text elements Allow navigation (veference traversals)

Preserve document structure

Support identity creation and preservation
Support structural recursion

Support documents with and without schema

Navigational

Support hierarchical and sequence queries

44

JULY AUGUST 2002

approaches, we suggest a hypothetical design for a
useful XML database that could use all the expres-
sive power of XML and XML query languages.

Expressive Power vs. Efficiency

In 1996, the World Wide Web Consortium (W3C)
formed a working group to define a markup lan-
guage with SGML'’s power and extensibility but
HTML'’s simplicity. The team stripped away all the
complex parts of SGML to create XML, a versatile
yet easy-to-use markup language.

XML overcomes the shortcomings of both
SGML and HTML. SGML parsers require strict
adherence to the DTD, making it too complex for
everyday use, such as for Web publishing. HTML
parsers make no such demands, allowing multiple
interpretations of the same data, but thereby mak-
ing it difficult to add semantics to HTML data.

In 1998, the W3C approved version 1.0 of the
XML specification, and several working groups
began to identify and characterize multiple XML
uses, among them querying XML documents. The
W3C XML Query Language working group lists
desirable functionalities, presented in Table 1, as
“must-have” requirements. These functionalisties
were also identified and analyzed by academic
teams (see 1 for example).! Despite the dramatic
differences between data- and document-centric
approaches, the W3C XML Query Language work-
ing group states that an XML query language must
provide data-centric, document-centric, and nav-
igational capabilities, thus capturing completely
the XML data model expressiveness.

This polarized view of XML generates issues
regarding the functionality or expressive power of
existing XML query languages. To compare the

http://computer.org/internet/

expressive power of XML query languages, we
classify XML queries with respect to the function-
alities listed in Table 1.

XML queries with an expressive power similar
to that of Datalog,? the database logic, for rela-
tional models are relational queries. Queries using
the implicit and explicit order of XML elements are
document queries, while queries that require tra-
versing the XML document structure using refer-
ences or links as supported by XLink or Xpointer
are navigational queries.

Using a data- or document-centric view of XML
when developing a query language affects not
only the language’s expressive power, but also its
performance. Data-centric query languages can-
not exploit XML’s implicit order. Relational sys-
tems can, however, efficiently process most data-
centric queries. Unordered XML data requires the
least processing time. Indeed, because unordered
data is similar to relational data, we can use tradi-
tional optimized relational approaches to process
it. An XMLMS that uses XML's data-centric char-
acteristics might provide less expressive power in
terms of queries supported than a system using a
document-centric approach, but it is likely to per-
form better. Fully ordered data require preserving
the XML document’s logical structure. Naive
approaches to processing queries against fully
ordered data require loading the entire document
into main memory and creating a tree structure of
the document. Processing time is high for fully
ordered XML content.

If processing efficiency were the only criteria,
we would favor unordered XML data representa-
tion and use relational approaches to efficiently
solve queries. But not all XML queries can be

1EEE INTERNET COMPUTING

expressed against unordered data. While a system
can use an ordered data representation to repre-
sent unordered data, the converse is not possible.
Tools that use the fully ordered representation or
the document-centric view of XML can represent
all types of XML content whereas those using the
unordered or data-centric view of XML can only
represent efficiently structured and relational-like
data. We can make a similar analysis for nested or
hyperlinked documents versus flat data.

The expressive power and processing efficien-
cy of XML management systems depends on the
underlying data representation.

Data Management Systems

Data management systems control data acquisi-
tion, analysis, translation, storage, and retrieval.
Although these functions are explicit, the type of
data they represent is less clear. Data management
systems were motivated by developers’ desire for

redundancy control,

the ability to answer queries against data,
data protection from system failure,
efficient data sharing among multiple users,
data security and integrity, and

separation of applications from data.

Data management systems evolved from flat files to
current object-oriented or object-relational database
management systems, which will further evolve to
the XML management systems of the future.

From Flat Files to XML
Figure 1 follows the evolution of traditional data
management systems to current and future systems.

The flat file systems of the mid- to late-1950s
followed a simple design: text sequences formed
records, and data structure held no importance.
These systems suffered from uncontrolled data
redundancy, data inconsistency, low productivity,
and high maintenance costs, however, and
researchers began looking for ways to exploit the
structure of stored data.

Hierarchical databases were the first improve-
ment over flat files. Although they seemed intu-
itive, because their design depended on the data
structure, they were inherently inflexible: Any
changes to the data structure required changes to
applications using the data. To overcome hierar-
chical system shortcomings, developers created
network databases by adding links between struc-
tures. To use a network database effectively, how-
ever, you have to know how it is structured and

TEEE INTERNET COMPUTING

XML Management

XMLMS

| Object-oriented/Object-relational DBMS |

|

| Relational DBMS

| Network DBMS |

| Hierarchical DBMS |

| File systems

T T
1950 1960

T
1990

—_ >

T T
1970 1980

Years

T
2000

Figure |.Timeline of database management system evolution. In flat
file systems, data structure was irrelevant. For XML data manage-
ment systems, however, knowing the data structure is essential.

how to traverse the structure.

In the early 1970s, IBM Research’s Edgar F.
Codd proposed the revolutionary relational data-
base.> Representation in relational databases is
flexible, simple, and application-independent. The
relational model can represent a large variety of
data; however, it does not adapt well to semi-
structured data with complex nesting.

XML'’s introduction as a data representation and
exchange medium prompted its adoption among
relational data model proponents. XML data struc-
ture can be complex, however, and to efficiently
process XML data, users must know its structure.

XML Database Systems

The relational database community’s focus on
XML as another data format for relational and
object-relational data-processing tools led to the
development of query languages such as XML-
QL,* Lorel, and XML Query Language (XQL).> These
languages are biased toward the data-centric view
of XML, which requires data to be fully structured
but unordered. In essence, they use XML to pub-
lish structured data in a platform- and application-
independent manner. XML thus merely provides
“syntactic sugaring” to the underlying relational
data. While this data-centric use of XML is accept-
able, it does not harness XML's full power.

The document-centric use of XML relies not
only on the data representation expressed through
markups, but also on the data’s component order-
ing. Many systems that subscribe to the document-
centric view use XPath, a language designed to
identify parts of XML documents, to query XML
data. Recently, the W3C published XQuery, which

http://computer.org/internet/

JULY

AUGUST 2002

45

Database Technology on the Web

46

JULY AUGUST 2002

combines XML'’s data- and document-centric char-
acteristics, as a candidate standard query language
for XML.

We can thus divide current XML management
systems into XML-enabled databases and native
XML databases.®* XML-enabled databases, which
are usually relational, contain model- or template-
driven extensions for transferring data to and from
XML documents and are generally designed for
data-centric documents.

There are three main differences between XML-
enabled databases and native XML databases:

m A native XML database preserves physical
structure — CDATA sections, comments, pro-
gramming instructions, DTDs, and so on. The-
oretically, an XML-enabled database can do so
as well, but practice tells a different story.

m Native XML databases can store schemaless data.
We could use techniques to identify structure in
raw documents to be stored in XML-enabled sys-
tems; however, such techniques are rather limited.

m XPath, DOM, or similar XML-related APIs are
required to access data in native XML sys-
tems. XML-enabled systems, on the other
hand, offer direct access to the data through
open-standard APIs, such as open-database
connectivity (ODBC).

The sidebar, “Current XML Management Products,”
describes some XML-enabled and native XML data-
base products. Ronald Bourret provides a detailed
classification of XML management products.®

Taking the Middle Ground

Unlike relational data, XML data is ordered. An
obvious drawback for systems claiming to be
XML-aware is that they must deal with the
implicit order of XML data. Converting from
XML data to relational data causes order infor-
mation to be lost. Therefore, any view generated
by XML-enabled systems presents a pseudo-
order of the elements. On the other hand, most
of these systems have database backends, so they
should provide SQL-like processing capabilities
for XML queries — for example, aggregating,
nesting, and grouping.

Relational databases have efficient storage and
retrieval techniques and can evaluate queries using
various indexing mechanisms. But these systems
cannot adequately express or optimize queries that
exploit XML data’s document-centric properties,
such as text search and implicit and explicit order
management. The computational complexity of

http://computer.org/internet/

XML data manipulation makes relational database
indexing mechanisms difficult to implement. Flat
file data systems containing XML documents are
almost certain to perform naive execution of XML
queries. Moreover, the performance of native XML
databases varies with the storage method used.
These systems are certain to maintain the data’s
true order, however.

Thus, available systems solve the data-centric
or document-centric view in isolation. We believe
an XML management system should perform well
for both data-oriented and information-retrieval
type queries, as well as queries that exploit both
features simultaneously.

Most XML-enabled systems are built on top of
commercial implementations of relational data-
bases, which are tuned for performance. Therefore,
we realize that any comparison we make at this
stage might be inefficient. To get a true picture of
native XMLMS potential, we must wait for systems
like ToX (see the sidebar, “Current XML Manage-
ment Products”).

Selecting an XMLMS

To deal with the expanding volume of XML data
on the Web, XML data users will have to select an
XMLMS that fits their needs. Users having data-
centric needs — for example, legacy system users
— will favor an XML-enabled data management
system, whereas users who wish to store and
manipulate documents will choose a native
XMLMS. To give XML data users a guideline for
selecting the XMLMS that best suits their needs,
we use the X007 benchmark,” which we derived
from 007,% a benchmark developed for object-ori-
ented databases, to classify four contemporary
XML management systems based on the type of
queries they process efficiently.

System Comparison

We tested the expressive power and processing effi-
ciency of four data management systems: the
Lightweight Object Repository (Lore), Kweelt, Xena,
and a commercial XPath implementation that we
call DOM-XPath (the product’s developers declined
our request to use its real name). Here, we analyze
the results to identify how XML-enabled and
native-XML management systems differ in expres-
sive power and processing efficiency.

First, we compare the time and disk space
required by various data management systems to
convert XML data into their proprietary format.
Then we compare the processing efficiency of
these systems in terms of the response time for

1EEE INTERNET COMPUTING

[XML Mana gement

Current XML Management Products

Many XML management systems exist.VVe
categorize them as native or XML-enabled
systems, based on characteristics such as
whether they are data- or document-cen-
tric, whether they preserve an XML docu-
ment’s structure, and what type of access
they allow users.

Native and Near-Native Systems
Kweelt,' a proposed implementation of
Quilt,% is a native XML management system
that stores data in flat files and favors XMLs
document-centric nature. ToX, a more
advanced native XMLMS, supports multiple
data storage methods and uses indexing to
improve query processing ef‘ﬂciency.3 Vari-
ous implementations of XQuery, such as
Galax (db.bell-labs.com/galax) and Quip
(developer:softwareag.com/tamino/quip/) are
native XML implementations. The Tamino
XML server (www.softwareag.com/tamino)
is a commercial native XMLMS.

Lore is not exactly native since it is a
semistructured data management system
revised to handle XML documents.** For
Lore, the most difficult aspect of convert-
ing XML data was tackling its implicit order.
Developers of the Araneus project, which
originally represented Web sites, attempt-
ed a design similar to Lore’s.® Araneus has
the flavor of a traditional object-oriented
model extended to flexibly model hetero-
geneities and irregularities with union types
and untyped links. When converting data

to XML, it exploits DTDs and uses lists to
represent the data’s implicit order (possi-
bly nested collections of tuples).

XML-Enabled Systems

Most existing XML data management sys-
tems are XML-enabled and built on top of
relational or object-relational systems.
With these systems, users can publish data
in XML and translate XML queries into
SQL statements.

Xena, designed at the National Univer-
sity of Singapore as an XML-enabled data
management system using XPath, is imple-
mented on top of the MySQL database sys-
tem.” It automatically stores the XML data
in tables according to the XML schema.
Xena then retrieves data from tables by
converting an XPath query into several
SQL queries, using XML schema.

Oracle9i is a well-known commercial
relational/object-relational database man-
agement system that supports XML pro-
cessing. XSU, which is bundled with Ora-
cle9i, can transform data retrieved from
object-relational tables or views into XML.2
XSU provides tools to map the XML con-
tent into relational tables. Complex struc-
tured XML data, however, might have to be
restructured for mapping.

Microsoft’s SQL Server 2000 (www.
microsoft.com/sql/default.asp) is also XML-
enabled. SQLXML (www.sqlxml.org), which
is bundled with SQL Server 2000, lets devel-

opers map XML files into relational tables,
create XML views of existing relational data,
query relational data with XPath, and gen-
erate XML results for SQL queries.

References
I. A.Sahuguet,“Kweelt: More Than Just ‘Yet Another

Framework to Query XML!” Proc. SIGMOD, ACM
Press, New York, May 2001.

2. D.Chamberlin,). Robie,and D. Florescu,“Quilt:An
XML Query Language for Heterogeneous Data
Sources,” Proc. Workshop on Web and Databases
(WebDB 00), ACM Press, New York, May 2000.

3. D.Barbosa,A. Barta, and A. Mendelzon,“ToX —
The Toronto XML Engine,” Proc. Int'| Workshop on
Information Integration on the Web, 2001; www.
cos.ufrj.br/wiiw/papers/09-Denilson_Barbosa(|0).
pdf.

4. S.Abiteboul et al.,“The Lorel Query Language for
Semistructured Data,” J. Digital Libraries, vol. |, no.
1, 1997, pp. 68-88.

5. R.Goldman,). McHugh,and].Widom,““From Semi-
structured Data to XML: Migrating the Lore Data
Model and Query Language,” Proc. Workshop on
Web and Databases (WebDB 99), ACM Press,
New York, 1999.

6. G.Mecca,P.Merialdo,and PAtzeni,"“Araneus in the
Era of XML,” IEEE Data Eng. Bulletin, vol. 22, no. 3,
Sept. 1999, pp. 19-26.

7. Y.Wang and K.Tan,“A Scalable XML Access Con-
trol System,” Proc. | Oth World Wide Web Conf., May
2001; www 1 0.org/cdrom/posters/1096.pdf.

8. B. Chang et al., Oracle XML Handbook, Oracle
Press, Berkeley, Calif., 2000.

relational, document, and navigational queries.
For the experiments, we used a 333-MHz system
running SunOS 5.7 with 256-Mbytes RAM.

We derived the data sets for the X007 bench-
mark specification from data sets provided by
007. Because XML does not cater to “isa” rela-
tionships (implicit one-to-one relationships intro-
duced in ER models to capture the correspon-
dences of entities from one subclass to its
super-class), we preprocessed attribute and rela-
tionship inheritance. This transformation is com-
mon to many 007 implementations.

The data sets contain elements associated with
parts, atomic composite entities that can be com-
bined in assemblies, or assemblies. Figure 2 (next
page) gives a detailed representation of the X007

TEEE INTERNET COMPUTING

DTD. The document root is the module. Each ele-
ment belonging to Design-Object has three
attributes: My ID (an integer), type (a string), and
buildDate (an integer). Complex-assembly
is a recursive element. We use manual and doc -
ument to simulate long strings. AtomicPart
uses docId to reference the MyIDs of document
elements. Thus the data sets generated by X007
essentially capture all the important features of
XML representation. The element-attribute struc-
ture is similar to RDBMS relations, while the inher-
itance and recursion capture inherent document
characteristics. The data sets are available in three
sizes: large (12.8 Mbytes), medium (8.4 Mbytes),
and small (4.2 Mbytes). Earlier work describes the
data sets and the DTD in detail.!?

http://computer.org/internet/

JULY ® AUGUST 2002

47

Database Technology on the Web I

|
' A
M

Sub Assembly v
| |
g\:sosr:rﬁlgl))(l BaseAssembly
M M
>
I N

rootPart 0
N |
ey
M

Figure 2.The XOO7 document-type definition. Data sets contain elements associated with parts or
assemblies. Purple rectangles represent entity sets, blue triangles, isa relationships, and green

lozenges, relationships.

Time and Space Requirements

We converted the data sets to the format used by
each of the XML data management systems,
recording the time and space required to do so.
Space utilization is the amount of hard disk space
used by each system for the various databases in
the benchmark. Figure 3 compares the space and
time requirements.

Kweelt queries the ASCII files directly so it does
not need to convert the XML data into another for-
mat. The required storage space is thus the same
size as the initial XML data set and the time
required for the conversion is null.

Xena converts the input files to a relational rep-
resentation based on the data’s XML schema and
stores it in MySQL tables. Although this conver-
sion drops the redundant tags around the XML
data, Xena must generate a number of relational
tables to properly represent the XML data. In fact,
Xena creates two groups of tables: the first is based
on the XML schema with one table per entity; the
other manages the first group of tables. Conse-
quently, Xena requires almost three times the
amount of space used by the actual XML data after
conversion and significantly affects the time need-

48 JULY & AUGUST 2002 http://computer.org/internet/

ed for conversion.

Lore creates data guides — a concise and accu-
rate summary of all paths in the database that start
from the root — to facilitate query processing.!
Therefore, Lore requires almost twice the amount
of space as the actual XML data. The conversion is
less costly in time than the expensive process per-
formed by Xena.

The XPath commercial implementation, DOM-
XPath, provides tools to convert XML data into its
internal format. It creates three binary files for
each XML data set. One of the files is a proprietary
database that preserves the native XML structure
by storing the data set’s entire document tree,
thereby occupying much more space than the orig-
inal XML data set.

The time needed to perform the translation
increases with respect to the size of the data set
while remaining more efficient than Xena and
Lore. Not surprisingly, Kweelt is the most efficient
in terms of space. Because Kweelt directly process-
es raw XML data, it requires no time for data con-
version. As expected, Xena, an XML-enabled data-
base system, requires the most time to convert
from the XML model to a relational model. Lore

1EEE INTERNET COMPUTING

XML Management

Storage space utilization

60

501
¢ 40
5%
o2 30
£x
g~ 20+
(%]

10 B/a/a

0 T T T T T 1
0 4 6 8 10 12 14

(@) Data size (MBytes)

Data conversion time

500
° 400 - —<— LORE
g — —H8— Kweelt
§ g 300 —=4— Xena
q:) 2 200 —— DOM-XPath
g2
v 100

0 \ T e =
0 2 4 6 8 10 12 14

(b) Data size (MBytes)

Figure 3. Storage space utilization and data conversion time for four XML management systems tested. Kweelt, a native-
XML system that directly processes raw XML data, is the most efficient in terms of both space and time.

300
£
£_ 20
G2 180
29
22 120
ze
S 60 B/E/B
0 T T T T T T]
0 2 4 6 8 10 12 14
Data size (MBytes)
@)

50
(9]
E_ Y —o—LORE
5 é 30 —&— Kweelt
g § 20 / —a— Xena
S~ 10 —>— DOM-XPath
O . A
0 T T T T T T 1
0 2 4 6 8 10 12 14
(b) Data size (MBytes)

Figure 4. Response times for two relational queries. (a) Query | tests simple selection through number comparison;
(b) Query 2 tests simple selection through string comparison.

requires time for generating data guides, and we
assume the XPath implementation also generates
indexes, a time-consuming task.

Response Time Analysis

There are 18 queries in the X007 benchmark. We
divide them into three groups: relational queries,
document queries, and navigational queries. We pro-
vide the complete list of X007 queries elsewhere.!?
Here we show the four systems’ performance for
selected representative queries from each group.

m Query 1. Randomly generate five numbers in the
range of AtomicPart’s MyID. Then return the
AtomicPart according to the five numbers.

m Query 2. Randomly generate five document
titles, then return each document’s first para-
graph by looking up the titles.

Figure 4 shows the results for relational queries 1
and 2. Query 1 tests simple selection using number
comparison while query 2 uses string comparison.
For both queries, Xena gives the best response time
by leveraging the power of its backend relational
database. Lore shows interesting results: It is the

TEEE INTERNET COMPUTING

slowest to execute query 1, but it executes query 2
relatively quickly. This is because Lore supports data
type coercion, which is efficient for string compari-
son but not for other data type comparisons.

Both Kweelt and DOM-XPath use DOM. How-
ever, it seems that Kweelt performs better than
DOM-XPath. There are two possible explanations
for this. First, the two systems use different DOM
parsers. Second, because DOM-XPath is a com-
mercial product, it tries to handle issues such as
updates and access control, which introduce
additional processing overhead. As a research
prototype, Kweelt concentrates solely on query
processing. DOM-XPath processes relational
queries better than Kweelt. We suspect the DOM
parser used by DOM-Xpath performs better for
relational queries. Moreover, as a university
research prototype, Kweelt might not have the
best implementation possible. In general, Xena,
the XML-enabled XMLMS, yields the best per-
formance for relational queries. Lore’s perfor-
mance varies depending on whether data type
coercion is required. The two native XML man-
agement systems, Kweelt and DOM-XPath, show
average performance.

http://computer.org/internet/ JULY & AUGUST 2002 49

Database Technology on the Web

——LORE
—H&— Kweelt
—=4— Xena

—>— DOM-XPath

@gﬁ;

, 600 700
E_ 480 2 560
c o ‘B~
S E 360 25 420
<0 O c
2 2 240 g9 280
c~ v v
o >wn
g 120 £~ 140
O
0 0 T T
0 2 4 6 8 10 12 14 0 2
Data size (MBytes)

@ (b)

Data size (MBytes)

\ \ \ \ \
8 10 12 14

Figure 5. Response times for two navigational queries. (a) Query |0 tests processing efficiency for parent-child relations;
(b) Query 14 tests system efficiency while crossing the XML data structure in the presence of negation.

—<o—LORE
—H8— Kweelt
—a4— Xena
—— DOM-XPath

n/‘n/g

. 250 250
E_ 200 @ 200
cB S~
8 150 g 150
20 o c
22 100 £ 9 100
c~ QO
o ze
0 50 —/_J; £~ 50
O
0 T T T T T T 1 0 T T
0 2 4 6 8 10 12 14 0 2
Data size (MBytes
@ (MByees) ®)

Data size (MBytes)

\ \ \ \ \
6 8 10 12 14

Figure 6. Response times for two document queries. (a) Query |7 tests element order where the ordering pre-exists;

(b) Query |8 tests element order where no ordering exists.

Query 10. Find the CompositePart ifitis
more current than BaseAssembly.

Query 14. Find BaseAssembly of not-type
“type008.”

Figure 5 shows the results for navigational
queries 10 and 14 of the X007 benchmark. Query
10 tests the processing efficiency for parent-child
relations. Query 14 checks system efficiency in tra-
versing the XML data structure in the presence of
negation. Lore performs poorly for both queries. We
suspect that the object exchange model (OEM) data
model is unable to handle parent-child relations
efficiently and requires more time to preserve the
original data structure. Xena processes query 10
faster than Lore but not query 14. This is because
Xena stores an XML file by breaking it into ele-
ments, thus losing the parent-child relations. To
track parent-child relations, Xena requires each ele-
ment to record the paths to its ancestors.

The selectivity factor in query 10 is 10 percent,
and the result size of query 14 is also almost 10
percent. Xena'’s response time increases 10 times
from query 10 to query 14. Kweelt and DOM-
XPath store the XML data in its original native
form, which results in good performance.

To summarize, Lore and Xena, the XML-
enabled systems, perform poorly for navigational
queries. Both systems store the XML data accord-

50

JULY & AUGUST 2002 http://computer.org/internet/

ing to its entities, or elements. Kweelt and DOM-
XPath store the XML data in its original form,
thus preserving the parent-child relationships for
navigational queries.

m Query 17. Among the first five connections of
each CompositePart, select those with
length greater than “len.”

Query 18. For each CompositePart, select
the first five connections with length greater
than “len.”

Figure 6 shows the results for two document
queries: queries 17 and 18 of the X007 bench-
mark. These two queries test the element order in
an XML file. The two differ in that the ordering
required by query 17 exists in the original data-
base, while for query 18, an XMLMS must recon-
struct the ordering.

Xena proves inadequate for processing document
queries. We expected this as Xena fetches all the
target elements first, and then selects the elements
that satisfy the conditions according to the index in
the preserved order. Lore performs best in these
queries mostly because it uses data guides as short-
cuts to extract the relevant elements directly. How-
ever, Lore is unable to process query 18 because it
does not support ordering in an intermediate result
(in this case, all connections with length greater

1EEE INTERNET COMPUTING

XML Management

Related W3C Documents

Document Object Model (DOM),V.Apparao et al., 1998 « www.w3.org/TR/REC-DOM-Level-1.

Extensible Stylesheet Language (XSL) Version 1.0,S.Adler et al.,2000 * www.w3.org/TR/xsl.

XML Linking Language (XLink) Version 1.0,S. DeRose, E. Maler and D. Orchard, 2000 « www.w3.org/TR/xlink.
XML Path Language (XPath) Version 1.0,]. Clark and S. DeRose, 1999 * www.w3.org/TR/xpath.

XML Pointer Language (XPointer) Version 1.0,S. DeRose, R. Daniel and E. Maler, 1999 * www.w3.org/TR/WD-xptr.
Xquery 1.0:An XML Query Language, S. Boag et al., 2000 * www.w3.org/TR/xquery.

XML Query Requirements, D. Chamberlin et al., 2000 * www.w3.org/TR/xmlquery-req.

XML Schema Part 0: Primer, D. Fallside, 2001 « www.w3.org/TR/xmlschema-0.

XML Schema Part |: Structures, H.Thompson et al.,2001 * www.w3.org/TR/xmlschema-|.

XML Schema Part 2: Datatypes, P. Biron and A. Malhotra, 2001 * www.w3.org/TR/xmlschema-2.

than “len”). Kweelt and the DOM-XPath perform
relatively better for the queries whose results con-
tain multilevel nodes. They check the element order
using the information in the DOM tree.

The experiments run with the X007 bench-
mark confirm our analysis of data- and docu-
ment-centric views. The XML-enabled relational
database system performs best when processing
simple relational queries. The native-XML imple-
mentation Kweelt, efficiently processes naviga-
tional and document queries, but performs poor-
ly for relational queries.

References

1. A. Bonifati and S. Ceri, “Comparative Analysis of Five
XML Query Languages,” SIGMod Record, vol. 29, no. 1,
2000, pp. 68-79.

2. CJ. Date, An Introduction to Database Systems, Addison-
Wesley, Reading, Mass., 1995.

3. E.F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” Comm. ACM, vol. 13, no. 6, 1970, pp. 377-387.

4. A.Deutsch et al., “XML-QL: A Query Language for XML,”
Proc. Query Languages Workshop, W3C, 1998; www.
w3.org/TandS/QL/QL98/pp.html.

5. J. Robie, J. Lapp, and D. Schach, “XML Query Language
(XQL),” Proc. Query Languages Workshop, W3C, 1998; www.
w3.org/TandS/QL/QL98/pp/xql.html.

6. R. Bouret, “XML Database Products,” May 2001,
www.rpbourret.com/xml/XMLDatabaseProds.htm.

7. S. Bressan et al., “X007: Applying 007 Benchmark to
XML Query Processing Tools,” Proc. 10th Int’l Conf. Infor-
mation and Knowledge Management (CIKM-2001), ACM
Press, New York, 2001.

8. M.J. Carey, D.J. DeWitt, and J.F. Naughton, “The 007
Benchmark,” Proc. SIGMOD, ACM Press, New York, 1993,
pp. 12-21.

9. S. Bressan et al., The X007 XML Management System
Benchmark, National Univ. of Singapore Computer Science
Dept. tech. report TR21/00, Nov. 2001.

10. R. Goldman and J. Widom, “Data Guides: Enabling Query

TEEE INTERNET COMPUTING

Formulation and Optimization in Semistructured Databas-
es,” Proc. Very Large Databases (VLDB 97), Morgan Kauf-
mann, San Francisco, 1997, pp. 436-445.

Ullas Nambiar is pursuing a PhD in computer science at Ari-
zona State University. His research interests include data
integration over static and streaming sources, distributed
mediation, and active content delivery services.

Zoé Lacroix is a research assistant professor in the mechanical
and aerospace engineering department at Arizona State Uni-
versity, where her projects include electronic business hubs,
biological database integration, optimization, semantics of
Web query semantics, and the semantic Web. She received
a PhD in computer science from the University of Paris XI.
She has been involved in the World Wide Web Consortium’s
XML Query Language and XForms working groups.

Stéphane Bressan is a senior fellow in the computer science
department of the National University of Singapore’s
School of Computing. He received a PhD in computer sci-
ence from the Laboratoire D’informatique Fondamentale
of the University of Lille, France. Bressan’s main areas of
research are information and knowledge management,
Web applications and services, and the design and imple-
mentation of database management systems.

Mong Li Lee is an assistant professor in the School of Com-
puting, National University of Singapore. She received a
PhD in computer science from the National University of
Singapore in 1999. Her research interests include database
performance issues, and cleaning, integrating, and query-
ing heterogeneous and semistructured data.

Yingguang Li is an MSc student at School of Computing,
National University of Singapore. He is interested in XML
query processing and storage strategies.

Readers can contact the authors at {mallu,zoe.lacroix} @asu.edu
and {steph,leeml,liyg} @comp.nus.edu.sg.

http://computer.org/internet/

JULY ® AUGUST 2002

51

