
XML Structures for Relational Data

Wenyue Du Mong Li Lee Tok Wang Ling
 School of Computing

National University of Singapore
Singapore 117543

{duwenyue, leeml, lingtw}@comp.nus.edu.sg

Abstract
XML is increasingly being adopted for information
publishing on the World Wide Web. However, the
underlying data is often stored in the relational databases.
Some mechanism is needed to convert the relational data
into XML data. In this work, we employ a semantically rich
semistructured data model, the Object-Relationship-
Attribute model for semistructured data, as a middleware
to support the schema conversion from semantically
enriched relational schema to XML Schema. This
approach allows us to handle the translation of a set of
related relations and to distinguish attributes of
relationship types from attributes of object classes, multi-
valued attributes, and different types of relationships such
as binary, n-ary, recursive and ISA. The resulting XML
structures are able to reflect the inherent semantics and
implicit structure in the underlying relational database. We
also show that the appropriate use of references is able to
avoid unnecessary redundancy and the proliferation of
disconnected XML elements.

1. Introduction

XML is emerging as a standard for information publishing
on the World Wide Web. However, the underlying data is
often stored in traditional relational databases. Some
mechanism is needed to convert the relational data into
XML data. We can classify existing approaches to publish
XML data from relational databases as follows:
1. Customized translation of relational data to a “pre-

defined” schema for XML data. For instance, a new
language RXL to specify XML views of the relational
data is proposed in [6] and extended Nested SQL
statements are introduced in [12] to specify XML
element construction.

2. No “pre-defined” schema information is required.
That is, default XML views are produced according to
the structures of the relations in [1,13,15].
One of the major challenges in both the approaches is

to find an effective way to generate an XML structure that
is able to describe the semantics and structure in the

underlying relational database. XML consists of nested
element structures and the relationships of elements are
modeled directly by hierarchies and references. In contrast,
relational data is flat and normalized. As a consequence,
the translation from relational data to XML is often not
intuitional but rather complex. The first approach utilizes a
significant amount of customized code to construct the
XML structure, which is typically subjective and
inaccurate. The transformation techniques employed in the
second approach currently lack a detailed analysis of the
relational schema and focus on single relation conversions.
As a result, the XML data is either flattened into tuples
containing many redundant elements, or has many
disconnected XML elements.

In this paper we develop a methodology which
employs the semantically rich Object-Relationship-
Attribute model for semistructured data (ORA-SS) [5] in
the translation process. ORA-SS has characteristics which
are very similar to XML: self-describing, deeply nested or
even cyclic, and irregular. At the same time, ORA-SS
models a rich variety of semantic constraints in the
underlying relational database, and represent the implicit
structures of relational data using hierarchy and
referencing. In our proposed relational to XML Schema
translation, we want to satisfy the following requirements:
1. Generate an XML structure that is able to describe the

semantics and structure in the underlying relational
database.

2. Allow the translation of a set of related relations
instead of simple single relation/relationship
conversions.

3. Obtain properly structured XML data without
unnecessary redundancies and proliferation of
disconnected XML elements.
Figure 1 shows the steps in our proposed translation:

Semantic

Enrichment

ORA-SS to
XML-Schema

Algorithm
Translation

RulesRelational
Schema

Semantically
Enriched
Relational
Schema

ORA-SS
Schema
Diagram

XML-
Schema

Figure 1. Relational-to-XML Translation

In the semantic enrichment of a relational schema, we
will identify the following inherent semantics and implicit
structure in the relational schema:
1. Object relations that represent regular and weak entity

types.
2. Relationship relations that represent various

relationship types, such as binary, n-ary, recursive and
ISA (inheritance) relationship types.

3. Fragments of object relations or relationship relations
that represent single-valued and multivalued attributes
of entity types or relationship types.

4. Cardinality constraints
The semantic information is then represented

explicitly in an ORA-SS schema diagram from which an
XML Schema is subsequently derived. We will present a
set of translation rules to translate a semantically enriched
relational schema to an ORA-SS schema diagram, and an
algorithm to generate an XML Schema from an ORA-SS
schema diagram.

The rest of the paper is organized as follows. Section
2 reviews the concept of semantic dependencies and
illustrates how it can be used to provide a more accurate
analysis of the relational schema. Section 3 presents the
rules to translate a semantically enriched relational schema
to an ORA-SS diagram. An algorithm to generate an XML
Schema from an ORA-SS diagram is also given. Section 4
gives a discussion of related work and we conclude in
Section 5.

2. Semantic Enrichment of Relational

Schema

The semantic enrichment of relational schemas has been
extensively studied in [3, 7, 9, 11]. Functional
dependencies and inclusion dependencies have
traditionally been used to aid the translation of relational
database into semantic data models such as the Entity-
Relationship model [4] and the object-oriented model [2].
However, functional dependencies and inclusion
dependencies are basically constraints to enforce the
integrity of a database. [9] introduces the concept of
semantic dependencies to represent the relationship
between two sets of attributes at a semantic level. We will
use the relational schema of a university database shown in
Figure 2 to review and illustrate the main concepts.
1. An entity key denotes the identifying attribute(s) of

real world entities. The notion of an entity key is
different from the traditional concept of a key.
For instance, in the all-key HOBBIES relation in
Figure 2, the entity key is S# because it identifies the
entity type STUDENT uniquely while HOBBY is just
an attribute of STUDENT.

2. An attribute A, which is not a part of any entity key, is
said to be semantically dependent on a set of entity
keys if the value of A needs to be updated whenever
the value of some entity key in the set changes.

Consider the STUDENT relation in Figure 2. Suppose
REGISTRATIONDATE is the date when a student
registers at a department. REGISTRATIONDATE is
semantically dependent on {S#, D#}, denoted by
{S#,D#} REGISTRATIONDATE. This indicates
that REGISTRATIONDATE is meaningful only when
associated with S# and D# together. Note that
REGISTRATIONDATE is functionally dependent on
only S# because a student can only register at only one
department.

3. Two entity keys are semantically equivalent if they
both identify the same entity type.

4. A set of entity keys is a semantic key K of a relation if
any semantic dependency K’ A in R implies K is
semantically equivalent to K’.
For instance, entity keys CODE is the semantic key of
Course, and {CODE, S#} is the semantic key of
relation C_S_1. In Figure 2, all the semantic keys in
the university database are indicated in bold.

COURSE(CODE, TITLE) Group 1
 The courses held in the university
DEPT(D#, DNAME)
 The department of the university
TUTORIAL(T#, TUTORIALTITLE)
 The tutorials of the courses
NOTES(NOTE-ID, LECTURER)
 The notes for a course, provided by one lecturer
HOBBIES(S#, HOBBY)
 The hobbies of a student
STUDENT Group 2
(S#, SNAME, REGISTRATIONDATE,D#)
 The students registering to a department.
COURSE_NOTES Group 3
(NOTE-ID, CODE)

Defines a 1-m relationship between course and
notes

C_S_1(CODE, S#, GRADE)
Defines a m-n relationship between course and
student

ATTEND(CODE, T#, S#)
Defines a ternary relationship among course,
student and tutorial

COURSEMEETING
(CODE, S#, MEETINGHISTORY)
Records meeting histories of courses and students.

Figure 2. Relational schema of a university database

The above concepts are useful in clustering the

relations and attributes in a relational schema. Relations
are classified into the following three types:
• Object relation whose semantic key consists of only

one entity key, or more than one entity keys which are
semantically equivalent.

• Relationship relation whose semantic key consists of
more than one entity keys which are not semantically
equivalent.

• Mix-type relation which does not have any semantic
key. This type of relations will be subsequently split
into object relations and relationship relations.

Example 1. Consider the university database in Figure 2.
The relations are classified into object relations, mix-type
relations and relationship relations as indicated by Group 1,
Group 2 and Group 3 respectively. STUDENT relation
under Group 2 is a mix-type relation because it has two
semantic dependencies S# SNAME and {S#, D#}
REGISTRATIONDATE, but S# and {S#, D#} are not
semantically equivalent. We split relation STUDENT into
an object relation and a relationship relation as follows:

STUDENT (S#, SNAME)
STUDENTDEPT (S#, D#, REGISTRATIONDATE)

Attributes are classified into object attributes and
relationship attributes:
• If an attribute is semantically dependent on exactly

one entity key or more than one entity keys which are
semantically equivalent, then it is an object attribute.

• If an attribute is semantically dependent on more than
one entity keys which are not semantically equivalent,
then it is a relationship attribute.
REGISTRATIONDATE, GRADE and MEETING-

HISTORY are relationship attributes in the university
database (See Figure 2).

By using semantic dependencies together with
functional dependencies and inclusion dependences, we
can identify relationship relations that represent binary,
ternary, recursive1, or ISA relationship type2, and object
relations that represent weak entity type3. From the
multivalued dependencies, we can identify that the
HOBBIES relation is a fragment4 of the object relation
STUDENT, and COURSEMEETING is a fragment of the
relationship relation C_S_1. Furthermore, we can also
establish the cardinalities of relationship types. This
is important to generate an XML Schema correctly.
The different possible cardinalities include 1-1, 1-m, m-
1 and m-n. For the rest of the paper, we shall assume that
the relations and attributes in a relational schema have
been clustered, and the various relationship types and
cardinality constraints have been identified as shown in
Figure 2.

1 A recursive relationship type is one in which an entity type participates
more than once, assuming a different role upon each entry type into the
relationship type.
2 An ISA relationship type indicates that a lower-level entity type is
formed by taking a subset of a higher-level entity type.
3 The existence of a weak entity type entity depends on the existence of
an associated regular entity type entity.
4 Fragment relations are caused by the existence of multi-valued attribute
of the entity type.

3. Relational to XML Translation

3.1 ORA-SS Model

In our study, we found that the quality of the resulting
XML Schema depends not only on the transformation
methodology, but also on the expressiveness of the chosen
semistructured data model. We adopt ORA-SS because it
is a semantically richer data model that has been proposed
for semistructured data compared to the existing models
such as OEM [10], XOM [17]. We will briefly review the
ORA-SS model in this section.

ORA-SS distinguishes between object classes,
relationship types and attributes. In an ORA-SS schema
diagram, object classes are denoted by labelled rectangles
and relationship types are denoted by directional labelled
edges. The direction of the edge is from the parent object
class to the child object class. The label indicates the
information of relationship name, degree, cardinality
constraint on the parent and child object class. Attributes
are denoted by labelled circles and keys are indicated by
filled circles. ORA-SS not only reflects the hierarchy
structure of semistructured data, but also provides
references to indicate that the referenced object class is not
materialized in a nesting relationship within its parent.
References are denoted by the dashed arrows from a
referencing object class to a referenced object class.

Figure 3 shows one of the possible ORA-SS schema
diagrams that models the university database. COURSE,
STUDENT and DEPT are root object classes. COURSE
has a child object class NOTES. The label (2,1:n,1:1) on
the edge between COURSE and NOTES indicates a binary
relationship type between COURSE and NOTES (denoted
by 2). There can be one or many NOTES for each
COURSE (denoted by 1:n). A NOTES is used by only one
COURSE (denoted by 1:1). Note that such cardinality
constraints can be obtained from the semantically enriched
schema.

By employing the ORA-SS schema diagram as a
middleware in the relational to XML translation, we can
separate the task of designing XML Schema from the
detailed analysis of semantics and structures of underlying
legacy data. Furthermore, ORA-SS offers a visually
effective way of designing and maintaining XML Schema.
We note that traditional semantic data models such as the
Entity-Relationship model cannot support XML naturally
and fully. For example, reference is an important concept
in XML schema. This feature can be explicitly represented
using an ORA-SS schema but not the ER model.

3.2 From Semantically Enriched Relational
schema to ORA-SS

We will now present three sets of rules for translating a
semantically enriched relational schema to an ORA-SS
schema diagram.

STUDENT

SNAMES#

DEPT

DNAMESTUDENT D#

STUDENTDEPT
2,0:n,1:1

REGISTRATION
DATE

GRADE

COURSE

CODE STUDENT

C_S_1
2,1:n,1:n

C_S_1

NOTES TITLE

NOTE-ID LECTURER

STUDENTDEPT

2,1:n,1:1

HOBBY
*STUDENT

C_S_2
2,1:n,1:n

TUTORIAL

ATTEND
3,1:n,1:n

TUTORIAL

T# TUTORIAL
TITLE

C_S_1

MEETING
HISTORY

*

Figure 3. An ORA-SS Schema Diagram

1. Object relation rules that translate object relations

into ORA-SS object classes.
2. Relationship relation rules that translate relationship

relations into ORA-SS relationship types represented
as hierarchies and references.

3. Combination rules that are applied to the result
obtained from the application of object and
relationship rules to generate the final translation.

We note that the translation of a relational schema to
an ORA-SS schema diagram differs from the translation
of a relational schema to a hierarchical model. This is
because there are distinct differences between ORA-
SS/XML and traditional hierarchical databases (e.g., IMS
system). For example, we can have cycles or self-
referencing in XML but not in hierarchical database (e.g.,
IMS system). Moreover, virtual pointers in hierarchical
databases cannot have further structures (e.g. attributes
and child record types) as reference elements in XML.

3.2.1 Object Relation Translation Rules

Rule O1: Regular Object Relation Rule. Create an
ORA-SS object class O for each regular object relation R.
The connecting structure of these object classes depends
upon the relationship types among them. Each attribute of
R is mapped to an ORA-SS object attribute of O. The
primary key of R becomes the key of O. Note that
attributes of a regular object relation are mapped into
single-valued attributes of O. □

Rule O2: Fragment of Object Relation Rule. Each
fragment Rf of an object relation R is mapped into an
ORA-SS attribute A of an object class OR, where OR is the
ORA-SS object class corresponding to R. The cardinality
of A is determined by the cardinality of Rf.. Table 1 shows
the mapping rules. □

Example 2. HOBBIES (Rf) is a fragment of the object
relation STUDENT (R). Attribute HOBBY (K1) in the
relation HOBBIES is mapped to a simple multivalued
attribute HOBBY (A) (labelled by “*”) of STUDENT (OR).

This mapping is shown in Figure 4.

STUDENT

SNAMES# HOBBY
*

Figure 4. A fragment relation is mapped to a multivalued

object attribute

Rule O3: Weak Entity Type Rule. Each object relation
RB which represents a weak entity, is mapped to a child
object class OB of OA which represents the associated
regular object relation RA. Note that RB is viewed as a
composite multivalued attribute of OA if RB does not
contain non-key attribute. Each attribute of RB is mapped
to an object attribute of OB., except the entity key EB
(which is a part of the primary key of RB) with the
inclusion dependency: RB[EB] ⊆ RA[KA], where KA is the
semantic key of RA. □

NOTES

VERSIONS

2,0:n,1:1

NOTE-ID LECTURER

VERSION DATE
Figure 5. An object relation representing weak entity type

is mapped to a child object class

Example 3. Suppose object relation VERSIONS (NOTE-
ID, VERSION, DATE) defines the versions of a lecture
notes. Assume that we identify VERSIONS (RB) represents
a weak entity type entity of NOTES, then it is mapped to a
child object class VERSIONS (OB) of the object class
NOTES (OA). The entity key NOTE-ID will not be
mapped as the key of VERSIONS. This indicates that
VERSIONS must be associated with the object class
NOTES. Figure 5 shows the mapping.

Mapping Rules
Definition of Rf n>1 n=1

Cardinality of
OR - {A1…An}

 Rf (K, A 1…A n) K {A1…An} m-n
 Rf (K, A 1…A n) K {A1…An}

{A1…An} is mapped to a
composite multivalued
attribute

A1 is mapped to a simple
multivalued attribute

1-m
 Rf (K , A 1…A n) K {A1…An} 1-1
 Rf (K, A1…An) K {A1…An}

{A1…An} is mapped to a
composite single-valued
attribute

A1 can be viewed as an
attribute m-1

* Rf [K]⊆R[KR], where KR is the semantic key of relation R.

Table 1. Mapping Rules for the Cardinality of an Attribute

3.2.2 Relationship Relation Translation Rules

Theoretically, ORA-SS allows the cardinality constraint
on the child object class to be “zero”. However, in an
XML document, each child element must be associated
with a parent element. Here, we enforce the cardinality
constraint on the child object classes to be “one” or more.

In the following rules, we assume RAB is a binary
relationship relation where its semantic key consists of
two entity keys of two entity types A and B. A and B are
represented as two object relations RA and RB respectively.

Rule R1: 1-m Relationship Rule. Let RAB represent a 1-
m relationship type (say R), the cardinality of entity type
A is “one”, and the cardinality of entity type B is “many”.
Case 1: If all the entities of B participate in R, then RA is

mapped to a parent object class OA and RB is
mapped to a child of OA.

Case 2: If all the entities of A participate in R, and RB has
been mapped as a child of another object class or
not all the entities of B participate in the
relationship, then RB is mapped to a parent object
class OB and RA is mapped to a child of OB.

Case 3: If there exist entities of either A or B not
participating in R, then RA and RB are mapped to
OA and OB respectively. OA and OB is connected
using reference.

Each relationship attribute is mapped to an attribute of an
ORA-SS relationship type. If the associated relationship is
represented using references, then we attach the attribute
to the referencing object class. Otherwise, we attach it to
the child object class. □

Example 4. Suppose STU_ADVISOR(S#, STAFF#)
represents a 1-m relationship type involving object
relations ADVISOR(STAFF#, POSITION) and STUDENT.
The cardinality of ADVISOR is “one” and that of
STUDENT is “many”. Note that STUDENT cannot be
mapped as a child of ADVISOR if not all students are
assigned to an advisor. According to Case 2 in Rule R1,
ADVISOR is a child object class of STUDENT if every
advisor must advise one or more students.

This mapping is shown in Figure 6.

STUDENT

SNAMES# ADVISOR

POSITIONSTAFF#

STU_ADVISOR
2,1:1,1:n

Figure 6. A 1-m relationship type is mapped to a

hierarchical structure

Rule R2: m-n Relationship Rule. Let RAB represent a m-
n relationship type, it is translated as follows: The
referencing object is set below one object class (say OA)
to connect the other (say OB) (the referencing direction
may be decided by applications). Particularly, referencing
object is used on both sides in order to describe the
symmetric relationship. The relationship attributes are
attached to the referencing object(s). □

Example 5. Consider the m-n relationship relation C_S_1
with object relations COURSE (RA) and STUDENT (RB).
Existing works have handled m-n relationship types by
creating a new object class to aggregate the references
which connect the participating object classes. Figure 7
shows an ORA-SS schema diagram that aggregates
referencing attributes for the C_S_1. This creates too
many references and cause poor query response time
while avoiding data redundancies. In additional, such a
flat structure is not suitable to represent the relationship at
the semantic level. In contrast, Figure 8 shows one of
possible ORA-SS schema diagrams produced according
to Rule R2. We conducted some experiments to compare
the performance of the various ways to map an m-n
relationship. Our experiments proved that the
performance of direct referencing is much better than
introducing a new structure to aggregate the references as
we try to navigate from one element (say COURSE) to
others (say STUDENT) through references. Besides, such
hierarchical structure is semantically richer.

CS

GRADE

COURSE

TITLECODE

STUDENT

SNAMES#

Figure 7. A m-n relationship is mapped to a new object
class

GRADE

COURSE

TITLECODE

STUDENT

SNAMES#STUDENT

C_S_1,
2,1:n,1:n

C_S_1

Figure 8. A m-n relationship is mapped to a reference

Rule R3: Recursive Relationship Rule. Recursive
relationship type is translated as follows: The
participating object relation is mapped to an ORA-SS
object class (say O), and the referencing object is set
below the object class to connect O. In order to describe
the symmetric relationship, two collections of referencing
attributes need to be used to reference to O. One
collection holds those objects to which it contributes, and
the other holds those objects that it comprises. □

Rule R4: ISA Relationship Rule. ISA relationship type
is represented as the hierarchy structure. If B ISA A, then
RB is mapped to a child object class (OB) of OA. Note that
the entity key EB of RB with the following inclusion
dependencies: RB[EB]⊆RA[K], where K is the semantic
key of RA, need to be contained in OB. □

Example 6. Suppose we have an object relation
PERSON(SSNO, GENDER, RACE), where social security
No. (SSNO) also appears in STUDENT relation as a
candidate key. We can identify that STUDENT ISA
PERSON by the enrichment algorithm [9]. Figure 9 shows
the mapping of such an ISA relationship type. The entity
key SSNO (EB) is mapped to the candidate key attribute of
both PERSON (OA) and STUDENT (OB) because it is the
identifying attribute of PERSON as well as STUDENT.

PERSON

STUDENT

2,0:1,1:1

SSNO GENDER RACE

S# SSNO SNAME

Figure 9. An ISA relationship type is mapped to a
hierarchical structure

Rule R5: n-ary Relationship Rule. Object relations such
as R1, R2, …, Rn participating in n-ary relationship type
can be translated as follows: Let object relations R1, R2, …,
Rn be mapped to ORA-SS objects O1, O2, …, On
respectively. We choose a path and create the referencing
objects sequentially (the path may be decided by
applications). Without loss of generality, create a
referencing element (say O2

r) below O1 to connect with
O2, and then create a referencing object O3

r below O2
r to

connect with O3, and so forth until all the participating
objects are connected. Particularly, the level of each
referencing object is determined by the aggregations,
where aggregations are a means of enforcing inclusion
dependencies in a database, if the aggregations are
available. □

Example 7. Suppose the object relations COURSE,
STUDENT and TUTORIAL participate in a ternary
relationship ATTEND. If we have the following inclusion
dependencies: ATTEND[CODE,S#] ⊆ C_S_1[CODE,S#],
then we will create the referencing object class
TURORIAL at the lowest level to enforce referential
integrity as shown in Figure 3.

Rule R6: Fragment Relationship Relation Rule. Each
fragment of relationship relation is mapped to a composite
and/or multivalued attribute in the same way as the
translation of the fragment of object relation. The edge
connecting to such attributes is tagged with the
relationship name in order to show which relationship it
belongs to. □

Example 8. Attribute MEETTINGHISTORY in the
relation COURSEMEETING, which is a fragment of CS
(COUSEMEETING[CODE, S#] ⊆ C_S_1[CODE,S#]), is
mapped to a simple multivalued attribute MEETING-
HISORY below the referencing object STUDENT (ref. to
Figure 8). Figure 10 shows the mapping.

GRADE

COURSE

TITLECODE

STUDENT

SNAMES#STUDENT

C_S_1,
2,1:n,1:n

C_S_1

MEETING
HISTORY

*
C_S_1

Figure 10. A fragment relation is mapped to a multivalued

attribute of a relationship type

3.2.3 Combination Rules

Consider the case where an object relation R is a
candidate child object class for more than one relationship
type. For example, we can have STUDENT and PERSON
participate in the ISA relationship type. At the same time,

Translation of Priority Reasons

Fragments of Object class 1st These fragments actually represent attributes of an object.
ISA, weak type and recursive relationship type
and their fragments 2nd

There exist high semantic cohesion among these participating
objects.

1-1 and 1-m relationship type and their
fragments 3rd

These relationship types are potentially represented as hierarchy
structure.

m-1 relationship type and their fragments 4th
M-1 relationship is potential hierarchy structures. Note that we
usually view it as 1-m relationship in order to reduce
redundancies caused by nesting.

m-n, n-ary relationship type and their fragments
5th

Table 2. Priority rules

STUDENT and DEPT participate in the 1-m
relationship type STUDENTDEPT. We observe that
STUDENT is a potential child object class of either
PERSON or DEPT, and we need to decide which one
should be its parent object class. Note that if we use
references to connect STUDENT with DEPT and
PERSON, it will induce many disconnected XML
elements and cause poor query response time. With this
in mind, we use the notion of cohesion proposed in [14]
to represent the strength of the relationship among
entities. This notion has been applied in clustering
technique to generate some desired level of abstraction.
The cohesion concept helps us to decide which object
class can be the parent in the case where one object
relation O potentially has “multiple parent”. Here, we
choose the one which has stronger cohesion with O as
the parent object class. We therefore prioritize the
translations of different relationship types to ensure the
parent object classes derived always have the strongest
cohesion with O.

Rule C1. Translations are prioritized according to
cohesion between object classes. Translations are
produced sequentially according to their priorities. The
translation with the lowest priority will be carried out
last. Table 2 shows the priorities of translations. □

According to Table 2, STUDENT is translated to a
child object class of PERSON first, and then DEPT is
placed below STUDENT according to Case 2 in Rule
R1. The prioritized translations ensure that PERSON
can be mapped as the parent of STUDENT. Note that
user’s input is needed in the case when it is not clear
which relationship has higher cohesion.

Rule C2. If an object class O participates into more
than one relationship type, then it should not be mapped
to a child object class of either relationship type if the
mapping induces O to be referenced by other object
classes. □

Example 9. Consider the object relation STUDENT (R),
which is involved in the m-n relationship C_S_1 and the

1-m relationship type STUDENTDEPT. REGISTRA-
TIONDATE and GRADE is relationship attribute of
STUDENTDEPT and C_S_1 respectively. Rule C1
will generate the ORA-SS diagram in Figure 11.
Users can travel from COURSE elements to STUDENT
elements but not vice versa. However, a better ORA-SS
diagram can be obtained in Figure 12 if we apply Rule
C2. STUDENT, DEPT and COURSE will be translated
into root object classes. STUDENT is connected to
DEPT and COURSE using references. The benefits are
(1) such a structure ensures that the referenced elements
will not contain repeated instances, and (2) attributes
belonging to different relationships can be distinguished
separated from each other as well as other object
attributes.

Example 10. The ORA-SS diagram shown in Figure 3
can be derived as follows. We assume that the essential
information are DEPT and COURSE, and translate
them into root object classes. Object relation HOBBIES
is identified as a fragment of STUDENT and therefore
mapped as a simple multivalued object attribute
according to Rule O2. NOTES is mapped to a child
object class of COURSE according to Case 1 in Rule
R1. According to Rule C2, STUDENT is translated to a
root object class that COURSE and DEPT connect with
it using references. COURSEMEETING is identified as
a fragment of C_S_1 and mapped as a simple
multivalued relationship attribute according to Rule O2.
COURSE, STUDENT and TUTORIAL participate in a
ternary relationship type ATTEND, so they are
translated according to Rule R5. Note that there exist
two different m-n binary relationship types, C_S_1 and
C_S_2 between COURSE and STUDENT. In such case
that a ternary relationship type (i.e., ATTEND) involves
only one of the binary relationship types (i.e., C_S_1)
between two object classes, we need to explicitly
separate the two referencing objects in order to
distinguish which binary relationship type it involves.
The whole translation order is in accordance to Rule
C1.

DEPT

DNAME
STUDENT

D#

STUDENTDEPT
2,0:n,1:1

S# SNAME REGISTRATION
DATE

GRADE

COURSE

TITLECODE
STUDENT

C_S_1,
2,1:n,1:n

C_S_1
STUDENT

DEPT

MEETING
HISTORY

*

C_S_1

 Figure 11. An undesirable structure

STUDENT

SNAMES#

DEPT

DNAME

STUDENT

STUDENTDEPT
2,0:n,1:1

STUDENTDEPT

GRADE

COURSE

TITLECODESTUDENT

C_S_1,
2,1:n,1:n

D#

REGISTRATION
DATE

MEETING
HISTORY

*
C_S_1 C_S_1

Figure 12. A preferred structure

3.3 From ORA-SS to XML Schema

When the ORA-SS schema diagram of a relational
database is obtained, an XML Schema can now be
derived relatively easily because of the additional
semantics captured in ORA-SS. In addition, XML
features such as the concept of reference has also been
taken into consideration in the process of deriving
ORA-SS diagram (recall the relationship translation
rules). The following algorithm gives the translation of
an ORA-SS schema diagram to an XML schema.

Algorithm ORASS-to-XML

Step 1 Declare an XML element for whole schema and
create a complex type.

Step 2 For each object o in ORA-SS schema diagram
Do
Case 1: o is a root object class

Declare an element directly below Ro and
create the corresponding complex type.

Case 2: o is a referencing object
Declare referencing attribute(s) Kr, or a sub-
element which contains such attribute(s) Kr if
there exists relationship attribute(s) below o.
The sub-element is named to the relationship
name.

Case 3: o is a child object class
Declare a sub-element of the corresponding
element, and create the corresponding
complex type.

- Set the content of the generated XML elements
to EMPTY because they are either references, or
indirectly translated from relations, which have
no value.

- Set the cardinality constraints5 of each element
according to corresponding cardinality label in
ORA-SS diagram.

Step 3 Declare a XML attribute (or element) for each
attribute of each ORA-SS object, and assign
proper XML type6 and cardinality7.

Step 4 Add keys and key references in XML Schema
for the keys of ORA-SS object.

Note that in Step 3 of the algorithm, single-valued,
multivalued and composite attributes can be represented
as various XML structures. Usually it is hard to tell
which structure is better. For example, a multivalued
attribute can be declared as an XML attribute and typed
as NMTOKENS, which is a list type. Alternatively, it
can be declared as a sub-element which consists of one
or more occurrences. For our example, we declare
multivalued attribute as sub-element while single-
valued attribute as XML attribute. However, the
relationship attribute, which is attached in a child object
class (say O), is declared as a sub-element in order to be
distinguished from the object attributes of O. It is
worthwhile to point out that, if an ORA-SS edge is
tagged with several labels, it indicates that there exist
several relationship types between the two object
classes. In this case, we need to materialize the
component object class in each relationship it
participates. In order to reduce redundancies, we may
materialize it in the one with smaller degree first, and
then use keyref to refer it from other relationship types.
Appendix A. shows the XML Schema derived from
Figure 3.

4. Related Works and Discussions

Existing approaches to the relational to XML

translation do not regard whether the resulting XML
structure correctly describe the semantics and structure
in the underlying relational database. The works in [1,
13, 15] basically focus on single relation conversions.
In order to handle a set of related relations, the relations
are first denormalized to one single relation.
Unfortunately, this will lead to a lot of redundancies in
the resulting XML instances. In addition, the resulting
schema is semantically weak. For instance, suppose
some user requires all the information of the relations
COURSE and STUDENT. The XML structure produced
by [1, 13, 15] will have the following flat structure:

 RESULTS(CODE, TITLE, S#, SNAME, GRADE)

5 The default cardinality defined in XML schema for elements is
exactly one, denoted by minOccurs = “1” and maxOccurs = “1”
6 XML schema provides rich types which can support most types in
the underlying database.
7 The cardinality defined in XML schema for attributes is zero or one
(denoted by use="optional”), or exactly one (use="required”). The
default value is optional.

The authors in [8] propose a Nesting-based
algorithm to convert a single relation to a DTD.
However, this algorithm is applied on extracted data
sets. Different data sets extracted will lead to different
structures which do not reflect the semantics in the
underlying database. For instance, suppose COURSE
and STUDENT participate in a m-n relationship.
However, if a particular extracted data set shows that a
student only takes one course, then the XML structure
derived will depict a 1-m relationship and not a m-n
relationship.

A naive approach to handle a set of related
relations will be to translate each relation to an XML
element. The various elements are then connected by
referencing elements or attributes in order to model the
foreign key constraints. One of the major problems of
this approach is the proliferation of references that will
lead to performance degradation. Furthermore, the
schema of XML data obtained is flat.

[16] develops a method to generate a hierarchical
DTD for XML data from a relational schema. First, one
or more relations are chosen as the XML root elements,
and then each sub-element is progressively defined by
travelling across relations via the foreign key
constraints. While this translation is intuitive and
effective, problems still arise. For example, if we define
STUDENT as a sub-element of ADVISOR, then we
cannot represent those students who have not been
assigned advisor yet.

In contrast, our proposed relational to XML
translation method provides for the translation of a set
of related relations and distinguishes attributes of
relationship types from attributes of object classes,
multivalued attributes, different types of relationships
such as binary, n-ary, recursive and ISA. The structure
of the XML data obtained is able to reflect the inherent
semantics and implicit structure in the underlying
relational database without unnecessary redundancy
and proliferation of disconnected XML elements.

5. Conclusion

In this paper, we have proposed an alternative

practical methodology for publishing XML data from
relational databases. We have shown the importance of
proper analysis of semantics in relational schema. The
design of a semantically sound XML structure for
relational data is a complicated task that needs users’
input. With user input, we can provide an XML schema
that is closer to the user expectation, and that preserves
the inherent semantics and implicit structure in
relational schema. For future work, we would like to

examine how data mining techniques can be used to
mine the semantic information in XML schemas.

References

[1] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, R.

Murthy, “Oracle 8i – The XML Enabled Data
Management System”, Proc. 16th Int’l Conf. on Data
Engineering, 2000

[2] E. Bertino, L. Martino, “Object-oriented Database
Management Systems: Concepts and Issues,” IEEE
Computer 24:4, 1991

[3] M. Castellanous, F. Saltor, “Semantic Enrichment of
Database Schema: An Object-Oriented Approach”, Proc.
First Int’l Workshop on Interoperability in
Multidatabases, pages 71-78, 1991

[4] P.P Chen, “The Entity-Relationshiop Approach to Logical
Database Design”, Q.E.D. Information Sciences, 1977.

[5] G. Dobbie, X.Y. Wu, T.W. Ling, M.L. Lee, “ORA-SS:
Object-Relationship-Attribute Model for Semistructured
Data”, TR 21/00, National Univ. of Singapore, 2001

[6] M. Fernandez, W.C. Tan, D. Suciu, “SilkRoute: Trading
between Relations and XML,” Proc. 9th Int’l WWW
Conf., 2000

[7] J-L Hainaut, M. Chandelon, et al., “Transformational
Techniques for Database Reverse Engineering”, Proc.
12th Int’l Conf. on ER Approach, 1993

[8] D.W. Lee, M. Mani, F. Chiu, W.W Chu, “Nesting-based
Relational-to-XML Schema Translation”, Proc. 4th In’l
Workshop on the Web and Databases, 2001

[9] T.W. Ling, M.L. Lee, “Relational to Entity-Relationship
Schema Translation Using Semantic and Inclusion
Dependencies”, In Journal of Integrated Computer-
Aided Engineering, pages 125-145, 1995

[10] J. McHugh, S. Abiteboul et al., “Lore: A Database
Management System for Semistructured Data”,
SIGMOD Record, 26(3):54-66, 1997

[11] R. Missaoui, J.M. Gagnon, R. Godin, “Mapping an
Extended Entity-Relationship into A Schema of
Complex Objects”, Proc. Int’l Conference on Object
Oriented and Entity Relationship Modeling, 1995

[12] J. Shanmugasundaram et al, “Efficiently Publishing
Relational Data as XML Documents”, Proc. 26th In’l
Conf. on Very Large Databases, 2000

[13] SYBASE, “Using XML with the Sybase Adaptive Server
SQL Databases, A Technical Whitepaper”,
http://www.sybase.com 2000

[14] T. Teorey et al., “ER Model Clustering as an Aid for
User Communication and Documentation in Database
Design”, CACM 32(8), pages975-987, 1989

[15] V. Turau, “Making Legacy Data Accessible for XML
Applications”, http://www.informatik.fhiesbaden.de/
~turau/veroeff.html1999

[16] K. Williams, et al., “XML Structures for Existing
Databases”, http://www-106.ibm.com/developerworks/
library/x-struct/ January 2001.

[17] D. Zhang, Y.S. Dong, “A Data Model and Algebra for
The Web”, Proc. 10th Int’l Workshop on Database and
Expert Systems Applications, pages711 –714, 1999

Appendix A. XML Schema derived from Figure 3

<!— declare an element for whole schema -->
< element name=“UNIVERSITY”
 type= “UNIVERSITY_TYPE” />

< complexType name=“UNIVERSITY_TYPE”
 content=“empty” >
 < element name=“STUDENT” type=“STUDENT_TYPE”
 maxOccurs=“ unbounded”/>
 < element name=“DEPT” type=“DEPT_TYPE”
 maxOccurs=“ unbounded”/>
 < element name=“COURSE” type=“COURSE_TYPE”
 maxOccurs=“ unbounded”/>
 < element name=“TUTORIAL” type=“TUTORIAL_TYPE”
 maxOccurs=“ unbounded”/>
</ complexType >

<!— define a complex type for each sub-element of
UNIVERSITY, and declare its sub-elements progressively -->

< complexType name=“DEPT_TYPE” content=“empty” >
 < attribute name=“D#” type=“string” use="required”/>
 < attribute name=“DNAME” type=“string” use="required”/>
 < element name=“STUDENT” minOccurs=“0”>
 < complexType content=“empty”>
 < attribute name=“STU_REF” type=“string” />
 < attribute name=“REGISTRATIONDATE”
 type=“date” >
 </ complexType >
 </ element >
</ complexType >

< complexType name=“COURSE_TYPE” >
 < attribute name=“CODE” type=“string” use="required”/>
 < attribute name=“TITLE” type=“string” use="required”/>
 < element name=“C_S_2” minOccurs=“0” >
 < complexType content=“empty”>
 < attribute name=“STU_REF” type=“string” />
 </ complexType >
 </ element >
 < element name=“C_S_1” minOccurs=“0” >
 < complexType content=“empty”>
 < attribute name=“GRADE” type=“number” />

 < element name=“MEETINGHISTORY”type=“string”
 minOccurs=“0” maxOccurs=“unbounded” />
 < attribute name=“STU_REF” type=“string” />
 < attribute name=“TUTORIAL_REF” type=“string” />
 </ complexType >
 </ element >
 < element name=“NOTES” >
 < complexType content=“empty” >
 < attribute name=“NOTE-ID” type=“string”
 use="required”/>
 < attribute name=“LECTURER” type=“string” />
 </ complexType >
 </ element >
</ complexType >

< complexType name=“STUDENT_TYPE” content=“empty” >
 < attribute name=“S#” type=“string” use="required”/>
 < attribute name=“SNAME” type=“string” use="required”/>
<!— declare an element for multivalued ORA-SS attribute
“HOBBY” -->
 < element name=“HOBBY” type=“string”
 minOccurs=“0” maxOccurs=“unbounded” />
</ complexType >

< complexType name=“TUTORIAL_TYPE”
 content=“empty” >
 < attribute name=“T#” type=“string” use="required”/>
 < attribute name=“TUTORIAL_TITLE” type=“string”/>
</ complexType >

<!— define keys and keyref constraints. -->

< key name=“STUDENT_KEY” >
 < selector >UNIVERSITY/STUDENT</ selector >
 < field >@S#</field>
</ key>
< keyref name=“STUDENT_REFERENCE”
 refer= “STUDENT_KEY” >
 < selector >UNIVERSITY/DEPT/SUTENDT</ selector >
 < field >@STU_REF</ field >
</ keyref >

 …

