A Knowledge-Based Approach for Duplicate
Elimination in Data Cleaning

Wai Lup Low, Mong Li Lee and Tok Wang Ling

School of Computing, National University of Singapore,8 Science Drive 2,
Singapore 117543

Abstract

Existing duplicate elimination methods for data cleaning work on the basis of com-
puting the degree of similarity between nearby records in a sorted database. High
recall can be achieved by accepting records with low degrees of similarity as dupli-
cates, at the cost of lower precision. High precision can be achieved analogously at
the cost of lower recall. This is the recall-precision dilemma. We develop a generic
knowledge-based framework for effective data cleaning that can implement any ex-
isting data cleaning strategies and more. We propose a new method for computing
transitive closure under uncertainty for dealing with the merging of groups of in-
exact duplicate records and explain why small changes to window sizes has little
effect on the results of the Sorted Neighbourhood Method. Experimental study with
two real world datasets show that this approach can accurately identify duplicates
and anomalies with high recall and precision, thus effectively resolving the recall-
precision dilemma.

Key words: Data cleaning, duplicate elimination, knowledge-based system

1 Introduction

The amount of data organizations are handling today is increasing at an explosive rate. Dirty
data is pervasive and organizations are faced with an insurmountable task of maintaining
correct and consistent data in these large databases. Clean data is of critical importance for
many industries over a wide variety of applications [Kim96], including marketing communi-
cations, commercial householding, customer matching, merging information systems, medical
records etc. [Lim98]. Given the ‘garbage in, garbage out’ principle, dirty data will not be able
to provide data miners with correct information. It is difficult for managers to make logical
and well-informed decisions based on information derived from such data. [SSU96] identified
data cleaning as one of the database research opportunities for data warehousing into the 21st
century.

Data cleaning is often studied in association with data warehousing, data mining and database
integration. These areas have received much attention from the database research community
in recent years. However, research focus of the past has been on the problem of view integration

Preprint submitted to Elsevier Science 20 May 2001

A et il S hdahath i e it © bt it A BRGSOl e i

tion of differences at the conceptual level. View integration has been investigated in numerous
comprehensive studies on integration frameworks [CAGL*99, MKCWB97], mediator systems
[GMPQ"97,BGF97] and schematic conflict resolution [BLN86,LL97]. Data cleaning, which
is the next logical step that involves reconciliation of data at the instance level, has received
little attention. Research in data cleaning is orthogonal to the work on view integration and
our work assumes that the conflicts at the conceptual/schema level have been resolved and
a global reconciled schema has been obtained. Data reconciliation at the instance level faces
totally different challenges and problems.

The problem of dirty data was recognized way back in the 1950s when census work was being
carried out [KA85]. There are many causes to dirty data: misuse of abbreviations, data entry
mistakes, embedding control information in data (e.g. printer control commands in data fields
for formatting output), different phrases (ASAP versus ‘at first chance’), duplicate records,
missing values, localization differences (the use of a student’s aggregate point versus lecturers’
progress reports as a measure of performance by different departments of an university),
spelling variations, unit differences, outdated codes, etc. [Lim98]. Data cleaning refers to a
series of processes by which the quality of data is improved by dealing with the problems
listed above. Notably, data cleaning processes will perform format standardization, anomaly
removal, error correction and duplicate elimination. Data cleaning takes on many forms, and
it is very complex, time-consuming and expensive. A simple data cleaning process would be to
remove exact duplicate records from databases. More complex processes take into consideration
inexact duplicate records, inferencing of missing values and error correction. In the extreme
case, data cleaning may involve re-engineering of the entire data flow, from point-of-capture
to database design, typically affecting all data applications in the organization.

Recent research efforts have focused on the issue of duplicate elimination in databases. This
entails trying to match inexact duplicate records, which are records that refer to the same real
world entity while not being syntactically equivalent. However, existing strategies suffer from
some common problems : a lack of generic knowledge management schemes for data cleaning,
difficulty in achieving high recall and precision at the same time and the loss of precision
from the computation of transitive closure. In this paper, we will focus on the data cleaning
strategies to be used on existing and legacy textual databases, with emphasis on their appli-
cability to a wide variety of datasets and ability to deal with diverse inconsistencies in data.
The metrics used to benchmark strategies are recall, precision and speed. The contributions
of this paper are:

(1) Introducing a knowledge-based framework for effective representation and management
of human expertise for data cleaning.

(2) Resolving the recall-precision dilemma for duplicate elimination.

(3) Reducing the loss of precision from transitive closure computation by the introduction of
uncertainty into the computation.

The rest of the paper is organized as follows. Section 2 gives the metrics used and challenges
faced in data cleaning. Section 3 surveys related research in this area. Section 4 details our
proposed knowledge-based approach and how it can overcome the problems plaguing existing
methods. Section 5 describes the implementation of the system and results of our experiments.
Finally, Section 6 summarizes the contributions of this paper and highlights some directions
future work in this area can take.

bl - & VALLALALALAARAL AUV

We review here some general concepts that are important for a full understanding of the
proposed strategies discussed in the following sections. We also highlight some of the main
difficulties when designing data cleaning strategies.

2.1 A Conceptual Model

A high level conceptual data cleaning model is presented in Figure 1. First, we have a “dirty”
dataset with a variety of errors and anomalies. A list of common causes of dirty data is
described in [Mos98]. Cleaning strategies are applied to the dataset with the objective to
obtain consistent and correct data as the output. The effectiveness of the cleaning strategies
will thus be the degree by which data quality is improved through cleaning.

2.2 Benchmarking Effectiveness

We define two metrics that benchmark the effectiveness of data cleaning strategies :

(1) Recall.
This is also known as percentage hits, true positives or true merges in some literature.
It is defined as the percentage of duplicate records being correctly identified. Assume
we have 7 records Al,AQ,A;),,Bl,BQ,Bg, Cl, with {Al, AQ, Ag} and {Bl, Bz, B3} being
different representations of records A and B respectively. If a cleaning process identifies
{A,A,,C1} and {B;,B,} as duplicates, then we have a recall of % x 100% = 66.7% as it
identified 4 (A, Ay, By, Bs) out of 6 duplicates.
(2) False-Positive Error.
This metric is the antithesis of the precision measure of a method. It is sometimes
referred to as false merges in literature. This is defined as the percentage of records

wrongly identified as duplicates, i.e.
no. of wrongly identified duplicates % 100%
total no. of identified duplicates 0

False-Positive Error =

Naming Conventions

N

Unit Difference —| Dirty Datawith <— Spelling Variations
Duplicate Records

l

‘ Cleaning Strategies ‘

|

Consistent Data

Abbreviations Different Representation

Fig. 1. An Overall Conceptual Model

An example of 2 similar records

2.3

Name Address Sex | Tel. No.
Tan Ah Kow | Blk 555, Bukit Merah, #11-01, S(112555) M | 222 1256
A. K. Tan Apt Blk 555, B. Merah #11-01, Singapore 112555 | M | 2221256

and
Precision = 100% - False-Positive Error.
In the above example, the process incorrectly identified C'; as a duplicate record and
will have a false-positive error of £ x 100% = 20%. Precision is thus 80% (100% - 20%).

Problems and Difficulties

We have noted in Section 1 that data cleaning consists of a series of complex processes. We
highlight here the main problems faced during data cleaning which increase its complexity:

(1)

Uncertainty and Risk.

In real-life datasets, one can rarely be sure that two inexact records represent the same
entity, even though they might be very similar (they might even share the same key!).
Hence, uncertainty is introduced into the decision making process. We cannot say with
absolute certainty that the two records in Table 1 represent the same person without
further information or checks, even though they look very much the same. While there is
a number of uncertainty algebras, it is unclear how they can be applied in this domain.
There is much future work to do in the exploration of domain applicability of uncertainty
algebras and automated uncertainty calculations. [Wie93]

Verification of Results.

Metrics defined in Section 2.2 are not easily obtained when cleaning real-world databases,
which often contain tens of thousands or even millions of records. This brings about the
problem of finding out the true number of duplicate records and errors in the data to ob-
tain metrics that benchmark strategies. This will entail human inspection over the whole
database, which is infeasible in some cases. Even when human inspection is performed,
it is difficult sometimes even for trained staff to ascertain some duplicate records and
errors.

Database Dependence.

Benchmarking new algorithms and methods of data cleaning proved to be difficult as
the performance is heavily dependent on the database, with different attribute and error
types in the data. A method performing very well on one database might perform very
badly on another. Coming up with a representative database is not feasible as no single
database can satisfactorily model the characteristics of all real-world datasets.

3 Related Works

There have been numerous contributions in this line of research, each focusing on different
issues. We review existing data cleaning methods in this section.

Se £ s v pr Yy Jouivy Yy =i vy &~ Wwuvie

This refers to the processes prior to starting the data cleaning process, with efforts to scrub the
data into a more consistent state. Pre-processing dirty data prior to the data cleaning process
leads to more standardized and consistent data going into the merge/purge process and better
results can be achieved [LLLK99]. The reason for better results is the increase in likelihood of
potential duplicates being close together after sorting is performed on the data due to increased
similarity. Pre-processing usually involves external reference files, abbreviation standards and
automatic spelling correction. [LLLK99] also proposed that the equivalence of records can be
determined by viewing their similarity at three levels : token, field and record levels.

3.2 Sorted Neighbourhood Method

The standard method for detecting exact duplicates in a database is to sort the database
and then check if the neighbouring records are identical [BD83]. In order to detect inexact
duplicates in a database, the most reliable way is to compare every record with every other
record, which is an O(N?) operation. [HS95] proposed a Sorted Neighbourhood Method (SNM)
to detect approximate duplicates which requires only w/N comparisons, where w is the size of
the sliding window.

The SNM consists of three steps :

(1) Create Keys. A key is computed for each record in the database by extracting relevant
fields or portions of fields which form an important discriminating attribute. The choice
of the key depends upon an “error model” that draws from domain-knowledge. The key
selection process is a highly knowledge-intensive and domain-specific process [HS98], as
the “key designer” has to know the characteristics of the data (and the characteristics
of the errors in the data), before being able to choose a good key. Domain-dependent
heuristics can be used to guide the selection of the key.

(2) Sort Data. Sort the records in the database using the key computed in Step 1.

(3) Merge. Move a fixed size window through the sequential list of records limiting the com-
parisons for matching records to those records in the window. If the size of the window
is w records, then every new record entering the window is compared with the previous
w — 1 records to find “matching” records. The first record in the window slides out of the
window as shown in Figure 2.

The drawbacks of the SNM lie in the fact that it depends heavily on the proximity of duplicate
records after sorting, which in turn, depends on the key chosen for sorting. If duplicate records
are far apart after sorting, it is unlikely that they will appear in the same window during the
scanning process, and hence, will be missed. The obvious solution is to increase the window
size for the scan, but this will lead to increased main memory requirements and computational
complexity as more comparisons are needed.

The Duplicate Elimination SNM (DE-SNM) [Her96] improves the results of SNM by first
sorting the records on a chosen key and then dividing the sorted records into two lists :
a duplicate list and a no-duplicate list. The duplicate list contains all records with exact
duplicate keys. All the other records are put into the no-duplicate list. A small window scan is
first performed on the duplicate list to find the lists of matched and unmatched records. The

Currentwindow | |
of records

"""""""""" Next window
of records

Fig. 2. Sliding Window Scan

list of unmatched records is merged with the original no-duplicate list and a second window
scan is performed. However, the drawbacks of the SNM still persists in DE-SNM.

Instead of using a window scan, data may be partitioned into clusters such that matching
records appear in each cluster. Merge/purge processes can then be applied to each cluster in
parallel. However, we note that if the proportion of duplicates in the database is small (usually
the case), this procedure will result in many singleton clusters.

3.8 Priority Queue Algorithm

As an alternative to the SNM, [Alv97] suggests using the priority queue algorithm which uses
a priority queue of sets of records belonging to the last few clusters detected. The algorithm
scans the database sequentially and determines whether each record scanned is or is not a
member of a cluster represented in a priority queue. If the record is already a member of a
cluster in the priority queue, then the next record is scanned. If the record is not already a
member of any cluster kept in the priority queue, then the record is compared to representative
records in the priority queue. If one of these comparisons succeeds, then the record belongs in
this cluster. On the other hand, if all comparisons fail, then the record must be a member of
a new cluster not currently represented in the priority queue. Thus, the record is saved in the
priority queue as a singleton set. If this action causes the size of the priority queue to exceed its
limit, then the lowest priority set is removed. The algorithm is explained in detail in [Alv97].
However, this method still faces the “window size” problem of the SNM when determining the
size of the queue. Moreover, heuristics need to be developed for choosing the representative
records in the priority queue, which will affect the results greatly.

3.4 Multi-pass Data Cleaning Methods

Single-pass algorithms go through the create key, sort, merge cycle once. Multi-pass algorithms
refer to those that goes through the cycle several times, each sorting on a different key. This
method assumes that no single key is unique enough to bring all inexact duplicates together,

guitiA My PVt VYA Mt AU g My YA iAo L AV A vyt vl AR AR e A R AV v R Y

single-pass algorithms’ emphasis is on creating a “good” key and the duplicate identification
process can be more complicated since this cycle is only done once.

For multi-pass algorithms, the transitive closure is computed over the identified duplicates
[HS95],[Alv97]. This is because if A is equivalent to B, and B is equivalent to C, then log-
ically speaking, A is also equivalent to C under the assumption of transitivity. Computing
the transitive closure thus, will group “similar records” which may be duplicates. However,
computing the transitive closure in such a way is likely to increase the false-positive error. This
problem will be discussed in Section 4.4. Comparatively, most experimental results show that
several “cheap” passes followed by the computation the transitive closure over the identified
duplicates perform better than a single “expensive” pass.

3.5 Incremental Data Cleaning

The Basic Incremental Merge/Purge Procedure (BIMP) and Increment Sampling Incremental
Merge/Purge Procedure (ISIMP) [Wal98| avoid re-processing data that has previously been
processed when increments of data need to be merged with previously processed data. This
involves storing previously gathered information and the selection of “prime-representative”
records which is representative of the whole original database. The data cleaning process then
uses only the representative records and the data increments. The savings are potentially
tremendous if the number of prime representatives is very much smaller than the number
of records. The main problem with these methods lie in the difficulty of choosing the prime
representatives. The ability of chosen sample records to represent the whole dataset is also in
suspect.

3.6 Cleaning with Domain Knowledge

It is also proposed that equivalence of records are defined by a set of equational axioms, which
is termed equational theory [HS95] [Her96] [HS98]. Determining record equivalence requires
much more information than simply their sort keys and [HS95] considers this an complex
inferential process. A high level declarative rule language that can express the equivalent logic
will be useful in a general merge/purge application.

Different instances of the same entity in different databases can be identified by making infer-
ences using other shared attributes in more complicated cases where there are no common key
identifiers and are different in representation [WM89]. An example given in [WM89] is shown
below :

(Professor) : Do you know who TK Wong is?

(TA) : No. Does he come to the morning class?
(Professor) : Yes, when he comes at all.

(TA) : How well is he doing in the class?

(Professor) : Not well. He’s always falling asleep.

(TA) : Is he quiet?

(Professor) : No! He keeps complaining about our LISP compiler.
(TA) : Oh, sure! I call that guy Big Mouth.

it Bt @ S Sl St St A et B @ It el

to eliminate all other possibilities. This inferencing process is possible with the use of other
attributes (class, track record) and domain knowledge. Handling data in such situations is
made difficult by the uncertainty and risk involved [Wie93], especially in cases where data are
from heterogeneous and diverse sources. We note that in such situations, these other attributes
will form a concatenated alternate key if they can always uniquely identify a student.

3.7 Domain-Independent Data Cleaning

There has also been work on domain-independent techniques that require no domain knowledge
as input to the data cleaning process. Generally, these techniques assume that records have
the same high level schema and are made up of alphanumeric characters. [Alv97] presents
a domain-independent algorithm for detecting approximately duplicate database records. It
makes use of several domain-independent algorithms outlined in [ME96] and works on textual
databases. These methods typically treat database records as strings and compute record
similarity using string comparison algorithms.

WHIRL [Coh98] is a logic for reasoning about the similarity of names using the vector space
model. Although the author cites its use in the integration of databases that lack common do-
mains, we believe it can be used as a domain-independent technique for duplicate identification
in the data cleaning process.

Potter’s Wheel [RHO0] is an interactive framework which offers graphical specification of data
transformations through a spreadsheet-like interface. It allows the user to try various trans-
formations interactively, observe their effects on the data, and undo them if they are inappro-
priate. The graphical interface for specifying data transformations might not be adequate for
specifying transformations involving complicated business logic.

3.8 Integrating Data Cleaning with Database Management Systems

Data cleaning can leverage on the years of research gone into database management systems
(DBMS) by integrating data cleaning processes as SQL extensions. Concurrent to our work,
[HGS99] proposes a framework which uses an SQL extension for specifying data cleaning op-
erators, which include data transformation, duplicate elimination and multi-table matching.
[HGS99] also investigates the optimization techniques that can be used to optimize the data
cleaning process. Having a SQL-like language extension has the advantage of increased us-
ability if users are familiar with SQL. However, optimization remains a big challenge in this
framework, especially when the matching operator used in the framework relies on a Cartesian
product-based algorithm. Performance will suffer during the processing of large databases as
a result.

4 Knowledge-Based Approach for Duplicate Elimination

In this section, we present a knowledge-based approach for intelligent data de-duplication
and cleaning. This approach incorporates a framework that provides a complete strategy for

Original Records
Reference
) .— | Functions Pre-processing
Pre-processing Stage
Look-up
Tables
Pre-Processed
Records
Domain
Knowledge
An Expert System Engine | Rule Sets
_ — \ Similarity
Duplicates | dentified Functions
by Duplicate
Identification Rules
Computation of Transitive Closure .
Under Uncertainty Processing
Stage
¢ Duplicate groups
Changesto
Do duplicate records due to
records satisfy some Update Rules/
Merge/Purge Yes Alertsraised by
Rule? Y Alert Rules
Automatic Merge/Purge
via defined Rules
A
User Manipulation of
Merge/Purge Groups
| Verification &
Merged records 1 ' Validation
Distinct Log of Merge/Purge Stage
cleaned & cli:)};a\ta Vaue
anges
records »| Cleaned Data 9
Records '

Fig. 3. A Knowledge-Based Framework for Data Cleaning

standardizing, anomaly detection and removal, and duplicate elimination in dirty databases.
We discuss the algorithms and methods used in the framework and highlight the benefits of
our knowledge-based approach.

4.1 A Framework for Data Cleaning

Figure 3 shows our proposed framework. It consists of three stages :

(1) Pre-processing Stage.
The data records are first conditioned and scrubbed of any anomalies we can detect and

AU AR VAR VRS Y S RVRE VY Y YRR RS ARS A S ARSIV AR M S AR AR A O

1 Jan 2000, 01/1/2000, and 1st January 2000 can be standardized to one fixed format).
Inconsistent abbreviations used in the data can also be resolved at this stage (e.g. All
occurrences of ‘Rd.” and ‘Rd’ in the address field will be replaced by ‘Road’. Occurrences
of ‘1’ and ‘A’ in the sex field will be replaced by ‘Male’, and occurrences of ‘2’ and ‘B’
will be replaced by ‘Female’.)

The conditioning and scrubbing of the records can be done via reference functions
and look-up tables. For example, a function can take in a date input and output it in
a specified format for the purpose of standardizing date representations. A two-column
look-up table might contain an abbreviation and its standardized equivalent.

The output of this stage will be a set of conditioned records which will be input to the
processing stage.

Processing Stage.

The conditioned records are next fed into an expert system engine together with a set
of rules. Each rule will fall into one of the following categories :

(a) Duplicate Identification Rules. These rules specify the conditions and criteria for two
records to be classified as duplicates. Functions to compare text similarity, procedures
to perform string manipulation, and complex logic for determining record equivalence
can be coded into or referenced by the rules. The pseudocode of one of the rules used
in the experiments (detailed in Section 5) is produced below.

DEFINE RULE COMPANY_RULE
INPUT RECORDS : A B

IF
(A.currency == B.currency) AND
(A.telephone == B.telephone) AND
(A.telephone !'= EMPTY_STRING) AND

(SUBSTRING_ANY (A.code,B.code) == TRUE) AND
(FIELDSIMILARITY(A.address,B.address) > 0.85)
THEN
DUPLICATES (A B), CERTAINTY=0.85
UPDATE_LOGS
For the above rule to be activated, the corresponding currencies and telephone
numbers must match. Telephone numbers must also not be empty, and one of the
codes must be a substring of the other. The addresses must also be very similar
(Similarity of addresses using Function ‘FieldSimilarity’ must be higher than 0.85).
Records classified as duplicates by this rule has a Certainty Factor of 85%.

(b) Merge/Purge Rules. These rules specify how duplicate records are to be handled. A
simple rule might specify that only the record with the least number of empty fields
is to be kept in a group of duplicate records, and the rest be deleted. Much more
complex actions can be specified in a similar fashion.

(c) Update Rules. These rules specify the way data is to be updated in a particular
situation. For example, in the event that the quantity field of a book order record is
empty, and the buyer has no other purchases, a rule specifies that the quantity field
is to be updated with the value of 1. If the buyer has other purchases, the quantity
is to be updated with the minimum quantity of all purchases belonging to the same
buyer.

(d) Alert Rules. The user might want an alert to be raised when certain events occur.
For example, when the database shows that a terminated employee is still receiving
payments from the company, it might be correct as a case of post-dated payments
or, it could indicate data errors. It might even be a case of fraud!

10

4 At vs v 2 AL iAaLl ARV MY AP LUAL AV VAt ettt e At aaaat O Y YR uL Azt v A ARAUL AT

We illustrate how this can be done using two examples. We might have a constraint
that says all part-time employees must have a positive value in their hourly-wage
fields. We will want to raise an alert if a part-time employee has a non-positive value
in the hourly-wage field of the employee record. The rule will have the following form

DEFINE RULE HOURLYWAGE_CHECK
INPUT RECORD : A
IF
(A.EmployeeType == PART_TIME) and
(A.HourlyWage <= 0)
THEN
RAISE_ALERT
If we have a functional dependency constraint, X — Y, it can be checked simply
by a rule that says if two records have the same X-value, then raise an alert if they
do not have the same Y-value. The rule might have the form :
DEFINE RULE FD_CHECK
INPUT RECORDS : A B
IF
(A.X == B.X) and
(A.Y !'= B.Y)
THEN
RAISE_ALERT
Such rules are especially useful when the database management system in which
the data resides does not support the checking of constraints, or such checking was
not implemented by the database administrator. The rules can also be used in cases
when integrity constraints were not considered in the database design in the first
place.

All the rules will then fire in an opportunistic manner when the pre-processed records
are fed into the expert system engine, whose implementation uses the Java Expert System
Shell (JESS) [FH99]. The pattern matching and rule activation mechanisms of JESS
makes use of the Rete algorithm [For82|. To avoid pairwise comparison for each and
every record in the database (which may be infeasible in large databases), we employ
the Sorted Neighbourhood Method (SNM). Hence, the rules will only act on one window
of records in the expert system engine at any point in time. After the duplicate record
groups are identified, we consider using a new method to compute the transitive closure
under uncertainty for these groups to increase the recall. The merge/purge rules will then
act on the duplicate record groups that satisfy their conditions. The Rete Algorithm is
discussed in Section 4.2. JESS and rule representation are discussed in Section 4.3.
Human Verification and Validation Stage.

In this stage, human intervention will be required to manipulate the duplicate record
groups for which merge/purge rules are not defined. Upon human inspection, false posi-
tives can be taken out of these groups and appropriate merge/purge procedures can be
carried out.

The log report provides an audit trail for all actions and the reasons for the actions
made during the pre-processing and processing stages. This log can be inspected for
consistency and accuracy and if necessary, wrong merges and incorrect updates can be
undone. Undoing the changes can be simple if all changes and updates are made to a
temporary copy of the original database. The log can also be used for validating the rule
base. For example, if a rule consistently classifies the wrong records as duplicates, or

11

“pAasrivvil oyl ity AL iy Y AU LU vy ey Mo vl yal VUL ARy o AUV ppear At v A

changed.

4.2 The Rete Algorithm

The Rete Algorithm [For82] is an efficient method for comparing a large collection of pat-
terns to a large collection of objects. It finds all the objects that match each pattern. The
algorithm was developed for use in production system interpreters, and has been used for
systems containing from a few hundred to more than a thousand patterns and objects. The
Rete Algorithm has been used in several expert system shells including OPS5, its descendant

ART, and CLIPS.

A basic production system checks each if-then statement to see which ones should be executed
based on the facts in the database, looping back to the first rule when it has finished. The
computational complexity is of the order O(RFT), where R is the number of rules, P is the
average number of patterns in the condition part of the rules, and F' is the number of facts in
the knowledge base. This escalates dramatically as the number of patterns per rule increases.
This is inefficient as most of the tests made on each cycle will have the same results as the
previous iteration. The Rete Algorithm avoids unnecessary recomputation by remembering
what has already been matched from cycle to cycle and then computing only the changes
necessary for the newly added or newly removed facts [GR98]. As a result, the computational
complexity per iteration drops to something more like O(RF P), or linear to the size of the
fact base [FH99|. However, saving the state of the system in this way consume considerable
amounts of memory. In general, this trade-off of memory for speed is worthwhile. The reason
we choose this algorithm to power our expert system engine is primarily due to its efficiency.

In the expert system engine of the proposed framework, the data records are the facts. When
the records matches the “patterns” specified in the rules, they are activated or fired. The
specified actions in the consequent part of the rule, which varies with the different rule types,
will then be carried out.

Our discussion here on Rete Algorithm is rather brief due to space constraints. Details of this
algorithm and its performance can be found in [For82] and [GR9S].

4.3 Rule Representation and Effectiveness

Rules, which form the knowledge-base of the framework, are written in the Java Expert System
Shell (JESS) language. JESS [FH99] is a rule engine and scripting environment written in Sun’s
Java language and was inspired by the CLIPS [Ril99] expert system shell. The data cleaning
rules are represented as declarative rules in the JESS engine. A rule will generally be of the
form :

if <condition>
then <action>

The action part of the rule will be activated or fired when the conditions are satisfied. We
note here that complex predicates and external function references may be contained in both

12

viLih /LU v AL e vy UL vt LA e

Anyone with subject matter expertise will be able to understand the business logic of the
data and can develop the appropriate conditions and actions, which will then form the rule
set. Experiences with knowledge-based data cleaning suggested that predicate logic can be
used for initial rule formulation [HP99] for easy understanding and translating rules of this
representation into the target language is relatively straight-forward.

The complexity of the rule language is an important issue in such applications. Although
the declarative style of the JESS language makes it intuitive, some knowledge of the working
of the Rete Algorithm is required for optimizing rule efficiency. Noting the structure of the
rule language, simple rules may be generated automatically by the system when supplied
with necessary parameters. More efficient, flexible, complex and precise rules may be achieved
through hand-coding. We note here that while the engine based on Rete Algorithm provides
efficient pattern matching and rule activation mechanisms, it is the rule effectiveness that
determines the recall and precision of the cleaning process.

4.4 Benefits of Knowledge-Based Approach

In this section, we discuss the advantages offered by the knowledge-based approach and see
how it can overcome the short-comings of existing strategies.

(1) Knowledge Representation and Application.

Domain knowledge has been identified as one of the main ingredients for successful
data cleaning [May99]. After all, what are considered duplicates or data anomalies in
one case, might not be in another. Such knowledge is domain-dependent and is derived
naturally from the business domain and associated knowledge. The business analyst with
subject matter expertise will be able to fully understand the business logic governing the
situation and can provide the appropriate knowledge to perform data cleaning.

However, the issue of knowledge management in data cleaning strategies has not been
well dealt with. No representation of the knowledge used in data cleaning has been sug-
gested and the closest works are [HS95], [Her96], [HS98], [HGS99] and [RH00]. In existing
methods, domain knowledge has been restricted to the selection of similarity measures
and the threshold for merge/purge processes.

Before we can propose a representation, the following questions need to be answered :
e What type of knowledge is suitable?

e How can we represent the knowledge in a form that we can use for data cleaning
efficiently?
e How do we manage the knowledge?

In our framework, the domain knowledge is represented in the form of rules. The differ-
ent rule types provides the various functions needed for the cleaning process. The expert
system engine provides the pattern-matching and rule-firing capability in an efficient
manner, thus “applying the business rules” to perform data cleaning.

We note that such rules are rather persistent in nature and need not be changed or
modified often, due to the static nature of business rules from which they are derived.
Changes are likely to be restricted to small modifications made to parameters to fine-tune
performance. The rules can also be re-used without modification by different applications
in the same domain if they possess similar business rules. This makes domain-specific

13

- Ut Pt iiAs iy it At e S Aty Yy By HAseviA AR o Yrpyrvysiasasr vaatAal ARy A Y L A AR e,

databases are likely to use the same rule set.

The knowledge-based approach also makes it easy to offer an explanation facility. Such
a facility enables post-processing analysis, when each action can be explained, traced
and accounted for. This is especially useful in cases where we need to know why certain
values have been altered, and the reason for updating the data with this value. By keeping
track on the rules that fired on this record, we can trace the reasoning and explain the
changes. This facility can also be used for fine-tuning the knowledge-base in the Human
Verification and Validation Stage, as explained in earlier in this section.

The Recall-Precision Dilemma.

Existing methods work on the basis of computing the degree of similarity between
records, and classify them as duplicates if the degree of similarity is above a defined
threshold. For example, assume we have a function, f(R;, Ry) that takes in 2 records,
R, and Ry, as arguments and returns their degree of similarity. If 7H is the defined
threshold, then R; and R, will be classified as duplicate records if f(R;, Ry) > TH.

To achieve high recall, i.e. to detect more duplicate records in the dataset, we can
accept records with low degrees of similarity as duplicates. This can be done by using a
smaller value for the threshold. However, this will lead to lower precision, i.e. higher false-
positive error, as more “duplicates” are identified wrongly. Analogously, we can achieve
higher precision at the cost of lower recall, by setting a higher threshold.

Thus, it seems that using such approaches, we can only better one of these measures
at the cost of the other, thereby forcing practitioners of such methods to decide on an
optimal crossover-point for the measures. We term this the recall-precision dilemma.

Well-developed rules are effective in identifying true duplicates but are strict enough
to keep out similar records which are not duplicates. Higher recall can then be achieved
with more rules. Hence, an increase in the number of well-developed rules can achieve
higher recall without sacrificing precision. Thus, our approach can effectively resolve the
recall-precision dilemma.

Loss of Precision from Computation of Transitive Closure.

[HS95] and [Alv97] have advocated that the computation of transitive closure on the
pairs of identified duplicate records will increase the recall under the assumption of tran-
sitivity. This computation seems natural after the application of the multi-pass approach
[HS98], which was discussed in Section 3. This allows duplicate records to be detected
even without being in the same window during the SNM window scans. The idea is as
follows : If records a and b are found to be similar and, at the same time, records b and
¢ are also found to be similar, the transitive closure step can mark records a and c as
similar without being in the same window at any point in time.

However, we note that this procedure can raise the false-positive error as incorrect
pairs are merged due to the fact that we are dealing with inezact equivalence. For exam-
ple, we have two groups of very similar “duplicate” words : (FATHER,MATHER) and
(MATHER,MOTHER). The transitive closure step will then merge the two groups into a
single group of (FATHER,MATHER,MOTHER) due to “MATHER” appearing in both
groups. This is obviously wrong since “FATHER” and “MOTHER?” are totally different
words. Any attempt in automated merging and purging of records in this group may
result in merging these two different words into one.

This problem will magnify as more groups are merged into a single group due to different
common records linking various pairs, i.e. if we have the following pairs of identified
duplicates,

(RI, RZ); (RQ; R3), SRR (Rn—Q; Rn—l); (Rn—la Rn) ;
the transitive closure computation for these groups will result in them merging into one

14

Iaaichdic el

(Ri,Ro,...,R,_1,R,).
In this case, the first pair will probably be different records from the later pairs. This will
result in many wrongly identified “duplicates”, leading to low precision.

We outline a method for computing the transitive closure under uncertainty which
can reduce the number of wrongly merged duplicate groups. We can attach a certainty
factor, cf, to each duplicate identification rule, where 0 < ¢f < 1. This value represents
our confidence in the rule’s effectiveness in identifying true duplicates. We can assign a
high certainty factor to a strict rule, if we are sure that it will identify true duplicates.
Record groups identified by this rule will have this certainty factor. Analogously, we assign
smaller values for rules that are less strict. During the computation of the transitive
closure, we compare the resultant certainty factor of the merged group against a user-
defined threshold. This threshold represents how tight or confident we want the merges
to be. Any merges that will result in a certainty factor less than the threshold will not be
carried out. The rationale behind this method is : As more and more groups are merged
during the transitive closure step, we are less and less confident that all the records in
the resultant group are representations of the same real-world entity.

To support this method of computing transitive closure, the structure of the Duplicate
Identification Rules thus need to be modified to :

if <condition>
then <records are duplicates with certainty factor cf>
We present 4 examples here for clarity. A and B are records from the dataset. C'F' and
T H represents the certainty factor and threshold respectively.
(a) Example 1 : Merge Records (A B) with CF=0.8, TH=0.9
The rule that identified this duplicate group is assigned a C'F' of 0.8. However, it
is lower than T"H. Records A and B are kept unchanged.
(b) Example 2 : Merge Records (A B) with CF=0.8, TH=0.7
Records A and B will be merged as C'F' > TH.
(c) Example 3 : Merge Records (A B) with CF=0.8, (B C) with CF=0.75, TH=0.7
As the combined C'F' of the merged group will be (0.8 x 0.75) = 0.6 < TH, the
above 2 record pairs will not be merged, but remain as separate groups. However,
the merging will be done within each group, i.e. (A B) and (B C) as CF > TH in
both cases.
(d) Example 4 : Merge Records (A B) with CF=0.9, (B C) with CF=0.85, (C D) with
CF=0.8, TH=0.5
The groups (A B) and (B C) will be considered first, as these groups have higher
CF's. They will be merged to form (A B C) with C'F = 0.765 (since 0.9x0.85 = 0.765).
Then, this group will be merged with (C D) to form (A B C D) with CF=0.612 (since
0.765 x 0.8 = 0.612), and the CF is still greater than TH. However, if TH = 0.7,
(A B C) and (C D) will remain separate, as the resultant C'F' of the merged group
(0.612) will be less than TH.

The main problem with this method is that a record may exist in more than one group
as in Examples 3 and 4 given above. Note that the final grouping may not be unique
when there are groups with the same certainty factors. On-going research is looking into
how this method can be improved.

A method based on the Dempster-Shafer theory of evidence is presented in [L.SS94] to
model uncertainty in attribute values. A mass value is assigned to every subset of the
environment, which represents the portions of belief committed to the sets. Our proposal
is totally different. Our certainty refers to our belief and confidence in the effectiveness
of a rule, i.e. the uncertainty of a rule, and not the uncertainty in attribute values. For

15

DBMS

Knowledge-Based Framework
Domain
Knowledge .

- Window of
Rule Sets Records

Parameters \ /
Results
& Log Expert glstem
- Engine

Fig. 4. Architecture of Intelligent Data Cleaning System

each rule, only one single certainty factor is required.
(4) Implementing Existing Methods Using the Framework

The powerful declarative rule language provided by JESS can implement the compar-
ison algorithms and similarity functions used by existing methods. For example, a rule
can determine record equivalence by partitioning a field into separate tokens and sorting
them before performing comparisons. This effectively implements the method proposed
by [LLLK99].

The framework can also degenerate gracefully into a domain-independent strategy by
using only rules that treat records as strings and employ string comparison functions
to compare these “strings”. Hence, the framework can implement existing methods and
current strategies form a subset of data cleaning strategies this approach offers.

5 Performance Study

In this section, we describe the implementation and performance evaluation of IntelliClean,
a data cleaning system that employs the proposed knowledge-based framework for duplicate
elimination.

5.1 Ezxperimental Testbed

Based on the ideas and techniques presented in this paper, we implemented the IntelliClean
system using Java 1.2 with the interface employing the use of Java Swing components. As
a result, the system runs on multiple platforms. The data source connection is made using
JDBC (Java Database Connectivity) and hence, the data source can be located at any local
or remote relational database servers. For our experiments, the database server is a SUN
Enterprise 450 server located in a remote machine connected via a local area network. The
database management system used is Oracle 8. The client computer running IntelliClean is a
Pentium 200 MMX system with 64 MB RAM running Windows NT 4.0. The architecture of
the implementation is depicted in Figure 4. A screen capture of IntelliClean is shown in Figure
5.

16

File Reference Rule Clean View Window

[ELog windo [FJExternal Reference:
Connected to jdbeioracle thini@sid3.comp.nus.edu.sa:1521:5id3 with
oracle jdbe.driver. OracleDriver.

ahle be cleansed is diabetes.

0u are known o server as | lovwwailu.

1 of 0 References

Replacement Field

Expert Systerm engine (Rete) initialised.
Using existing table :\DC_diabetes

Using existing mergelog table able Name diabetes
Using existing PIUlog table atching Field
Added Weasure : FieldSimilarity Replaced Field

‘ Prev || Next || New H 0Ok || Delete || Close |

1501 QueryWindow
S0L statement
select race,dob,d0s,5ex,clin from diabetes where rownum==10

[F]Table Meta Data - diabetes :
SiNo. Column Marme Column Type_ |Colurmn .. /Nulls All.| DoB DOs
MRIC CHAR 110211948 04/031992
RACE CHAR 08i251 961 05/30/1932
CLIN CHAR 077281942 04/22/11992
SEX CHAR 1a13an9z2y 04/02/1992
Do CHAR 1101922 06/29/1992
Dos CHAR 050111928 05/071992
CTYP CHAR 104081 837 0477101997
CSRC CHAR 0140151958 0511451992
HDUR CHAR 0110171924 04/29/1992
HHYP CHAR n4in41Q N5 QM Qo

HCATR CHAR Close

PIOCIO QOO T|C
NEIRIEIRIEARIEIER

Fig. 5. IntelliClean
5.2 Ezxperimental Results

IntelliClean was evaluated using two real world datasets: a Company dataset and a Patient
dataset. The Company dataset requires complex matching logic and data manipulation, while
the Patient dataset is a much larger dataset and contains a variety of errors.

5.8 Cleaning the Company dataset

5.3.1 Dataset Description

We first tested our system with a company dataset of 856 records. Each record contains seven
fields, namely, Company Code, Company Name, First Address, Second Address, Currency
Used, Telephone Number, and Fax Number. Human inspection reveals 60 duplicate records
altogether. Problems encountered with this dataset include large number of empty fields, in-
complete data, typographical errors, different representations for names and addresses, misuse
of data fields and very similar representations for different entities. Table 2 shows two duplicate
records which look quite different due to format and representation differences.

Although the number of records is small, cleaning this database proved to be challenging for
the following reasons :

e Very complex functions are needed to separate the true and false duplicates which are
very similar. This also led to the increase in rules needed to achieve high recall, while

17

Two inexact duplicate records in Company dataset.

Code Name Currency Telephone Fax
PT P. T PRIMA CIRCUIT INDONESIA SGD 011-708-822323 011-708-812130
(NULL) PT. PRIMA CIRCUIT INDONESIA SGD 011-708-822323 (011-708)812130

Address
JL. R.E. MARTADIN,, SEKUPANG-BATAM,INDONESIA 29022
(BATAM FACTORY) Jl. RE. MARTADIN SEKUPANG-BATAM,,BATAM 29022

Table 3

Two very similar records which are not duplicates.
Code Name Currency Telephone Fax
HIBEXTRA-KL HIBEXTRA ENGINEERING (M) SDN BHD MAR 02-08-7034209 02-08-7033866
HIBEXTRA-KL(RMS$) HIBEXTRA TRADING (M) SDN BHD MAR 02-08-7034209 02-08-7033866

Address
LOT 3, JLN PXS 311/99, BANDAR SUNWAY, 4650 PETALING JAYA SELANGOR DARUL EHSAN, MALAYSIA
LOT 3, JLN PXS 311/99, BANDAR SUNWAY, 4650 PETALING JAYA SELANGOR DARUL EHSAN, MALAYSIA

keeping precision high at the same time. Table 3 shows 2 very similar records which are not
duplicates. Duplicate identification rules will need to be very complex and precise in order
not to classify these records as duplicates.

e A lot of missing vital information. This makes it very difficult to reason about potential
duplicates (or even impossible).

5.3.2 Data Cleaning process
The steps taken to clean this dataset are :

(1) Pre-processing.

We first joined the two address fields into a single field as visual inspection reveals
that these two fields actually refer to two-halves of the address field and the separation
is arbitrary and artificial. The abbreviations used in the Address and Name fields were
also standardized using a look-up table. The table contains the commonly used variants
and abbreviations of the words found in names and addresses, and their standardized
representation.

(2) Processing.

Results were obtained for the first series of tests by running the IntelliClean system
with the dataset, varying the number of passes and the number of rules. The metrics
generated are the runtime, recall and false-positive error. All the 7 rules used are duplicate
identification rules and they are described next.

(3) Human Verification and Validation.
The results of the tests are verified and manually inspected with the log file generated.

5.3.8 Rules and Similarity Measures Used
We used 7 duplicate identification rules for this dataset and several of these rules used a

‘FieldSimilarity’ function adapted from [LLLK99]. This function determines the degree of
similarity between the corresponding fields of two records and is defined as follows :

18

\~/ Y¥Yrprsaivy SRS SRR NI

o If two tokens are an exact match, then they have a degree of similarity of 1.

e Otherwise, if there is a total of x characters in the token, then we deduct i from the
maximum degree of similarity (DoS) of 1 for each character that is not found in the
other token.

(2) Compute Field Similarity.
e Suppose a field in Record X has tokens t,,%s,,...,ts,, and a corresponding field in
Record Y has tokens t,,,t,,,...,1,,.-
e Each token t;,, 1 <7 <, is compared with all the tokens ¢,,, 1 < j < m.
o Let DoSg,, DoSy,, ..., DoS;,, DoSy,, DoS,,, ..., DoS, be the mazimum of the
degree of similarities computed for tokens t;,, tzy, - - -, ta,, tyr) tysy - - - Ty, TESPectively.
e Field similarity for Record X and Y on this field is given by

Simp(X,Y) = (2 DOSZ;IT%J‘ DoSy;)

Due to space constraints, we show the simplified version of the matching criteria of the 7
duplicate identification rules used :

(1) Rule 1 : Certainty Factor 0.95
e Matching! Currency field
e and Matching Name field
e and Matching Telephone field
e and Matching Fax field
(2) Rule 2 : Certainty Factor 0.85
e Matching Currency field
e and FieldSimilarity of the 2 Address fields is at least 0.85
e and The Code field of 1 record is a sub-string of the other.
(3) Rule 3 : Certainty Factor 0.8
Matching Currency field
and Matching Code field
and FieldSimilarity of the 2 Address fields is at least 0.9
and Matching Telephone field after removing all non-numeric characters
and Matching Fax field after removing all non-numeric characters
(4) Rule 4 : Certainty Factor 0.8
e Matching Currency field
e and Matching Name field
e and Matching Address field
(5) Rule 5 : Certainty Factor 0.75
Matching Currency field
and Matching Code field
and FieldSimilarity of the 2 Name fields is at least 0.9
and More than 75% of the tokens in one record’s Address field appears in the other
record’s Address field.
(6) Rule 6 : Certainty Factor 0.7
e Matching Currency field
e and Matching Name field
e and FieldSimilarity of the 2 Address fields is at least 0.9
(7) Rule 7 : Certainty Factor 0.7
e Matching Currency field

1 Matching here refers to exact string matches.

19

efrect of Number or puplicate identimcation kuies
on Recalland F-P Error

90.00%
80.00%

70.00% /
60.00%

50.00% / ———Recall
40.00% ,,/(—=—F-P Emor
30.00% /

20.00% '/
10.00% .\“"-——I——_u-/"_‘—-'-—l
0.00%

0 1 2 3 4 5 B 7 8
No. Of Duplicate Identification Rules

Fig. 6. The Effect of Number of Duplicate Identification Rules on Recall and False-Positive Error

e and Matching Code field
e and Matching Name field
e and FieldSimilarity of the 2 Address fields is at least 0.8

5.3.4 Performance Results

Details of the results are shown in Table 4. Figure 6 shows graphically the effect of the number
of rules on recall and false-positive error. The system managed to detect 80% of the duplicates
with 7 duplicate identification rules while keeping the false-positive error at less than 8%.
Figure 7 shows the effect of the number of rules on runtime. Based on the results, we note
that the recall increases with the number of rules, and the more complex rules (which requires
more processing time) managed to identify more true duplicates in this case. The runtime
of the system depends more on the complexity of the rules rather than the number of rules.
Due to the lack of knowledge about the rules of data entry of this dataset, we can only
develop 7 duplicate identification rules through visual inspection of sample records. We might
postulate that an increase in the number of effective rules can lead to a further rise in recall
while maintaining the false-positive error at low levels. This knowledge-based framework thus
effectively resolves the recall-precision dilemma.

The window size does not have much effect on recall, unless the window size is comparable to
the size of the dataset. This is because the effectiveness of SNM depends on inexact duplicates
being close to one another after sorting on a chosen key, and that their proximity depends
only on the first few critical characters of the key. Consider a simple case of a n-character key
string and that two records will never be in the same window during the SNM window scan
if any of the first m characters are “far apart”. Assuming that there is a single typographical
error in one of the keys, and that the error is equally likely to be at any character of the
string, the probability of the character being one of the first few critical characters is m/n. In
the case of a 100-character key and the critical characters are the first 3, the probability of
two duplicates not being in a same window due to an error in the critical characters is 0.03.
Thus, even in the event of having erroneous data in the key, chances are that the records will
still appear in a same window during the SNM scanning process. In our example above, the
probability that the two duplicate records being detected is 97%. This estimate is arguably

20

Cleaning Results for Company Dataset using 7 Duplicate Identification Rules and Window Size 10.
Each pass uses a different sort key.

No. of passes

Rules Used Metrics

1 2 3

Recall(%) 20.00 | 20.00 | 20.00

1 FP Error (%) | 14.29 | 14.29 | 14.29
Time (s) 7.5 | 12.8 | 17.6

Recall(%) 33.33 | 33.33 | 33.33

1,2 FP Error (%) | 9.09 | 9.09 | 9.09
Time (s) 11.8 | 17.3 | 237

Recall(%) 36.67 | 41.67 | 41.67

1,2,3 FP Error (%) | 833 | 7.41 | 7.41
Time (s) 11.9 | 17.4 | 237

Recall(%) 43.33 | 46.67 | 46.67
1,2,3,4 FP Error (%) | 7.14 | 6.67 | 6.67

Time (s) 24.2 | 318 | 45.8

Recall(%) 61.67 | 66.67 | 66.67

1,2,3,4,5 | FP Error (%) | 9.76 | 9.09 | 9.09
Time (s) 28.2 | 39.7 | 64.9

Recall(%) 65.00 | 73.33 | 73.33

1,2,3,4,5,6 | FP Error (%) | 9.30 | 7.55 | 7.55
Time (s) 35.9 | 455 | 68.1

Recall(%) 71.67 | 80.00 | 80.00

1,2,3,4,5,6,7 | FP Error (%) | 8.51 | 7.69 | 7.69
Time (s) 36.9 | 48.0 | 72.1

pessimistic through the use of multiple passes of the SNM with each pass employing a different
sort key, which makes the chances of detection even higher.

Table 5 and Figure 8 show the results of our experiments when we vary the window size, the
number of passes and the number of rules. Note that recall does not increase much as window
size increases from 5 to 30.

21

enfect of NUumbper or Duplicate inaentirication
Rules on Runtime

80
70 —h

50 / / ——Time (1
Pass)
40 / / —Time (2
Passes)
30 /‘_\A/// —a—Time (3
20 ‘,/,‘__:_,/ Passes)
10 pe—
0 1 2 3 4 5 6 7 8

No. Of Duplicate Identification Rules

Time (s)

Fig. 7. The Effect of Number of Duplicate Identification Rules on Runtime

Effect of Window Size on Recall
Using 3 Duplicate Indentification Rules

S0.00%

4500%
= W w —m— 1 pass
.%‘: 40.00% u —— 2 passes
=4

._._/ —»—3 passes
35.00%
3DDD% T T T T T T

0 5 m 1% 20 25 A 35

Window Size

Fig. 8. The Effect of Window Size on Recall

5.4 Cleaning the Patient dataset

5.4.1 Dataset Description

Next, we cleaned a hospital’s patient database containing 22122 records. This database con-
tains 60 fields, including the NRIC Number 2, Sex, Date of Birth, Date of Screening, the
Clinic Number and various fields containing codes for the results of a diabetes screen test.

2 The National Registration Identification Card (NRIC) Number is the local equivalent of the Social
Security Number of the United States.

22

Cleaning Results for Company Database With Various Window Sizes

Window Size 5 Window Size 10
Rules Metrics No. of passes No. of passes

Used 1 2 3 1 2 3
Recall(%) 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00
1 FP Error (%) | 14.29 | 14.29 | 14.29 | 14.29 | 14.29 | 14.29
Time (s) 6.5 11.9 15.5 7.5 12.8 17.6
Recall(%) 33.33 | 33.33 | 33.33 | 33.33 | 33.33 | 33.33
1,2 | FP Error (%) | 9.09 | 9.09 | 9.09 | 9.09 | 9.09 | 9.09
Time (s) 10.0 15.3 | 21.2 11.8 17.3 | 23.7
Recall(%) 36.67 | 41.67 | 41.67 | 36.67 | 41.67 | 41.67
1,2,3 | FP Error (%) | 833 | 7.41 | 7.41 | 833 | 741 | 741
Time (s) 10.8 | 16.2 | 21.2 | 11.9 | 174 | 23.7

Window Size 15 Window Size 30

Rules Metrics No. of passes No. of passes

Used 1 2 3 1 2 3
Recall(%) 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00
1 FP Error (%) | 14.29 | 14.29 | 14.29 | 14.29 | 14.29 | 14.29
Time (s) 7.9 13.4 | 18.6 8.6 13.6 | 18.7
Recall(%) 33.33 | 33.33 | 33.33 | 40.00 | 40.00 | 40.00
1,2 | FP Error (%) | 9.09 | 9.09 | 9.09 | 7.69 | 7.69 | 7.69
Time (s) 121 | 176 | 24.0 | 145 | 204 | 28.6
Recall(%) 36.67 | 41.67 | 41.67 | 40.00 | 41.67 | 41.67
1,2,3 | FP Error (%) | 833 | 7.41 | 741 | 7.69 | 741 | 7.41
Time (s) 12.7 | 18.3 | 25.9 14.3 | 20.6 | 28.8

5.4.2 Data Cleaning process
The steps taken to clean this dataset are :

(1) Pre-processing.

We standardized the date representations of the Date of Birth and Date of Screening
fields. Validation checks were also performed on the NRIC Number, Date of Birth, Date
of Screening and Sex fields.

(2) Processing.
We defined two duplicate identification rules for this database and one merge/purge

23

Alerts raised for Patients Dataset

Nature of Alerts Count

NRIC Check Digit Error | 118

NRIC Format Error 10
Sex Field Error 1

rule. The merge/purge rule removes all instances of ezact duplicates and keeps only one
instance. The rules are described after this.
(3) Human Verification and Validation.

5.4.8 Rules Used
The two duplicate identification rules used are :

(1) Duplicate Id. Rule 1 : Certainty Factor 1
e All 60 fields of the record match.
(2) Duplicate Id. Rule 2 : Certainty Factor 0.9
e Matching Date of Screening field.
e and Matching NRIC Number after removing all non-numeric characters.

The merge/purge rule used is defined as :

(1) Merge/Purge Rule
e For all duplicate record groups with certainty factor 1, keep one record from the group
and delete the rest.

5.4.4 Performance Results

The alerts raised during the pre-processing stage are shown in Table 6. The pre-processing stage
took 118.5 seconds. The results of the processing stage are shown in Table 7. Manual inspection
of the database revealed that we achieved 100% recall and precision for this experiment.
Although the records identified by Rule 1 of Table 7 form a subset of those identified by
Rule 2, we still include this rule as it identifies exact duplicates, which we can easily use a
Merge/Purge Rule to automatically remove all, except for 1 record. The 8 records (4 pairs)
that were exact duplicates were automatically processed in this manner. The rest were marked
for manual processing. Generally, we can have more complex merge/purge rules for dealing
with more complicated cases. The pre-processing and processing stages (using Rules 1 and 2)
took about ten minutes for this dataset.

5.5 Comparative Study

Table 8 compares the methodologies used in IntelliClean with the closest works, namely
[LLLK99], [HS95] and [Alv97]. Table 9 gives a comparison of IntelliClean with 2 recent data

24

Results of Processing the Patients Dataset

Rule Number | Match Criteria Run Time (s) | No. of Duplicates
Found
1 All 60 fields match 370.1 8 (4 pairs)
2 Matching Date of Screening 464.7 34 (17 pairs)
and Numeric String of NRIC
1+2 (Criteria of Rule 1 OR Rule 2) 503.2 34 (17 pairs)
Table 8
A comparison of IntelliClean with existing data cleaning methodologies.
LLLK, 1999 | HS, 1995 | ME, 1997 | IntelliClean
Recall-Precision Dilemma Yes Probably Yes No
Improves with Domain Knowledge No Yes No Yes
Anomaly Detection No No No Yes
Anomaly Correction Maybe No No Yes
Implements LLLK, 1999 | HS, 1995 | ME, 1997 | LLLK, 1999
HS, 1995
ME, 1997
and more.. .

Table 9
A comparison of IntelliClean with 2 recently developed data cleaning frameworks.

VR, 2000 GFSS, 1999 IntelliClean
Anomaly Detection Through visual No By rules in
inspection Knowledge-Base
Anomaly Correction Yes Maybe Yes
Knowledge Specification via GUI SQL-like syntax | Declarative rules
Optimization Measures | Generating optimized SQL-query Sliding window
code for optimization & Rete Algorithm
transformations techniques

cleaning frameworks described in [RH00] and [HGS99]. Undoubtedly, the power of IntelliClean
lies in its ability to analyze, deduce and infer anomalies and duplicates.

25

e T WS LA A AR ARS AL

In this paper, we have presented a generic knowledge-based approach for duplicate elimination
in data cleaning. This approach can be applied to any textual databases in any domain and
can support a wide variety of cleaning strategies, of which existing methods form a subset. Pre-
processing the data scrubs anomalies and performs data standardization. Domain-dependent
rules, which are derived from business logic, provides the intelligence during the processing
stage. The verification and validation stage entails human inspection of the results using the
log generated.

The proposed holistic framework introduces a knowledge representation in the form of rules and
the application of the rules via an expert system engine. It allows for effective management and
re-use of domain knowledge for data cleaning. The framework also resolves the recall-precision
dilemma of existing data cleaning methods through the use of duplicate identification rules
that are effective in identifying true duplicates and strict enough to keep out false-positives.
This enables data cleaning strategies achieve both high recall and precision. The precision of
duplicate elimination strategies is improved by introducing the concept of a certainty factor for
a rule. By considering this uncertainty, the number of incorrect merges during the computation
of transitive closure can be reduced. Experiments with real-world datasets demonstrated that
the knowledge-based approach can achieve high recall and precision efficiently.

Much work still need to be done in this area. Relations spanning several databases give rise
to opportunities for anomaly (including functional dependencies, multi-valued dependencies,
foreign key constraints violations etc.) and duplicate detection not possible using a single
database. We are currently exploring incremental data cleaning techniques and extending the
knowledge-based framework for de-duplicating results returned by web search engines.

References

[Alv9T] Alvaro E. Monge and Charles P. Elkan. An efficient domain-independent algorithm
for detecting approximately duplicate database records. In Proceedings of the ACM-
SIGMOD Workshop on Research Issues on Knowledge Discovery and Data Mining.
Tucson, AZ, 1997.

[BD83] D. Bitton and D.J. DeWitt. Duplicate record elimination in large data files. ACM
Transactions on Database Systems, 8(2):255-265, 1983.

[BGF*97] Stéphane Bressan, Cheng Hian Goh, K. Fynn, M. Jakobisiak, Karim Hussein, Henry B.
Kon, T. Lee, Stuart E. Madnick, T. Pena, J. Qu, Annie W. Shum, and Michael Siegel.
The COntext INterchange Mediator Prototype. In Joan Peckham, editor, Proceedings
of the 1997 ACM SIGMOD International Conference on Management of Data, pages
525-527, Tucson, Arizona, 13-15 June 1997.

[BLNS6] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A Comparative Analysis
of Methodologies for Database Schema Integration. Computing Surveys, 18(4):323-364,
1986.

[CAGLT99] D. Calvanese, G. de Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A Principled
Approach to Data Integration and Reconciliation in Data Warehousing. In Proceedings

of the International Workshop on Design and Management of Data Warehouses
(DMDW?’99), June 1999.

26

| b |

[FH99]

[For82]

[GMPQ™97]

[GRYS]

[Her96]

[HGS99]

[HP99)]

[HS95]

[HS98]

[KAS5]

[Kim96]

[Lim98]

[LLY7]

[LLLK99]

vy aaaasaLtL ¥ e UL ARV ARV VU AV VA VY Y MY AL AuaauU A A AR
Domains Using Queries Based on Textual Similarity. In Laura M. Haas and Ashutosh
Tiwary, editors, SIGMOD 1998, Proceedings ACM SIGMOD International Conference
on Management of Data, June 2-4, 1998, Seattle, Washington, USA, pages 201-212.
ACM Press, 1998.

Ernest J. Friedman-Hill. JESS, the Java Expert System Shell, 1999. Available at URL
http://herzberg.ca.sandia.gov/jess/.

Charles Forgy. Rete: A Fast Algorithm for the Many Patterns/Many Objects Match
Problem. Artificial Intelligence, 19(1):17-37, 1982.

Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajaraman,
Yehoshua Sagiv, Jeffrey D. Ullman, Vasilis Vassalos, and Jennifer Widom. The
TSIMMIS Approach to Mediation: Data Models and Languages. Journal of Intelligent
Information Systems, 8(2):117-132, 1997.

Joseph Giarratano and Gary Riley. Ezpert Systems : Principles and Programming (3rd
Edition). PWS Publishing Company, Boston, 1998.

M. Hernandez. A Generalization of Band Joins and the Merge/Purge Problem.
Technical Report CUCS-005-1995, Department of Computer Science, Columbia
University, February 1996.

Dennis Shasha Helena Galhardas, Daniela Florescu and Eric Simon. An Extensible
Framework for Data Cleaning. INRIA Technical Report, 1999.

Holger Hinrichs and Kirsten Panienski. Experiences with Knowledge-Based Data
Cleansing at the Epidemiological Cancer Registry of Lower-Saxony. In XPS-99:
Knowledge-Based Systems. Survey and Future Directions, Mar 1999.

Mauricio A. Herndndez and Salvatore J. Stolfo. The Merge/Purge Problem for Large
Databases. In Michael J. Carey and Donovan A. Schneider, editor, Proceedings of the
1995 ACM SIGMOD International Conference on Management of Data, pages 127-138,
San Jose, California, 22-25 May 1995.

Mauricio A. Hernandez and Salvatore J. Stolfo. Real-world Data is Dirty: Data
Cleansing and The Merge/Purge Problem. Data Mining and Knowledge Discovery,
Vol. 2, No. 1, pages 9-37, 1998.

Beth Kilss and Wendy Alvey. Record Linkage Techniques. In Proceedings of the
Workshop on Ezact Matching Methodologies, Arlington, Virginia. Dept of the Treasury,
Internal Revenue Service, Statistics of Income Division, May 1985.

Ralph Kimball. Dealing with Dirty Data. DBMS Online, September 1996. Available
at URL http://www.dbmsmag.com/9609d14 .htm.

Infoshare Limited. Best Value Guide to Data Standardising. InfoDB, July 1998.
Available at URL http://www.infoshare.ltd.uk.

Mong Li Lee and Tok Wang Ling. Resolving Constraint Conflicts in the Integration of
Entity-Relationship Schemas. In Proceedings of the 16th International Conference on
Conceptual Modeling, Los Angeles, California, USA, pages 394-407, Nov 1997.

Mong Li Lee, Hongjun Lu, Tok Wang Ling, and Yee Teng Ko. Cleansing Data for Mining
and Warehousing. In Proceedings of the 10th International Conference on Database and
Expert Systems Applications (DEXA99), pages 751-760, August 1999.

27

| At |

[May99]

[ME96]

e e Ay Y LSV UAAN Ly AR e AR ALAAL e Ay A sVl AR ARV A
Database Integration: An Evidential Reasoning Approach. In Ahmed K. Elmagarmid
and Erich Neuhold, editors, Proceedings of the 10th International Conference on Data
Engineering, pages 154-165, Houston, TX, Feb 1994. TEEE Computer Society Press.

Arkady Maydanchik. Challenges of Efficient Data Cleansing. DM Review, September
1999. Available at URL
http://www.dmreview.com/editorial/dmreview/print _action.cfm?EdID=1403.

Alvaro E. Monge and Charles P. Elkan. The Field Matching Problem: Algorithms
and Applications. In Evangelos Simoudis, Jia Wei Han, and Usama Fayyad, editors,
Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining (KDD-96), page 267. AAAI Press, 1996.

[MKCWB97] Elisabeth Metais, Zoubida Kedad, Isabelle Comyn-Wattiau, and Mokrane Bouzeghoub.

[Mos98]

[RHO00]

[Ril99]

[SSU96]

[Wal98]

[Wie93]

[WMS9]

Using linguistic knowledge in view integration: Toward a third generation of tools. Data
& Knowledge Engineering, 23:59-78, 1997.

Larissa Moss. Data Cleansing;: A
Dichotomy of Data Warehousing? DM Review, February 1998. Available at URL
http://www.dmreview.com/editorial/dmreview/print_action.cfm?EdID=828.

Vijayshankar Raman and
Joseph M. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning
and Transformation, 2000. http://control.cs.berkeley.edu/abc/index.html.

Gary Riley. CLIPS: A Tool for Building Expert Systems, 1999. Available at URL
http://www.ghg.net/clips/CLIPS.html.

A. Silberschatz, M. Stonebraker, and J. Ullman. Database research: Achievements and
opportunities into the 21st century. SIGMOD Record (ACM Special Interest Group on
Management of Data), 25(1):52, 1996.

Mary Jo Waller. A Comparison of Two Incremental Merge/Purge Strategies. Master
Thesis, University of Illinois, 1998.

Gio Wiederhold. Intelligent Integration of Information. In Peter Buneman and Sushil
Jajodia, editors, Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, pages 434-437, Washington, D.C., 26-28 May 1993.

Y. Richard Wang and Stuart E. Madnick. The Inter-Database Instance Identification
Problem in Integrating Autonomous Systems. In Proceedings of the Fifth International
Conference on Data Engineering, February 6-10, 1989, Los Angeles, California, USA,
pages 46-55. IEEE Computer Society, 1989.

28

