Towards Self-Tuning Data Placement in Parallel Database Systems

Mong Li Lee!* Masaru Kitsuregawa? Beng Chin Ooi'f Kian-Lee Tan'f Anirban Mondal®

! Department of Computer Science 2 Institute of Industrial Science
National University of Singapore, SINGAPORE University of Tokyo, JAPAN
{leeml,oo0ibc,tankl,anirbanm }@comp.nus.edu.sg kitsure@tkl.iis.u-tokyo.ac.jp

Abstract

Parallel database systems are increasingly being deployed to support the performance de-
mands of end-users. While declustering data across multiple nodes facilitates parallelism, ex-
isting data placement may no longer be optimal due to skewed workloads and changing access
patterns. To prevent performance degradation, the placement of data must be reorganized, and
this must be done on-line to minimize disruption to the system.

In this paper, we consider a dynamic self-tuning approach to reorganization in a shared noth-
ing system. We introduce a new index-based method that faciliates fast and efficient migration
of data. Our solution incorporates a globally height-balanced structure and load tracking at
different levels of granularity. We conducted an extensive performance study, and implemented
the methods on the Fujitsu AP3000 machine. Both the simulation and empirical results demon-
strate that our proposed method is indeed scalable and effective in correcting any deterioration
in system throughput.

1 Introduction

Given the explosive growth of data on the Internet and prevalence of web-based applications such
as e-commerce, the issues of managing huge volumes of data and providing fast and timely answers
to queries have assumed paramount importance. The WWW is a dynamic environment where the
number of users grows rapidly and changing access patterns may exhibit high skew. Web-sites of
stock trading database and many other data-intensive applications which are inherently dynamic in
nature have unpredictable workload patterns: they may see heavy access to some particular blocks
of data just yesterday, but has low access frequency today.

Shared-nothing parallel computing infrastructure such as clusters of WWW servers and net-
work of workstations (NOW) [ACP94, RBM97, TOK97] has become increasingly widespread be-
cause they are built from high performance, low-cost commodity hardware. The availability and
scalability of these systems are important for entrepreneurs in the e-commerce business as it im-
plies that they can build their system gradually depending upon the workload. Such a computing
cluster comprises a number of processing elements (PEs), each of which has its own memory and
disk. Data is typically partitioned across all the PEs to exploit the I/O bandwidth of the PEs. To
further facilitate efficient query and update evaluation, data at each PE is indexed.

0*Contact author is currently a visiting faculty at the University of Wisconsin-Madison
9 The work of these two authors were resulted from the exchange programme funded by the Japan Society for
the Promotion of Science (JSPS).

While the initial data placement can be effective for static databases, changes in access patterns
can cause the performance of the system to degrade rapidly as some PEs become bottlenecks. For
a system to be responsive to swings in query patterns and to better utilize all resources, dynamic
re-balancing of the workload among the PEs is necessary. This can be achieved by tuning the data
placement in the various PEs.

Reorganization of data has been extensively studied in centralized database systems by both
researchers and major DBMS providers. [ZS96] investigated how to compact a primary BT-tree
which had become sparse and and [ZS98] described a method for defering secondary index updates.
[O88] examined the problems of changing from one access method to another, such as from B*-
tree to linear hashing and [OLS92] studied how indexed sequential files can be compacted and
clustering organizations described by hypergraphs can be created. [SI96] detailed methods to
increase concurrency during the restoration of clustering indexes in IBM’s DB2. [MN92] described
restartable algorithms for online construction of an index.

In parallel database systems, new challenges in online reoganization arise as data and indexes
are partitioned across multiple disks, and load imbalance occurs when access patterns change.
[SWZ94, SWZ98| presented various file striping heuristics for data allocation, data redistribution
and load balancing in a shared memory multiprocessing environment. [VBW98] showed how records
can be distributed into variable sized fragments and migrated when load imbalance occurs in a
shared nothing system. These works involve a significant amount of sophisticated bookkeeping.

Indexes such as B-trees in a multiprocessor environment is typically replicated in all the PEs to
provide fast response to queries. However, this has a very serious drawback during reorganization
and database updates. Any changes and underflow/overflow in a B-tree has to be propagated to
all copies of the B-tree. [KJ92, JK93, KW94, 1L96] proposed various techniques aimed at reducing
the cost of maintaining replicated search structures and increasing concurrency.

[AON96] studied two methods to maintain indexes during online reorganization: OAT (One-
At-a-Time page movement) moves one data page at a time from the source PE to the destination
PE and modifies the indexes for records in that page, while BULK (bulk page movement) copies
all the data to be moved at the destination PE and then modifies the indexes at the source and
destination PEs. In both cases, the conventional B*-tree insertion algorithm is used to insert the
keys into the index in the destination PE. Similarly, the conventional B*-tree deletion algorithm is
used to delete the keys of the migrated data from the index in the source PE.

It is important to maintain a good balance between overheads incurred by data migrations such
as communication, concurrency, index maintenance, and improvements in system throughput as a
result of the migrations. This calls for efficient index updates and incremental data migration as
overheads and heavy data movement may have an adverse effect on system throughput and cause
the destination PE to become the next bottleneck.

In this paper, we consider a unique self-tuning approach to data reorganization in parallel
database systems. Our work differs from previous research in that we use a two-tier index structure
to facilitate fast and efficient data access and migration in a cluster. The novelty of this strategy
is four-fold.

1. The amount of data to migrate is obtained from branches of the index at the source PE.
This allows the entirety of the branches to be pruned easily without excessive overhead. The
granularity of migrated data can be dynamically fine-tuned by using branches at different
levels of the index.

2. The migrated data is bulkloaded into a separate rooted tree at the destination PE instead of
inserting the migrated data one record at a time. This not only speeds up the insertion time,
it also allows the rooted tree to be easily “attached” to the index at the destination PE. Data
availability is also maximized.

3. An immediate cost reduction occurs even though the fast detachment and re-attachment of
branches only applies to the primary index, and conventional BT-tree insertions and deletions
has to be used for the secondary indexes. This is because index modification is a major
overhead in data migration, especially when we have multiple indexes on a relation.

4. Further reduction in migration overheads is achieved when the index structure at all the PEs
is of the same height. We introduce an adaptive BT-tree called the aB™-tree which maintains
the global height-balanced property of indexes in all the PEs by allowing some indexes to
grow “fatter” than normal, while others are kept “lean”. Algorithms to search and update
the aBT-tree are also given.

We perform an extensive performance study on the proposed strategy. Our result shows that
the proposed strategy is scalable and effective in correcting any workload skews. We also confirm
the results by implementing the techniques on the Fujitsu AP3000 machine.

The remainder of this paper is organized as follows. In Section 2, we present our dynamic self-
tuning data placement strategy. Section 3 gives the design of the aB*-tree. Section 4 presents the
experimental study and implementation and reports our findings. Finally, we conclude in Section 5.

2 Data Placement and Migration

Data is initially range partitioned across all the PEs. Range partitioning is superior to round-
robin and hashing as it can support range queries efficiently in addition to exact match queries.
Unfortunately, it can lead to data skew where certain values for an attribute occurs more frequently
than other values. This causes PEs dealing with large partitions of data to become performance
bottlenecks. Similarly, while a shared-nothing system is scalable, load skew or load imbalance can
occur when access patterns change leading to queries or updates on certain values for an attribute
to occur more frequently. This causes PEs with frequently queried or updated data to become
“hot” spots. Data skew or load skew can result in disk or processor becoming completely utilized
for a small number of PEs, while the disks or processors of the other PEs are only lightly utilized.
While data and load skews are inevitable, reducing these skews can increase throughput and reduce
response time.

In this section, we present an efficient mechanism for on-line reorganization in a shared nothing
context where data is indexed. We employ a two-tier index structure as the basic indexing mecha-
nism. The first tier directs the search to the PE where the data is stored. Since the data is range

partitioned, this layer is essentially a partitioning vector with n — 1 values and n “pointers” for a
system of n PEs. We can expect this layer to take up not more than a few pages (even for a system
of 1000 PEs), and hence can be easily cached in main memory for fast access. Furthermore, this
layer is replicated across all PEs to ensure that there is no central PE through which retrievals
and updates requests must pass. Otherwise, the PE containing the layer will easily become a
bottleneck. Node replication reduces contention but requires a coherence protocol to maintain con-
sistency. However, the maintenance of copies of the layer will hardly be required, if at all, since the
layer is often read, but rarely updated. The second tier is a collection of Bt-trees, one at each PE.
Each BT-tree independently indexes the data at its PE. Thus, though the BT-tree is a balanced
structure, the two-tier structure need not be height balanced (since the number of records at the
PEs can be different).

2.1 Illustrating Examples

We shall first illustrate with examples the proposed strategy. As data is range partitioned, we can
only move data from one PE to its neighbouring PEs. Here, a neighbouring PE refers to the PE with
the immediate preceding or succeeding range. So, all but two PEs will have two neighbours; the
PE with the starting value, and the PE with the ending value will have only one neighbour. Given
this non-overlapping data partitioning and hence non-overlapping indexes, our approach to on-line
data reorganization is to migrate the data indexed by a branch of the B*-tree in an overloaded
PE and insert it in the destination PE index by bulkloading [R97]. Note that the detachment of
a branch from the BT-tree in the source PE requires one pointer update. After bulkloading the
migrated data into a B* subtree, the attachment of the subtree to the BT-tree at the destination
PE also requires only one pointer update.

First Tier Index

Second Tier Index -
aB+ tree at each PE

BEEEEEEEEsEEECsEEE N E EIEER ‘3

Figure 1: A sample ‘global’ index structure for illustration.

Consider the example ‘global’ index structure shown in Figure 1. Suppose the key attribute
value ranges from 1 to 500 and we have 5 PEs. Moreover, assume that the records are initially
range partitioned on the key attribute across the 5 PEs such that PE i is allocated the range
[(i — 1)*100+41,*100]. From the figure, we note that there is an obvious data skew in PE 1 while
PE 2 is relatively sparsely populated. The data skew in PE 1 also increases the chances of more
queries and updates being directed to PE 1 since more records reside there. In order to resolve the
data skew, we dynamically move one or more branches from the BT-tree which has more records
(the B*-tree in PE 1 in our example) to the neighbouring B*-tree (the B*-tree in PE 2) which has

4

relatively fewer records. Figure 2 shows the index structure after removing the data skew in PE 1.
The range of the BT-tree in PE 1 is now narrower with the last key entry 75 replacing the first key
entry 100 in the first tier index. The latter now becomes the first key entry in the BT-tree in PE 2.

Next, suppose there are 10000 searches to be performed. Ideally, if there is no data skew or
any data skew has been dealt with, then an average of 2000 searches would be directed to each
PE. However, we may have an exceptionally large number of searches for records whose keys fall
in a certain range, say 0-75. This query skew may cause PE 1 to receive say 3000 queries, which
is 50% more than the average load. The B*-tree in PE 1 will be accessed 50% more than the rest
of the BT-trees in the index structure and can easily become a bottleneck if the inter-arrival time
of the queries is less than the time needed to process a query'. In order to resolve load skew, we
again dynamically move one or more branches from the BT-tree which is more heavily accessed
(the B*-tree in PE 1 in our example) to the BT-tree in the neighbouring PE (the B*-tree in PE 2)
which has relatively fewer queries (Figure 3). The ranges in the two BT-trees are again adjusted
accordingly. We observe that the B*-tree in PE 1 is now “slimmer” while the B*-tree in PE 2 is
now “fatter”. Note that what we want to achieve is to be able to “take away” one branch from the
Bt-tree in PE 1, and “pluck it” into the BT-tree in PE 2 without much complexity. In addition,
there is minimal disruption as the B*-trees in PE 1 and PE 2 continue to process queries during
the migration period.

First Tier Index

Second Tier Index -
aB+ tree at each PE

‘ z‘m‘ 17‘22’—»‘ 27‘30‘36‘39’»1 51‘60

PE1 PE2

Figure 2: The resultant index structure after migration of data from Node 1 to Node 2 to remove
data skew in Node 1.

The migration of branches in the B*-trees also requires that the index entries in the first tier
node copies to be updated. While the tier 1 entries at the source and destination PEs are updated
in the process of the migration, the other copies at other PEs are updated in a lazy manner by
piggy-backing update messages onto messages used for other purposes (such as during migration).
The 2-tier index structure remains usable even when some copies of tier 1 have not been updated.
Using our example, suppose PE 4 receives a request to retrieve the record with key value 60 after
the rightmost branch in PE 1’s BT-tree has been moved to the Bt-tree in PE 2. Suppose the tier 1
copies at PEs 1 and 2 are updated while that for PEs 3, 4 and 5 have not been updated. Therefore,
the search will be directed to PE 1. But, at PE 1, the system will automatically re-direct the search
to continue in the BT-tree in its right neighbour (PE 2) since its tier 1 entries indicates that the

!Note that when the inter-arrival time of the queries are far apart, it may be argued that there is no need to
“balance” the load, since the response time would be the same anyway. However, this is not true when the system
serves multiple users and multiple applications. If a single application accesses some PE more often than others, then
this may lead to a load imbalance in the overall system.

First Tier Index

Second Tier Index -
aB+ tree at each PE

PE1 PE2

Figure 3: The resultant index structure after migration of data from Node 1 to Node 2 to remove
load skew in Node 1.

record can be found in PE 2.

2.2 Tuning Strategies

Several issues need to be addressed when supporting data migration in response to changing access
patterns in shared nothing systems. Among these are the initiation of re-organization when load
imbalance occurs, determination of the amount of data to be migrated from the overloaded PE,
and efficient integration of the migrated data in the destination PE. We present our solutions to
these issues here.

1. Initiation of Data Migration:

We can choose to initiate data migration when the load, or response time, or the number of
jobs in the queue of a PE exceed a certain threshold. In a centralized approach, a control PE
periodically polls every PE for their workload statistics. The control PE will then determine if
there is any imbalance in the load or response time among the PEs and trigger the migration
of data from the “hot” PE to its neighbouring PEs. This approach has better control when
multiple nodes are overloaded. In this case, the most overloaded node is picked for data
migration first. Only upon its completion then will the next overloaded node be considered
(if it is still overloaded then). A more scalable approach, however, is to use distributed
data balancing where a PE determines that it is overloaded and checks its left and right
neighbours’ loads. For simplicity, we have adopted a centralized approach for the initiation
of data migration.

2. Determination of Amount of Data to Migrate:

When reorganization is initiated, it is necessary to determine the amount of data to migrate
from the overloaded node. One key factor we have in mind is that of efficiency: the amount
of the data should be determined quickly, and should facilitate efficient update to the index
structure. Thus, we propose that the amount of data be obtained from subtrees in the index
structure. This is efficient as removing the subtrees to be migrated requires only a simple
pointer update.

Our approach is a top-down adaptive strategy: at the root, we determine the number of
subtrees to be migrated; if a certain subtree’s accesses are too large, we can move down to
the next level, and repeat the process there. In order to achieve this, we need to maintain
statistics on the access pattern. In this paper, we employ a straightforward and practical way
to keep only the number of accesses to each PE. Given this minimal information, we adopt
the assumption that the accesses are evenly distributed across all subtrees of the root node at
the PE. This assumption is recursively applied to the subtrees at each node, i.e., at any node,
all accesses are assumed to be directed evenly at its subtrees. We note that to maintain the
property of BT-tree that each node be at 50% utilized, if the amount of data obtained leads
to a node falling below the utilization, then the entirety of the node will be transmitted.

However, keeping minimal information may not be sufficient for workloads that are skewed
towards some subtrees. This may call for detailed statistics to be maintained on the accesses
for every level of the Bt-tree (or even nodes or individual records). One can then obtain a
fairly exact amount to migrate, but the overhead of maintaining the statistics and updating
them can be very costly.

3. Integration of Migrated Data:

Without loss of generality, assume that we are moving data from PE p to PE q. Let us refer
to the BT-trees at the two PEs as pB'-tree and qB™-tree. Traditionally, the migrated data
are inserted one at a time into gB*-tree. This can be inefficient especially if the number of
records moved is large. To speed up the process, we exploit the concept of bulkloading. We
bulkload the migrated data into a newly created BT-tree at ¢q. We shall refer to this as the
newB™-tree. The idea is to try to build newB™-tree such that its height is the same as that
at certain level of qB*-tree. The newBT-tree can then be easily integrated into the qB*-tree
since the range of key values in the newB™-tree is always smaller (or larger) than the range
of key values in qBT-tree. During this migration period, the pBT-tree remains usable as
the newB™-tree is being built in PE ¢. Like the detachment process, the attachment of the
newBT-tree to the gB™-tree is essentially a pointer update.

To realize the proposed mechanism, we need to determine a suitable height for newB™-tree.
We present our approach here. Let the height of a branch in pB™'-tree that has been picked
for migration be pH, and the height of qB*-tree be qH. There are two cases to consider:

e pH < qgH. In this case, for the migrated branch of pB'-tree, the corresponding newB™-
tree will be constructed to be of the same height.

e pH > gH. For a B*-tree of order d (and maximum of 2d entries), the minimum and
maximum number of records to construct a tree of height qH are 2d?#~! and (2d)9"
respectively. Let the number of records moved to ¢ be N. We adopt the following
heuristics: we will construct k branches of height qH with minimum number of records
(k > 1), and the remaining records are evenly allocated to these k branches, i.e., each
of the k branches have such number of records as given by the expression

N — k24971
+—

2qu—1
k

Figures 4 and 5 give the algorithms for a branch migration between the source and destination
PEs initiated by load imbalance. For simplicity, we only show the case when pH = qH and when
the migration involves one branch of the tree. In Figure 4, the algorithm determines the source

and destination PEs for the migration (if the load exceeds a certain threshold at the source PE,
say 10-20% above the average load of the PEs in the system). The required data (and keys) are
then extracted (using routine eztract_keys), and transmitted to the destination PE (using routine
transmit). The data and the corresponding branch can then be pruned (using routine delete_branch).
In Figure 5, the migrated data is first bulkloaded to a tree of the appropriate height (routine
bulkload). The tree can then be integrated into the existing index structure, and the corresponding
separators updated accordingly.

Before we leave this section, we note that migration can wrap around the PEs by allowing the
first PE to contain two ranges. Suppose we have 5 PEs with the following key ranges: PE 1 is
assigned 1-20, PE 2 21-40, PE 3 41-60, PE 4 61-80 and PE 5 81-100. If both PEs 4 and 5 are both
overloaded, then we have the flexibility to migrate data with keys say, ranging from 91 to 100 to
PE 1. In this case, PE 1 will have two key ranges, 91-100 and 1-20. At the same time, we can also
achieve a smoother load distribution among the PEs by cascading the migration from the most
heavily loaded node to the least loaded node which can be several nodes away (Ripple migration
strategy). For example, PE 4 transfers a branch to PE 3, which in turn transfers a branch to PE 2,
which in turn transfers a branch to PE 1. In this way, we can also get a better spread of the load
across the PEs. Note that we can schedule the migrations to minimize network congestion.

3 aB*-Tree: The adaptive B*-Tree

From the last section, we observe that when the heights of the BT-trees at the source and destination
PEs are the same, migrating a branch from the source PE to the destination PE is an easy task:
the migrated branch is reconstructed to be of the same height, and attached to the destination
PE. Furthermore, there is no need to maintain any additional statistics. The adaptive B*-tree
(aBT-tree) index structure is another two-tier index structure designed to take advantage of this.
The structure has two nice properties. First, it is globally height balanced without requiring the
PEs to contain approximately the same number of records. Second, the tree is able to exploit the
bulkloading mechanism discussed in the previous section without the cost of maintaining additional
statistics.

The first tier of the aB™-tree is the same as that of the basic 2-tier structure discussed in the
previous section. In the second tier, each PE has a variation of B*-tree that indexes the data at the
PE. In our variant B*-tree, the root node can be a “fat” node, i.e., for a B*-tree of order d (and
maximum of 2d entries), the root node can contain more than 2d entries?. Furthermore, all the
BT-trees across all PEs are of the same height. To ensure this, the height is essentially determined
by the PE with the fewest number of records. For PEs with more records, the root of the B*-trees
may therefore contain more than 2d entries in order to keep the height the same across all PEs.

2 Another way of looking at this is that each PE contains multiple BT -trees of the same height.

Algorithm remove_branch()
/* Find the PE with the heaviest load */
PE: an array that records load and index information in each PE;
source = 0;
/* Determine the source PE with heaviest load */
for (i=1; i < NUM_PE; i++)
if (PE[i].Load > PE[source].Load)
source = i;
if (PE[source].Load > THRESHOLD) {
/* Determine the destination PE */
if (source == NUM_PE - 1) destination = source -1;
else if (destination == 0) source = 1;
else if (PE[source+1].Load > PE[source-1].Load)
destination = source - 1;
else destination = source + 1;

if (destination > source) {
/* Extract all the keys indexed by the rightmost pointer P,, in the BT-tree of the overloaded PE (source) and */
/* transmit them to the PE on the right (destination). The branch pointed to by P,, is deleted. */

Keys = extract_keys (PE[source].Root— Pp,);

transmit (destination, add_branch(Keys, 1));

delete_branch (PE[source].Root— Pp,);
}
else {
/* Similarly, extract the keys indexed by the leftmost pointer Py and transmit them to the PE on the left. */
/* The index entries are shifted one place to the left after deleting the branch pointed to by Py. */

Keys = extract_keys (PE[source].Root— Fp);

transmit (destination, add_branch(Keys, 0));

delete_branch (PE[source].Root— Py);

for (i=0; i<m; i++) {

PE[source].Root— P; = PE[source].Root— P 1;
PE[source].Root— K; = PE[source].Root— Kj1;

¥

PE[source].Root— P,,_1 = PE[source].Root— P,
}

}

end

Figure 4: Algorithm for initiating data migration by detaching a branch from the B-tree in the
source PE

Algorithm add_branch (Keys, Right)
/* Given a set of keys, construct a BT-tree by bulkloading and attach it to the B™-tree in the destination PE. */
/* This requires finding the separator to be inserted in the root node of the destination index. */
Ppewy = bulk load (Keys);
Let n be the number of index entries in the root node of the B*-tree atdestination;
if (Right) {
PE[destination].Root— P,;+1 = PE[destination].Root— Py;
for (i=n-1; i>0; i- -) {
PE[destination]. Root— P; 11 = PE[destination|.Root— F;
PE[destination].Root— K;,1 = PE[destination].Root— Kj;
}
PE[destination].Root— Py = Ppew;
PE[destination].Root— K = find_separator();
}
else {
PE[destination|.Root— K,, = find_separator();
PE[destination].Root— Py, 11 = Prew;

}

end

Figure 5: Algorithm for attaching a branch to the BT-tree in the destination PE

3.1 Imsert Algorithm

Inserting a new record into the aB*-tree involves determining the PE to store the record (by
searching the first tier), and inserting the record into the corresponding B*-tree. The algorithm
is similar to that of BT-tree conventional insertion algorithm except that we have to determine
when the tree grows (since all the B*-trees in the PE must be of the same height). To preserve
height balancing, all the B*-trees in the system will grow together. This is done using the following
mechanism. When a PE’s B*-tree root node (recall that root node is a fat node) is full, it will
check to see whether all the BT-trees root nodes at other PE contain more than 2d entries. Note
that this can be achieved by maintaining statistics at each PE, rather than communicating with
every PE during runtime. If some PEs’ BT-tree root node contains fewer than 2d entries, it means
that aB*-tree is not ready to grow, and an additional page is assigned as part of the fat node. On
the other hand, when all the PEs’ root nodes contain more than 2d entries, each of them will be
split and a new root node will be allocated. The height of each tree will increase by one at the
same time. Note that the first tier is unaffected by the growth.

We observe that it is possible that some PEs contain a lot more records than others. Thus, the
roots of the BT-trees in these PEs are “fat” and contain many pages while others may contain only
one page. This is not a critical issue for two reasons. First, such extreme case is not expected to be
common in practice. Second, since the fat root node is the root of the BT-tree, it is not expected
to be very large, i.e., the fat root node can be kept memory resident.

10

3.2 Search Algorithm

Given an exact match query at any PE, the first tier of the aB™-tree is accessed to determine which
PE, say p;, to go to next. The query is passed to the p; and the BT-tree there is traversed to
retrieve the required record. Many such queries can be processed by the processors concurrently as
different BT -trees are traversed. Figure 6 gives the details of the search algorithm for exact match
queries.

For a range query issued at a PE, we can determine the set of PEs whose dataset satisfy the
query. This can be done easily by examining the first tier of the aB'-tree. The query can then
be channelled to all the candidate PEs to return the portion of data that is stored there. Figure 7
shows how our range search is conducted.

Algorithm search(K)

K : search key value;

/* Given a search key value, search the first tier of the aB™-tree to find the PE that contains the record. */
/* Search will be subsequently continued in that node. */
i = get_PE (K);

ifi < 0 then abort

/* search _tree is a conventional B*-tree search routine */
transmit (i, search_tree(K));

/* Receive the result from PE i */

receive (i, Record);

return Record;

end

Figure 6: Algorithm for exact match query

3.3 Deletion Algorithm

Deleting a record involves searching for the record (using the search algorithm), and then deleting
the record as in the traditional BT-tree. However, it is possible that the deleted record causes an
underflow that results in the BT-tree shrinking in height. We address this problem as follows. We
will first try to initiate data migration in its neighbouring PE to “donate” some branches to it.
This minimizes the need to “shrink” the trees. In the event that this is not possible (because the
neighbours will underflow and shrink too if data is taken from them), then we will proceed with a
global shrinking process in order to maintain global height-balance. In other words, when a tree
shrink, all trees will also shrink. As a result of the shrinking, some BT-trees will become fat. The
algorithm is essentially similar to the traditional B*-tree deletion, where entries from all nodes are
concatenated, together with the separators at the parent node being pulled down.

11

Algorithm range search(K;, K5)
K, Ky: the range values of the range query;
Result : list of records returned to the calling routine;
/* Find all the PE that may contain records falling in the given range [Ki, Ka] . */
Result = (;
for (i=0; i < NUM_PE; i++)
if (range of data at PE[i] intersects range [K;, K3|) then
/* Btree_range_search is a conventional BT -tree rangesearch routine */
transmit (i, Btree_range search(K;, Ks);
receive (i, List);
Result = Result U List;
return Result;
end

Figure 7: Algorithm for range query

4 Performance Studies

In this section, we describe our experiments to study the performance of our self-tuning data
placement strategy using the proposed aB*t-tree. Our performance evaluation consists of both
simulation (with an actual implementation of aB+-tree) and implementation on the Fujitsu AP3000
machine. The simulation study allows us to perform sensitvity analysis which we are unable to
do on the Fujitsu AP3000 machine (because of the limited number of processors and disk space
allocated for our experiments).

For the simulation study, the metrics used are the impact on the response time of the trans-
actions and the load directed to the PEs. We examine the costs of our reorganization strategy in
terms of the number of pages accessed. We note that the number of messages generated to update
copies of the first tier index will definitely be fewer than existing replicated index structures. As
such, we do not study this metric in our experiments. We use a shared nothing parallel database
architecture where each PE consists of a processor with its own disk(s) and memory. The PEs
in the system communicate with each other by exchanging messages across the interconnection
network, set at 100 Mbit per second. Table 1 summarizes the parameters and their values used in
our experiments.

The simulation experiments comprise two phases:

1. Phase 1.
We first create an initial aBT-tree with the tuple key values generated using a uniform random
distribution. The B*-trees in the second tier are distributed to the PEs. Then we generate
10000 queries using a zipf distribution which concentrates the queries in a narrow key range.
Therefore, we have about 40% of the queries directed to a “hot” PE. This load skew will
initiate the migration of branches in the “hot” PE to its neighbouring PEs. Creating an
actual aB™-tree given the number of PEs and relation size allows us to know the the actual

12

Parameter ‘ Default Values ‘ Variations

System Parameters
index node size 4K page
number of PEs in the cluster 16 8, 32, 64
network bandwidth 200 Mbyte/s
Database Parameters
number of records 1 million 0.5 million, 2.5 million, 5 million
size of key 4 bytes
time to read or write a page 15 ms
interarrival time is exponential
with mean 1/A 10 5, 15, 20, 25, 30, 40
Query Parameters
number of queries 10000
distribution of queries using zipf distribution, | 0.1
zipf factor

Table 1: Parameters and their values.

number of keys migrated and their key range values when a branch is detached from the B*-
tree in the source PE and attached to the BT-tree in the destination PE. This information is
captured at each migration and used in the second phase.

2. Phase 2.
Here, we use the simulation package, CSIM [W93], which easily allows us to measure the
response time of the queries and the number of queries waiting in the queue. We model each
of the PEs as a resource and the queries as entities. We use the same 10000 queries generated
using the zipf distribution. The migration of a branch in a “hot” PE to its neighbouring PE
is simulated by adjusting the range of key values indexed by the BT-trees in the source and
destination PEs. This is possible with the trace obtained in the first phase of our study.

4.1 Cost of Migration

In this section, we first evaluate the cost of migration using our reorganization technique. As refer-
ence, we compare our technique with the traditional technique of inserting the keys of the migrated
data one at a time. Here, we consider the number of page accesses when data is migrated. This
metric tracks the number of index pages accessed when the BT-trees in the source and destination
PEs have to be modified due to data migration. The results are shown in Figure 8. The average
number of I0s per migration for the “Insert one key at time” approach fluctuates with the amount
of data indexed by the branch to be migrated. It is clear that the traditional method of deleting
the keys of the migrated data from the source PE index and inserting these keys to the destination
PE index is very expensive because each key requires us to start from the root and go down to
the appropriate leaf page. For this experiment, we did not use any buffer replacement strategy
because we want to study the effect of limited buffers and to get the true costs of these techniques.
We expect the costs of the two methods to be comparable if sufficient buffers are available because

13

the index nodes are likely to stay in the buffer pool between successive insertions and deletions.
In contrast, the number of page accesses required for the proposed method is low and relatively
constant even when buffering is minimal. Only the root nodes of the indexes in the source and
destination PEs are accessed to update the pointers when the data indexed by a branch of the
BT-tree is migrated.

1200 a 1200 - ©
1100 | N 1100 |
ge K o .
1000 |- A ol 1000 |- 5.
900 | o 900 | -
800 ¢ oeed 800 - o
NS
00 700 |-
600 - 600 |

500 - Bulk load migrated data -
Insert onekey at atime ---&--

500 - Bulk load migrated data -
Insert onekey at atime ---&--

Average number of I/Os per migration
Average number of I/Os per migration

400 400
300 300
200 200 |
100 100

0 N Sk sk sk sk Sk Sk Sk sk g 0 N sk 1 sk 1 1 1 Sk

0O 10 20 30 40 50 60 70 80 90 100 0 8 16 24 32 40 48 56 64

Number of migrations Number of PE in cluster
(a) A 16-PE cluster (b) Effect of varying the number of PEs.

Figure 8: Cost of migration

4.2 TImpact of Migration on Maximum Load

In this set of experiments, we study the effect of data migration on the maximum load among
the PEs. This metric tracks the maximum number of queries directed to a PE. Using this metric,
we identify the PEs which are potential bottlenecks and correct the problem by initiating data
migration to spread the load of the “hot” PE to its neighbouring PEs. This set of experiments is
conducted in the first phase using the actual aB'-tree constructed. No data migration occurs if
the loads of all the PEs are within 15% of the average load®. Otherwise, data migration is initiated
and a branch at the root level of the overloaded PE’s BT-tree is transferred to its neighbouring
PE. Note that the load threshold can be adjusted depending on how close we want the loads of the
PEs to be near the ideal.

We observe that our adaptive approach requires us to migrate subtrees from multiple levels. A
simple strategy would be to migrate a predetermined number of subtrees from a fixed level only
(static approach). To assess the benefits of the adaptive approach, we compare it with the static
strategy under two different granularities: static-coarse where only branches at the root level can
be migrated, and static-fine where branches at one level below the root of the B*-trees can be
migrated. For this experiment, we wanted the BT-trees in the PEs to have at least three levels

3 Average load is the total number of queries divided by the number of PEs in the system

14

of index nodes. Therefore, we used a page size of 1024 bytes and 2 million records to build the
initial BT-tree and distributed the second tier BT-trees to 8 PEs. Figure 9 shows the result of
this experiment. We observe that the performance gain is more gradual for static-fine compared to
static-coarse. This is because the amount of data migrated is limited to those indexed by branches
of the Bt-tree. As shown, our adaptive approach is superior as it is able to migrate the right
amount of data.

Max load

100 Static-Coarse -
Static-Fine ---&--
Adaptive —=—

0 1 1 1 1 1 1 1 1 1 J
0 10 20 30 40 50 60 70 80 90 100
Number of Migrations

Figure 9: Comparison of maximum load when granularity of migrated data vary

Since the adaptive approach performs best, we shall not discuss the static approach further in
subsequent experiments. In the next experiment, we study the maximum load and load variation
among 16 PEs after 10000 queries. The result is shown in Figure 10. We note that data migration
is able to reduce the maximum load in the “hot” PE by 40% when branches at the root level of the
BT-trees are migrated.

Finally, we investigate scalability and sensitivity of data migration on maximum load when we
vary the number of PEs in the system and the size of the dataset. We observe that the maximum
load drops when we increase the number of PEs in the system. This is expected because the dataset
is now distributed over more PEs which in turns distribute the load. In addition, the set of queries
used is generated using the zipf distribution over 16 buckets to create load skew in our default
system of 16 PEs. When we use a highly skewed set of queries generated using the zipf distribution
over 64 buckets, there is hardly any reduction in the maximum load. Instead, the bulk of the load
is still directed to the “hot” PE in the system which is gradually corrected by data migration.
Figure 11 shows the results of these experiments.

Figure 12 shows that maximum load in the system of 16 PEs when we vary the size of the
dataset. We observe that the maximum load does not change much as the zipf distribution dictates
the proportion of queries being directed to each PE. In all cases, we see that the maximum load
has been reduced by 50% after migration of data from the overloaded PE.

15

400 400
. * * *
A=
my \
300 ., 300 Without Migration -~
B With Migration ---e---
B-eg.
.

g [0}
g B
= 200 o 200 [!
B J
= d’_

100 Without Migration - 100 i

With Migration ---&-- /

R, "

N A AN A
B g \E’/ \k,,&‘w *
0 Il Il Il Il J 0 Il Il Il Il Il Il Il Il Il Il Il Il Il J
0O 10 20 30 40 50 60 70 80 90 100 0123 456 7 8 910111213141516
Number of Migrations PE
(b) Load variation in the PEs

(a) Maximum load in a system of 16 PEs
Figure 10: Effect of migration on maximum load

* . *
* Without migration - *
With migration ---&-- 500 | *
30 - 400 |
§ B § 300 =
& 200 \EL *...) e
s \‘\‘ e) > e R
\\‘\. ;;;;‘E‘“—~‘
T - e g
100 Tl X
= 100 Without migration -
With migration ---&--
0 1 1 1 1 J 0 1 1 1 1 J
0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64
Number of PE in cluster Number of PE
(b) Query set generated using zipf distribu-
tion over 64 buckets

(a) Query set generated using zipf distribution
Figure 11: Comparison of maximum load when number of PEs vary

over 16 buckets

16

K]
= 200
% B G--8- . o
s [R o
100 Without migration -
With migration ---&--
0 1 1 1 1 J
0 1 2 3 4 5

Number of tuplesin dataset (in millions)
Figure 12: Comparison of maximum load when size of dataset vary

4.3 Impact of Migration on Response Time

In this set of experiments, we examine the effect of data migration on response time of a query.
No data migration occurs if the job queues of all the PEs has less than 5 queries waiting to be
processed. Otherwise, data migration is initiated by picking the PE with the most number of
queries waiting in the queue as the source PE. Figure 13 shows the average response time of a
PE and the response time of a query for the most heavily loaded PE in a system of 16 PEs. Our
results affirm the effectiveness of distributing some index branches (and hence data pages) in the
overloaded PE to their neighbouring PE to reduce the average response time, thus increasing the
throughput of the system. In fact, the response time of a query in the “hot” PE differs greatly
from the average response time of 30 ms # in the lightly loaded PE. Given the extreme skews in the
queries, the “hot” PE received a disproportionate number of queries. This extreme response time
variation is narrowed with data migration.

Experiments to study the scalability and sensitivity of data migration on the average response
time of a query includes varying the mean interarrival time of the queries, the number of PEs in
the system and the size of the tuples in the dataset. The results are shown in Figures 14 and 15.
We note that the average response time increases exponentially when the mean interarrival time
is less than 15 ms. This also occurs when the number of PEs in the system is less than 32. The
average response time of the system remains quite the same at about 480 ms when the size of the
dataset is less than 2.5 million tuples. There is a sharp increase when the dataset is 5 million due
to the increase in the height of the BT trees in the PEs. In all these cases, data migration is able
to improve the average response time by at least 60%. We see that our data migration strategy is
able to correct performance degradation of the system effectively.

“Given that the average height of the BT -trees in the PEs are 1, an average of 2 page accesses is needed to retrieve
a required tuple.

17

x
« 7000 |
) —_ 6000 - Without migration ——-—
400 Without migration ------ With migration ---=-- $
With migration ---&-- Ed 5 .
@ IS
13 * c 5000 | ¥
S = ’
= w
g 300 * £ *
= o B 4000 v
2 £
5 200 | B 3000 - Ee
g .,*/ v/’E”E—\-ﬂ\;bﬂ; 5 o me-E
> .8 g 5— A8 h= a
< L & 2000 S
100 P
%'/‘ 1000 - S
o
Il Il Il Il Il Il Il Il Il J 0 Il Il Il Il Il Il Il Il Il J
0 1000 2000 3000 4000 5000 6000 7000 8000 900010000 0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
Number of queries Number of queries
(a) Average response time for a system of 16 (b) Response time in “hot” PE
PEs

Figure 13: Effect of migration on response time

2000

- *
Without migration -
, With migration --& -
o i
— \‘
() \
£ \
£ \
° '
£ !
8 v
% 1000 !
H>3 ; 1:
z 1
[
y\ .
R
0 L .) B I B

0 5 10 15 20 25 30 3B 40
Mean interarrival rate (in ms)

Figure 14: Comparison of response time when the mean interarrival rate vary

18

2000

*
* !
i 2000 | Without migration -
With migration - -& -
1500 ; Without migration ------ .
@ ; With migration ---& - @
£ £
E E 1500
° B <
£ ' £
9 : 8
= 1000 \ =
g g 1000 |
L L
ol 4 ol
< <
500 | i
Y 500 ' xoek *
.\ .
L . @B
0 | | |) \'\‘E 1) 1 R 0 = | | | |)
0 8 16 24 32 40 48 56 64 0 1 2 3 4 5
Number of PE in cluster Number of tuplesin dataset (in millions)
(a) Vary number of PEs in system with 1 mil- (b) Vary size of dataset in a system of 16 PEs

lion tuples

Figure 15: Comparison of response time

4.4 Empirical Results on Fujitsu AP3000

As mentioned, we also implemented our reorganization techniques on the Fujitsu AP3000 machine.
The Fujitsu AP3000 machine is a massively parallel processor system based on 32 Sun UltraSparc
workstations connected by Fujitsu’s proprietary high speed switch (200 Mbyte/s), the APnet. Given
the high bandwidth of the network, it is hardly a bottleneck during reorganization. We investigate
how our techniques perform in a real multi-user environment with competing processes.

We run experiments on AP3000 to study the impact of migration on the response time and
load directed to the processors. Figure 16 shows the response time in the overloaded processor
in a 16 node cluster and the average response time when the number of processors in the cluster
varies. Although we could only use up to 16 processors, the empirical results obtained confirm the
results from the simulation experiments. In general, while the experimental curves are roughly the
same, the actual response time obtained on AP3000 is higher than the simulation results due to
competing processes in a multi-user environment.

5 Conclusion

To the best of our knowledge, this is the first paper to propose an index-based tuning technique
which enables fast determination of the amount of data to be migrated from an overloaded PE and
efficient bulkloading of the migrated data in the destination PE. The granularity of the data to be
migrated can be suitably varied by using branches at different levels of the index. This adaptive and
incremental tuning strategy allows the system to respond sensitively to access changes, minimizing

19

Without migration - & Without migration -
With migration ---&-- % With migration ---&--
£ 30t % 30 F “a
§ X c *
* = 5
S * £
=% s =
B X 8
2 2t : S 20t
_g x oK @- ‘
E o) U
= BO-E-28-5 \ x
g ; BB aB-ggg o5 j% B ey
% X B 2 R
10 | Wi 10 |
4 &
&
8-
0 1 1 1 J 0 1 1 1 J
0 5000 10000 15000 20000 0 4 8 12 16
Number of queries Number of PE in cluster
(a) Response time in “hot” PE (16 node clus- (b) Average response time when number of
ter) PE in cluster vary

Figure 16: Experiments on response time in AP3000

heavy data movement and costly index updates.

We have designed a two-tier index structure to facilitate data access and data migration in
clusters. The first tier is a partitioning vector to direct the search in the PE where the data is
stored while the second tier is a collection of non-overlapping B*-trees, one at each PE. The first
layer is replicated in all the PEs to ensure that there is no central PE through which retrievals and
updates must pass. This design also eases maintenance as updates to copies of this layer during
migration is done lazily by piggybacking them on messages used for other purposes. We see further
reduction in data migration overheads when the two tier index structure is globally height-balanced
as in our adaptive BT-tree (aB™-tree).

We have demonstrated how a seemingly simple strategy can be yet scalable and effective in
correcting any degradation in system performance when access patterns changes dynamically. We
are currently extending this research to distributed spatial indexes.

References

[AON96] K.J. Achyutuni, E. Omiecinski, and S.B. Navathe. Two techniques for on-line index
modification in shared nothing parallel databases. Proc. ACM SIGMOD, 1996.

[ACP94] T.E. Anderson, D.E. Culler, and D.A. Paterson. A case for NOW (Network of Worksta-
tions). IEEE Micro 15 (1), pp 54-64, 1995.

[JK93] T. Johnson and P. Krishna. Lazy updates for distributed search structure. Proc. ACM
SIGMOD, pp 337-346, 1993,

20

[KJ92]

[KW94]

[L96]

[MN92]

[088]

[OLS92]

[R97]

[RBMY7]

[SL1]
[SG8S]

[SWZ94]

[SWZ98]

[ST96]

[TOK97]

[W93]

[VBWYS]

[ZS96]

[2598]

P. Krishna and T. Johnson. Implementing distributed search structures. Technical report
available at cis.ulf.edu:cis/tech-reports/tr92/tr92-032.ps.Z, 1992.

B. Kroll and P. Widmayer. Distributing a search tree among a growing number of pro-
cessors. Proc. of ACM SIGMOD, pp 265-276, 1994.

D. Lomet. Replicated Indexes for Distributed Data. Proc. of Conference on Parallel and
Distributed Information Systems, pp 108-119, 1996.

C. Mohan and I. Narang. Algorithms for Creating Indexes for Very Large Tables without
Quiescing Updates. SIGMOD Record 21(2), pp 361-370, 1992.

E. Omiecinski. Concurrent Storage Structure Conversion: From B*-tree to Linear Hash
File. 4th International Conference on Data Engineering, pp 589-596, 1988.

E. Omiecinski, L. Lee and P. Scheuermann. Concurrent File Reorganization for Record
Clustering: A Performance Study. 8th International Conference on Data Engineering,
PP 265-272, 1992.

R. Ramakrishnan. Database Management Systems. McGraw-Hill, 1997.

D. Ridge, D. Becker, P. Merkey and T. Sterling. Beowulf: Harnessing the power of
parallelism in a pile of PCs. Proc. IEEE Aerospace, 1997.

B. Seeger and P.A. Larson. Multi-Disk B-trees. Proc. ACM SIGMOD, 1991.

D. Shasha and N. Goodman. Concurrent search structure algorithms. ACM Transactions
on Database Systems, 13(1), pp 53-90, 1988.

P. Scheuermann, G. Weikum, and P. Zabback. Disk cooling in parallel disk systems.
Bulletin of the Technical Committee on Data Engineering, 17(3), pp 29-40, 1994.

P. Scheuermann, G. Weikum, and P. Zabback. Data Partitioning and Load Balancing in
Parallel Disk Systems. VLDB Journal, 7(1), 1998.

G.H. Sockut and B.R. Iyer. A Survey of Online Reorganization in IBM Products and
Research. Bulletin of the Technical Committee on Data Engineering, 19(2), pp 4-11, 1996.

T. Tamura, M. Oguchi, M. Kitsuregawa. Parallel Database Processing on a 100 Node PC
Cluster: Cases for Decision Support Query Processing and Data Mining. Proc. of SC97:
High Performance Networking and Computing, 1997.

K. Watkins. Discrete event simulation in C. McGraw-Hill, 1993.

R. Vingralek, Y. Breitbart and G. Weikum. SNOWBALL: Scalable Storage on Networks
of Workstations. Distributed and Parallel Databases, 6(2), 1998.

C. Zou and B. Salzberg. On-line reorganization of sparsely-populated B+ trees. Proc.
ACM SIGMOD, pp 115-124, 1996.

C. Zou and B. Salzberg. Safely and Efficiently Updating References During On-line Re-
organization. Proc. VLDB, 1998.

21

