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Dialog Systems 

•  Aim: Find out 
what the person 
wants 

•  Actions: Ask 
appropriate 
questions 

•  Observations: 
Output of speech 
recognizer 

POMDP 
Video from 
http://www.research.att.com/people/Williams_Jason_D/ Williams & Young, 2007 



Assistive Technology 

•  Aim: Assist person with dementia in 
handwashing 

•  Actions: Prompt the person with 
suggestions when appropriate 

•  Observations: Video of activity 
POMDP Video from 

http://www.cs.uwaterloo.ca/~jhoey/research/coach/index.php Hoey, Von Bertoldi, Poupart, Mihailidis 2007 



Assistive Technology 

POMDP 



Aircraft Collision 
Avoidance System 

Image from  
http://web.mit.edu/temizer/www/selim/ 

•  Aim: Avoid 
collision with 
nearby aircraft 

•  Actions: 
Maneuver the 
UAV  

•  Observations: 
Limited view 
sensors 

Temitzer, Kochenderfer, Kaelbling, Lozano-Perez, Kuchar 2010 
Bai, Hsu, Lee,  Kochenderfer 2011  



Bayesian Reinforcement 
Learning 

POMDP 

•  Aim: Assist person with dementia in handwashing 
without knowing some parameters of model 

•  Actions: Prompt the person with suggestions to 
guide the person and at the same time learn the 
model 

•  Observations: Video of activity 
Poupart, Vlassis, Hoey, Regan 2006 



•  Commonalities in the examples 
– Need to learn, estimate or track the current 

state of the system from history of actions 
and observations 

– Based on current state estimate, select an 
action that leads to good outcomes, not 
just currently but also in future (planning) 

POMDP 



Outline 

•  Overview 
•  Definitions 
•  Basic properties 
•  Intractability and Easier Subclasses 
•  Large state spaces 
•  Online search 

POMDP 



Powerful but Intractable 

•  Partially Observable Markov Decision Process (POMDP) is 
a very powerful modeling tool 

•  But with great power 
 … comes great intractability! 

No known way to 
solve it quickly 

No small policy  

Image from http://ocw.mit.edu/courses/mathematics/18-405j-advanced-complexity-theory-fall-2001/ 



•  Philosophy: Okay if cannot solve the really hard 
problems, but want to be able to solve easy 
problems masquerading as hard ones … 

Image from http://ocw.mit.edu/courses/mathematics/18-405j-advanced-complexity-theory-fall-2001/ 

What are the easier 
sub-classes? 



Belief Space Size 

•  For POMDPs, we work 
with beliefs: probability 
distribution of states 

•  Assume known initial 
belief b0 

•  Solve only for space 
reachable from b0 

•  Disregarding the difficulty of approximate belief 
evaluation … 
–  If reachable belief space is small, efficient approximation 

possible 
–  If belief reachable when acting optimally is small, small policy 

exists 
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Characterizing Belief 
Space 

•  Belief space size can 
grow exponentially with 
the number of states 

•  But state space size 
often poor indicator of 
belief space size, e.g. 
can be exponentially 
smaller 
–  When some state 

variables are observed 
–  When belief can be 

factored 

Robot observed in 
collision avoidance, 
tracking, grasping 

Slot belief factored in 
slot filling dialog 
system 



Point Based 
Algorithms 

•  Properly designed,  
–  Able to exploit small reachable 

belief for efficient computation 
–  Able to exploit heuristics and 

branch and bound algorithms 
to get small policy when space 
reachable under optimal 
actions is small 

POMDP 
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Approximates belief space with a finite set of 
belief 



assistance 

State Space Size 

•  Moderate state space size 

•  Exact belief and policy 
evaluation 

•  Very large, continuous state spaces 

•  Approximate belief and policy 
evaluation 

tracking navigation 

simple 
grasping 

dialog 
collision avoidance 



Very Large State 
Spaces 

•  Techniques still essentially the same 
when we think a small policy exists 

•  But use either 
– Symbolic representation for belief and 

value function, or 
– Approximate belief and policy evaluation 

• Monte Carlo methods 

POMDP 



Online Algorithms 

•  In the worst case, no small policy 
•  Do online search for current action 

– May still work well, particularly when short 
horizon search is sufficient  

POMDP 



Outline 
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POMDP 



Markov Decision 
Process 

•  Markov Decision 
Process (MDP) is 
defined by <S,A,T,R> 

•  State S :  Current 
description of the world 
–  Markov: the past is 

irrelevant once we 
know the state 

–  Navigation example: 
Position of the robot  

POMDP 

Robot navigation 



•  MDP <S,A,T,R> 
•  Actions A :  Set of 

available actions 
– Navigation example: 

• Move North 
• Move South 
• Move East 
• Move West 

POMDP 

Robot navigation 

Actions 



•  MDP <S,A,T,R> 
•  Transition function T : 

–  T(s, a, s’) = Pr(s’ | s, a) 
–  Navigation example: 

•  Darker shade, higher 
probability 

POMDP 

Robot navigation 

Transition Function 



•  MDP <S,A,T,R> 
•  Reward function R :  

Reward received when 
action a in state s 
results in transition to 
state s’ 
–  R(s, a, s’) 
–  Navigation example:  

•  100 if s’ is Home 
•  -100 if s’ is in the danger 

zone 
•  -1 otherwise 

POMDP 

Robot navigation 

Reward 



POMDP 

   Example of 
3 state, two 
action 
Markov 
Decision 
Process 
<S,A,T,R> 

Image from http://en.wikipedia.org/wiki/File:Markov_Decision_Process_example.png 



•  MDP <S,A,T,R> 
•  Policy π :  Function 

from state to action 
– a = π(s) 
– Navigation example:  

• Which direction to 
move at current 
location 

POMDP 

Robot navigation 

Policy 



•  MDP <S,A,T,R> 
•  Optimal Policy π* :  

Function π that 
maximizes 

–  Navigation example:  
•  The best move at the 

current location 
POMDP 

Robot navigation 

∞�

t=0

γtE(R(st, at, st+1))

where at = π(st)



• γ is the discount factor 
– Summation finite 
– Future less important 
– Probability 1-γ process terminates 

POMDP 

∞�

t=0

γtE(R(st,π(st), st+1)) where γ ∈ (0, 1)



•  Partially Observable 
Markov Decision 
Process (POMDP) 
<S,A,T,R,Ω,O> 

•  Observations Ω :  
Set of possible 
observations 
– Navigation example: 

•  Set of locations 
output by GPS 
sensor  

POMDP 

Partially Observable 
Markov Decision Process 

Robot navigation 



•  POMDP <S,A,T,R,Ω,O> 
•  Observation probability 

function O : Probability 
of observing o in state s’ 
when previous action is 
a 
–  O(o, a, s’) = Pr(o | a, s’) 
–  Navigation example: 

•  Darker shade, higher 
probability 

POMDP 

Robot navigation 



•  POMDP <S,A,T,R,Ω,O> 
•  Belief b :  Probability of 

state s 
–  b(s) = Pr(s) 
–  Navigation example:  

•  Exact position of robot 
unknown 

•  Only have probability 
distribution of positions, 
obtained through sensor 
readings 

POMDP 

Robot navigation 

Belief 



•  POMDP 
<S,A,T,R,Ω,O> 

•  Policy π :  Function 
from belief to action 
– a = π(b) 
– Navigation example:  

• Which way to move, 
based on current 
belief 

POMDP 

Robot navigation 

POMDP Policy 



•  POMDP <S,A,T,R,Ω,O> 
•  R(a,b) :  Expected reward 

for taking action a when 
belief is b 

•  Optimal Policy π* :  
Function π that maximizes 

POMDP 

Robot navigation 

∞�

t=0

γtR(π(bt), bt)

R(a, b) = E(R(s, a, s))

=
�

i

�

j

T (si, a, sj)b(si)R(si, a, sj)



•  POMDP <S,A,T,R,Ω,O> 
•  Value function for π : Expected 

return for starting from belief b 

•  Optimal value function V* : 
Value function associated with 
an optimal policy π* 

POMDP 

Robot navigation 

V π(b) =
∞�

t=0

γtR(π(bt), bt),

with b0 = b

Value Function 



POMDP as Graphical 
Model 

POMDP 

st st+1 

ot ot+1 

at at+1 

rt rt+1 
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POMDP 



Outline 

•  Basic properties 
– bt can be updated from bt-1 
– Finite horizon value function 

• Piecewise linear convex 
• Represented as collection of α-vectors 
• Backup operator and value iteration 

–  Infinite horizon value function 
• Value iteration converges 
• Convex, can be approx by α-vectors  

POMDP 



Belief 

•  POMDP <S,A,T,R,Ω,O> 
•  Compute belief from history of 

actions and observations  
a0, o1,a1,o2,…,at-1,ot 

Pr(ot|at−1, bt−1) = Pr(ot|a0, . . . , ot−1, at−1)

bt(st) =
O(ot, at−1, st)

�
st−1

T (st−1, at−1, st)bt−1(st−1)

Pr(ot|at−1, bt−1)

bt(st) = Pr(st|a0, . . . , at−1, ot)

st-1 st 

ot-1 ot 

at-1- 

Current belief  
can be updated from previous belief using 

where  
is a normalizing factor to make the sum one 

  bt 

a0, o1,a1,o2,…, 



•  Markov property 
•  Finite sufficient statistics 

when state space is finite 

bt(st) =
O(ot, at−1, st)

�
st−1

T (st−1, at−1, st)bt−1(st−1)

Pr(ot|at−1, bt−1)

o o 

Denote bt = τ(ot, at-1, bt-1) 



Optimal Value 
Function 

•  For finite horizon POMDP, optimal value function is 
piecewise linear 

POMDP 

V*(b) 

b 

Smallwood & Sondik, 1973 

V ∗(b) = max
α∈Γ

α · b

= max
α∈Γ

�

i

α(si)b(si)



•  The construction of 
uses dynamic programming 

•  Value iteration algorithm 
•  Start with horizon 1 problem V1* 

–  Can be shown to be piecewise linear with each linear 
function corresponding to an action 

V ∗(b) = max
α∈Γ

α · b

Finite Horizon 

a1 
a2 

|A| = 2, gives 2 α-vectors  

V*(b) 

b 



•  Construct  Vi* out of Vi-1* by applying 
backup operator H to get Vi* = HVi-1* 

POMDP 

Vi(b) = HVi−1(b)

= max
a

R(a, b) + γ
�

o

p(o|a, b)Vi−1(τ(o, a, b))
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Can show that Vi*(b) max of 
linear functions if Vi-1*(b) max of 
linear functions 



•  Unfortunately, for horizon k problem, 
the number of functions in  Γ may grow 
double exponentially, approx |A||Ω|k−1

b0 
a1 

a1 a2 

o1 o2 

b1 
a2 

a1 a1 

o1 o2 
… 
o  Each α-vector 
correspond to a policy 
tree.  
o  Different tree may work 
best for different belief 



•  For finite horizon POMDP, optimal value 
function is piecewise linear 

•  Taking the horizon k to infinity,  
–  Value iteration converges to unique convex 

function, regardless of initialization 
–  Value function can be approximated arbitrarily 

closely by finite number of α-vectors 
–  Value function satisfies the Bellman optimality 

equation 
V ∗(b) = max

a
R(a, b) + γ

�

o

p(o|a, b)V ∗(τ(o, a, b))

Infinite Horizon 



Value Function for 
MDP 

•  MDP can be 
considered a 
special case of 
POMDP where the 
state is observed 

•  Belief is zero 
everywhere 
except at one 
state 

POMDP 

st st+1 

st st+1 

at at+1 

rt rt+1 

States observed 



•  V*(s) is a function of 
the state 
–  Value iteration 

practically effective 
when state space is 
not too large 

–  V*(s) can be found in 
time polynomial in  
|S| using linear 
programming 

POMDP 

Robot navigation 

Value function is a vector of length 64 



Outline 

•  Overview 
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•  Intractability and Easier Subclasses 
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•  Online search 

POMDP 



Outline 

•  Intractability and Easier Subclasses 
– Worst case: PSPACE complete and no small 

policy 
– Easier cases: achievable using point-based 

methods 
• Small reachable belief space: poly time 

approximation 
• Small optimal reachable space: small policy 

– Useful properties indicating smaller belief 
space POMDP 



Intractability 

•  Finite horizon POMDP is 
PSPACE-complete 
–  Computing the optimal 

solution intractable in the 
worst case 

•  No polynomial-sized policy 
that can compute optimum 
decision in polynomial time, 
assuming 

–  In the worst case, cannot 
hope to have a small optimal 
policy that can be executed 
quickly, even if willing to 
spend a long time to find the 
policy 

PSPACE �=
�P

2

Papadimitriou and Tsitsiklis, 1987 

Image from 
http://ocw.mit.edu/courses/mathematics/18-405j-advanced-complexity-theory-fall-2001/ 



Maybe your problem 
is not so hard … 

•  Aim: Human player and AI 
must lure the monsters and 
smash them … 

•  Idea: Figure out human 
intention, then cooperate 
–  Human intention as 

unobserved variable, 
inferred through 
observing human action 

–  POMDP 

POMDP 

But, ….. turns out that assuming human is optimal works well 
•  Deterministic problem 
•  No need to model uncertainty Ngo, 2011 



QMDP 

•  MDP can be efficiently solved when state 
space is not too large 

•  Can efficiently compute 

•  QMDP selects action that maximizes Q(a,b) 
–  Assume state uncertainty is gone after one step 

POMDP 

QMDP (s, a) = E(R(s, a, s�)) + γ
�

s�

T (s, a, s�)V (s�)

Q(a, b) =
�

s

b(s)QMDP (s, a)

Littman, Cassandra, Kaelbling, 1995 



•  Example 
application: Aircraft 
Collision Avoidance 

QMDP TCAS 

Pr(NMAC) 6.98 x 10-5 1.43 x 10-4 

Pr(Alert) 2.01 x 10-4 5.03 x 10-4 

Kochenderfer & Chryssanthacopoulos, 2011 
Video from  
http://www.youtube.com/watch?v=-tIcWObSk8I&feature=player_embedded 



•  QMDP-type methods can fail when need to take 
account of future uncertainty: Coastal navigation 
example 

POMDP 
Videos from http://robots.stanford.edu/videos.html Roy, Gordon, Thrun, 2004 



•  Tag 
–  Robot find target that moves 

away from it 
–  Robot knows own position but  

not position of target until at the 
same location 

–  870 states 
–  Value: QMDP -16.6, PBVI -6.75 

•  RockSample 
–  Robot needs to collect samples of 

good rock 
–  Rock value unknown, can be 

sensed using noisy sensor 
–  Robot position known 
–  12,545 states 
–  Value: QMDP 0, HSVI2 20.6 

POMDP 

Examples: QMDP fails compared to belief space policies  

Image and results from  
Pineau, Gordon, Thrun, 2006 

Image and results from  
Smith & Simmons, 2005 



Easier to Approximate 
Subclasses 

•  POMDP intractable in the worst case 
•  Aim: do well when the problem is 

actually not so hard …. 
•  Hope: many problems of practical 

interest are actually not so hard …. 
–  if only we knew how to represent them 

and search effectively for solutions 

POMDP 



Point Based Methods 

•  Point-based methods 
give some of current 
state-of-the-art solvers 

•  Use α-vectors to 
represent a piecewise 
linear convex value 
function 

•  Use a variant of value 
iteration where backup 
is done only at selected 
beliefs 

V*(b) 

b 

PBVI (Pineau, Gordon, Thrun, 2006), Perseus 
(Spann, Vlassis, 2005), HSVI (Smith & 
Simmons, 2004, 2005), SARSOP (Kurniawati, 
Hsu, Lee, 2008), etc. 



•  At point b, point-based backup 
gives 
–  Best α-vector at b that can be 

constructed from current Γ 
–  Best policy tree at b that can 

be  by extending current policy 
trees 

POMDP 

b 
a1 

a1 a2 

o1 o2 



•  Each point-based backup 
at b adds one α-vector  
–  Compare to double exponential 

growth in α-vectors for exact 
backup at all beliefs in the 
domain 

–  Resulting α-vector optimal 
only in the neighbourhood of b 

–  Computational cost  
O(|A||Ω||Γi-1|) 

POMDP 

B 
b 

Backup at single point 
rather than whole space 



•  During point-based backup 
–  Store action responsible for construction of the α-

vector 
•  When execution of the policy 

–  At b, run action associated with α-vector  
responsible for 

•  Important: how to select points for doing point-
based backup? 

POMDP 

V (b) = max
α∈Γ

α · b



Reachable Beliefs 

•  For problems like Tag and 
RockSample, we know the 
initial belief b0 

•  Let B(b0) be the space 
reachable from b0 under 
arbitrary actions and 
observations 

•  Only care about B(b0), so 
do point-based backup 
only at a finite subset of  
B(b0) 
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•  If the selected points for backup 
“covers” B(b0) well, approximation error 
will be small 

•  If the number of selected points need 
to “cover” B(b0) is small, 
computationally efficient. 

POMDP 



Covering Number 

•  Measure the “size” of belief 
space 

•  A δ-cover of a set B⊆X is a set 
of point C⊆X such that for 
every point b∈B, there is a 
point c∈C with  
||b−c||<δ 

•  The δ-covering number of B, 
denoted by C(δ), is the size of 
the smallest δ-cover of B 

•  Use l1-metric on beliefs 

POMDP 

C …
 

||b1 − b2||1 =
�

i

|b1(si)− b2(si)|

B 



Small Reachable 
Belief Space 

•  POMDP can be efficiently approximated when 
reachable belief space B(b0) is small 

•  Specifically, policy with  
can be found using a point based method in 
time 

POMDP Hsu, Lee, Nan, 2007 

O

�
C
�
(1− γ)2�

8γRmax

�2

logγ
(1− γ)�

2Rmax

�

|V ∗(b0)− V (b0)| ≤ �



Properties Affecting 
Covering Number 

•  Simple discretization gives an upper bound for 
covering number of 

–  Exponential growth with state space size 
•  However, problem may be significantly easier if 

it has 
–  Subset of variables fully observed 
–  Sparse beliefs 
–  Factored beliefs 
–  Smooth beliefs 
–  Structure in transition matrices 

POMDP 

(|S|/δ)|S|



Mixed Observability Markov 
Decision Process (MOMDP) 

•  In many practical 
applications, some 
state variables can be 
observed accurately 
–  In Tag, belief can be 

treated as pair (sr, bp) 
where  

•  sr∈ {0,…,28} is 
observed robot position 
and   

•  bp is a 29-dimensional 
belief of person position 

POMDP 
Ong, Png, Hsu, Lee 2010 



–  In RockSample, belief 
can be treated as 
pair (sr, br) where  
•  sr∈ {0,…,49} is 

observed robot 
position and   

• bp is a 256-
dimensional belief of 
rock properties 

POMDP 



•  Let  
–  So be the states that the 

observed state variables can 
take,  

–  Su be the states that the 
unobserved state variables can 
take 

•  Belief space is union of |So| 
belief spaces, each of 
dimension |Su| 
–  Covering number upper 

bounded by 

POMDP 

|S0|(|Su|/δ)|Su| instead of (|So||Su|/δ)|So||Su|

(0,0)

(1,1)(0,1)

(1,0)x = 0

x = 1



•  Summary: POMDP with 
some state variables 
fully observed (MOMDP) 
may have exponentially 
smaller covering 
number 

•  For MOMDP,  
α-vectors of length  
|Su| also sufficient, 
further saving 
computation 

POMDP 

Sparse beliefs, where beliefs 
can always be well 
approximated by a small 
number of non-zero 
coefficients, can have similar 
effect on the covering number 



Factored Beliefs 

•  RockSample has 8 rocks, each 
which can be good or bad 
–  Rock properties can take 28=256 

states, but 
–  Rock properties belief bp can be 

factored and represented using 8 
numbers, p1,…,p8 where pi 
represents the probability that rock 
i is good 

–  Belief remain factored even after 
sensing 

•  Slot filling dialog systems often 
have factored belief POMDP 



•  Covering number of 
belief space can be 
bounded in terms of 
covering number of 
parameter space for 
factored belief 
– Roughly 8 dimensional 

space, instead of 256 
dimensional space for 
RockSample 

POMDP Ko, Ong, Hsu, Lee 2010 

Similar for other smooth 
belief spaces that can 
be well approximated 
using few parameters 



Space Reachable under 
an Optimal Policy 

•  Very few practical applications have small 
reachable belief space 

•  In practice,  
–  use heuristics to search useful parts of belief space 

first, and  
–  branch and bound techniques to eliminate unnecessary 

search 
•  But these will not be effective if there is no small 

policy 
–  Recall that there is no small policy in the worst case 

•  Give sufficient condition for small policy? 

POMDP 



•  Let π* be an optimal 
policy and Bπ*(b0) 
be the space 
reachable under π* 

POMDP 
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•  Let π* be an optimal policy and Bπ*(b0) be the space 
reachable under π*. Let C(δ) be the covering number 
for Bπ*(b0). The there exists policy with error less 
than ε and of size   

O

�
C
�
(1− γ)2�

4γRmax

�
logγ

(1− γ)�

2Rmax

�

Hsu, Lee, Nan, 2007 



•  Are small policies likely to exist for 
practical problems? 
–  Tag: Policy is essentially a path through 

the room, terminated when person is 
found 

•  Policy small  
–  when do not need to branch a lot on 

observations, or  
–  always branch to similar beliefs 

POMDP 
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What if no good small policy? 
•  Online search (later) 



•  Recap: State-of-the-art point based 
POMDP solvers 
–  Sample points starting from b0 

•  Only consider reachable belief space from b0 

–  Incrementally adds points using latest 
information 
•  Uses heuristic to guide search, and branch and 

bound to eliminate unnecessary search and get to 
an optimal reachable space 

–  Exploits small reachable space and small 
optimal reachable space 

POMDP 



SARSOP 

•  Software available at 
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/ 

POMDP 
Grasping videos from http://people.csail.mit.edu/kjhsiao/abstractstatepomdps/index.html 

Kurniawati, Hsu, Lee, 2010 



Outline 

•  Overview 
•  Definitions 
•  Basic properties 
•  Intractability and Easier Subclasses 
•  Large state spaces 
•  Online search 

POMDP 



Outline 

•  Large state spaces 
– Factored POMDP 
– ADD-based method 
– Monte Carlo Value Iteration 

POMDP 



•  Assume that the 
crocodiles in the robot 
navigation problem are 
able to move. 

•  State can be described by 
tuple (r, c1,…,cm) where r is 
robot position and ci is 
position of crocodile i.  
–  State space size 64m+1 
–  Grows exponentially with 

number of variables 

POMDP 

Robot navigation 

Large State Spaces 



•  Issue:  
–  Problems are naturally 

described in terms of 
variables  

–  But state space size 
grows exponentially in 
the number of 
variables. 

POMDP 

Robot navigation 

Large State Spaces 



•  Exploit limited 
dependencies in 
transition function to 
get small representation 
for T(s,a,s’)  
–  Crocodile movement 

depends only on robot 
position and current 
crocodile position 

–  Robot next position 
depends only on 
current position and 
action  

POMDP 

rt rt+1 

c1,t c1,t+1 

cm,t cm,t+1 

at at+1 
…

 

 Problem Representation 



•  T(s,a,s’) can be 
specified by  
–  Pr(ci’|r,ci) for each I, 

and  
–  Pr(r’|a,r) for each a 

•  Exponentially smaller 
probability tables 

POMDP 

rt rt+1 

c1,t c1,t+1 

cm,t cm,t+1 

at at+1 
…

 



•  Similarly, observation 
(GPS reading) depends 
only on position of robot,  
Pr(o|r), instead of the 
whole state 

•  Dynamic Bayesian 
Network (DBN) 
representation gives 
compact represention of 
transition and 
observation functions 

POMDP 

rt rt+1 

ot ot+1 



•  For reward, let R(s,a,s’) 
be equal to 100 if robot 
position is Home in s’, 
-100 if robot meets a 
crocodile in s’ and -1 
otherwise 

•  Depends on robot and 
all crocodiles, function 
does not factor 

•  However, has small 
representation if use 
tree like this 
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r=1 
r=2 

100 

r=Home 

… …
 

-100 

c1≠1 

c1=1 

… 

-100 

cm≠1 

cm=1 
-1 



•  Subtrees that are common 
can be merged, giving a 
directed acyclic graph 
–  When all variables take 

binary values, called 
Algebraic Decision Diagram 
(ADD) 
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r=1 
r=2 

100 

r=Home 

… …
 

-100 

c1≠1 

c1=1 

… 

-100 

cm≠1 

cm=1 
-1 

a=1 

20 

a=0 

-100 

b=1 
b=0 

100 

b=1 
b=0 

c=1 
c=0 

Example ADD 

Algebraic Decision 
Diagram 



Factored POMDP 

•  When state is described by assignment of values to a 
set of state variables (s1,s2,…,sm), the POMDP is often 
called factored POMDP 

•  As seen in the robot navigation example, concise 
description using factored transition functions, ADDs, 
etc. are often available 

•  Unfortunately, even for factored MDP (fully 
observed), there is no small (poly sized) optimal 
policy in the worst case 

POMDP 

Allender, Arora, Kearns, Moore, Russell 2002 



Using Algebraic 
Decision Diagrams 

•  Real problems are often not the worst case, so 
we try … 

•  One approach is to represent everything using 
ADDs 
–  Represent transition function, observation function 

and reward function in factored form using ADDs 
–  Piecewise constant representation, often concise 
–  Represent belief and α-vectors as ADDs 

•  Closed under belief updating and α-vector backup 
operations 

•  Representation size may grow with each operation (but 
hopefully slowly) 

POMDP 
Boutilier & Poole, 1996, Hansen & Feng, 2000 



•  ADD can be combined with point-based 
method: Symbolic Perseus (Poupart 2005), 
Symbolic HSVI (Sim, Kim, Kim, Chang, Koo 
2008) 

•  Example success: Assistance for dementia 
patients 

POMDP 

Hoey, Von Bertoldi, Poupart, Mihailidis 2007 



Belief Approximation 

•  Flat representation as a vector the same size 
as state space 
–  Finite but practically useless! 

•  Allow representation to grow with time 
–  ADDs can grow (maybe quickly) with each belief 

update 
–  Initial belief b0 plus history a0, o1,a1,o2,…,at-1,ot  is 

an exact representation that grows slowly, adds 
an action and observation at each time step 

POMDP 



•  From history can do approximate inference 
–  Use particle filters (e.g. Thrun 2000, Bai, Hsu, Lee, 

Ngo 2010) 
–  Project onto factored representation (Boyen & 

Koller 1998, McAllester & Singh 1999) 
–  Markov chain Monte Carlo (MCMC) methods 

(Marthi, Pasula, Russell, Peres 2002) 
–  Loopy belief propagation (Murphy, Weiss 2001) 

•  Difficult but fairly well studied 
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Policy Graph 

•  Recall that, in point-based methods, we 
represent value function using a set Γ of 
α-vectors constructed using backups 
–  If a small optimal reachable space exists, then 

a small number of α-vectors suffices 
•  Would like to representα-vectors 

compactly  
–  Flat representation same size as state space 
–  ADDs can also grow to be large 



•  Take policy tree and 
merge identical 
subtrees: policy graph 

•  Policy graph 
representation requires 
constant space for each 
α-vector! 
•  But only with 

approximate rather 
than exact evaluation 
of the value  

POMDP 

α · b

a1 

a4 
a3 

a2 

o1 

o1 

o1,o3 

o2 o2 

o1,o2,o3 

o2 

o3 

o3 



•  Policy graph is directed graph 
with labeled vertices and 
edges 
–  Vertices labeled with action 
–  Edges labeled with observation 

•  To run a policy from a vertex  
–  Execute the action at the vertex 
–  Follow the resulting observation 

to the next policy graph node and 
repeat 
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a1 

a4 
a3 

a2 

o1 

o1 

o1,o3 

o2 o2 

o1,o2,o3 

o2 

o3 

o3 



•  Each policy graph node is 
associated with an α-vector 

•  To evaluate 

–  Monte Carlo method 
–  Sample n states from b 
–  Run simulations from the n 

states starting from the 
policy graph node associated 
with the α-vector 

–  Compute the average 
simulation rewards 

•  Evaluation error O(1/√n) 
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a1 

a4 
a3 

a2 

o1 

o1 

o1,o3 

o2 o2 

o1,o2,o3 

o2 

o3 

o3 

α · b =
�

i α(si)b(si)



Monte Carlo Backup 

•  Policy graph can be constructed by 
point-based backup operations 
–  Each point-based backup adds one node 

(one α-vector) 
•  Conceptually, do Monte Carlo evaluation 

of all |A||Γ||Ω| possible ways of adding a 
new node and choose the one with 
largest value at b 
–  Can be done in time O(n|A||Γ|)  

•  n is the number of simulations used to 
evaluate a candidate α-vector 

–  Selects the candidate with error  
O(1/√n) compared to the best candidate 

POMDP 

a1

a2

o1

o1, o2

o2

G

a1

o1

o2

Bai, Hsu, Lee, Ngo 2010 



Monte Carlo Value 
Iteration 

•  Use Monte Carlo backup with 
point-based method to form 
Monte Carlo Value Iteration 

•  Application: Aircraft collision 
avoidance for UAV 
–  Particle filters for belief 

approximation in continuous 
state space 

–  ElectroOptical/Infrared sensor 
(limited angle) 

–  Ability to model large state 
space allows 3D modeling as 
opposed to 2D (TCAS) 
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Bai, Hsu, Lee,  Ngo 2010 
Bai, Hsu, Kochenderfer, Lee 2011 

MCVI TCAS 

Risk 
Ratio 

0.0006 0.06 

x

y
z

Image from  http://web.mit.edu/temizer/www/selim/ 



Outline 

•  Overview 
•  Definitions 
•  Basic properties 
•  Intractability and Easier Subclasses 
•  Large state spaces 
•  Online search 
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Outline 

•  Online search 
– Branch and bound 
– Large observation space 
– UCT 

POMDP 



Online Search 

•  A policy needs to work well on essentially 
the whole of an optimal reachable space 
–  In the worst case, there is no small policy 

•  May sometimes still be able to do well, 
even in this case 
–  For example, if a short horizon search is 

sufficient regardless of current belief 
•  Total search space or policy size is large, but only a 

small amount need to be searched at any one time 

•  Do online search to look for best current 
action 
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Branch and Bound 

•  Branch and bound is often 
used to eliminate parts of 
search space as part of 
online search 
–  Maintain upper and lower 

bounds 
–  If lower bound is close 

enough to upper bound to 
meet target accuracy at 
root, do not expand node 
further (whole subtree 
pruned) 
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1

a
2
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1

o
2

b
0

See Ross, Pineau, Paquet,  
Chaib-draa 2008 for survey 



•  Heuristics used to order 
nodes for expansion, e.g. 
from HSVI (Smith &  
Simmons 2004), 
–  Choose action with the largest 

upper bound 
–  Observation that contributes 

the most to accuracy at root 
•  Target accuracy at root is 

continuously strengthened 
while time remains, resulting 
in deeper and deeper search 
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a
1

a
2

o
1

o
2

b
0

Online search is 
essentially the same as 
offline policy search, 
except that values are 
back up to the root without 
generating α-vectors 



Large Observation 
Space 

•  With horizon k, search 
space size is O(|A|k|Ω|k) 
–  Large when action or 

observation space is large 
•  Can sample observations to 

get O(|A|k|poly(1/ε)|k) for 
accuracy ε 
–  Very large observation 

space okay 
–  Very large reachable belief 

space okay if action space 
small and horizon short  
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Kearns, Mansour, Ng 1999 
McAllester & Singh 1999 



Upper Confidence 
Tree 

•  Branch and bound requires 
upper bound on value function 
–  Bound need to be optimistic for 

correctness 
•  UCT use multi-arm bandit 

algorithm at each node 
–  Maintain upper confidence 

interval for each action at each 
belief 

–  Repeatedly start simulation 
from root 

•  Select action according to upper 
bound, observation randomly to 
simulate path down the tree 

•  Update upper bound using value 
backed up from the path 
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Kocsis & Szepesvari 2006 
Silver & Veness 2010 



•  Let  
–  Nb : number of times the 

belief has been encountered 
–  Nb,a: number of times action 

a taken at b 
–  Vb,a : current average value 

of taking action a at b 
•  For upper confidence 

interval, use 

–  Can be shown to converge 
for appropriate value of 
constant c  
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o
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logNb
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Computer Go 

•  UCT very successful in 
related area of game tree 
search, particularly in 
computer Go 

•  Ing Prize of 40 million NT 
dollars for beating a 1-dan 
professional human player 
unclaimed in 2000 
–  Computers were hopeless 

then 
•  Around 2006, UCT introduced 

and used for Go 
–  Very rapid improvement in 

strength 
•  Now high dan level on 9 x 9 

board and low dan level on 
full 19 x 19 board 

POMDP 
Image from http://en.wikipedia.org/wiki/Go_%28board_game%29 



Review 

•  Overview 
•  Definitions 
•  Basic properties 
•  Intractability and Easier Subclasses 
•  Large state spaces 
•  Online search 
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Appendix 

•  Belief Update Equation 
•  Piecewise linear value function 
•  Convergence and Bellman Optimality 

Equation 
•  Efficient approximation with small belief 

space 
•  MC Backup 
•  References 
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Belief Update 
Equation 

bt(st) = Pr(st|a0, . . . , at−1, ot)

=
Pr(ot|a0, . . . , at−1, st)Pr(st|a0, . . . , at−1)

Pr(ot|a0, . . . , at−1)

using Bayes rule

=
O(ot, at−1, st)

�
st−1

Pr(st, st−1|a0, . . . , at−1)

Pr(ot|a0, . . . , at−1)

ot independent of history given st and at−1, marginalization

=
O(ot, at−1, st)

�
st−1

Pr(st|a0, . . . , at−1, st−1)Pr(st−1|a0, . . . , ot−1, at−1)

Pr(ot|a0, . . . , at−1)

using chain rule

=
O(ot, at−1, st)

�
st−1

T (st−1, at−1, st)bt−1(st−1)

Pr(ot|a0, . . . , at−1)

st−1 independent of at−1



Piecewise Linear 
Value Function 

•  When horizon is one, value function is 

–  Maximum of |A| linear function 
•  Value function is piecewise linear 
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V1(b) = max
a

R(a, b)

= max
a

�

i

�

j

T (si, a, sj)b(si)R(si, a, sj)

= max
a

�

i

b(si)




�

j

T (si, a, sj)R(si, a, sj)





= max
a

�

i

α(si)b(si)
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•  Assume as inductive hypothesis that V ∗
i−1(b) = max

α∈Γi−1

α · b
V

∗
i (b) = max

a
R(a, b) + γ

�

o

Pr(o|a, b)V ∗
i−1(τ(o, a, b))

= max
a

R(a, b) + γ
�

o

Pr(o|a, b) max
αo∈Γi−1

αo · τ(o, a, b)

= max
a

�

s

�

s�

T (s, a, s�)R(s, a, s�)b(s)

+ γ
�

o

Pr(o|a, b) max
αo∈Γi−1

�

s

αo(s)
O(o, a, s)

�
s� T (s, a, s

�)b(s)

Pr(o|a, b)

= max
a

max
αo1∈Γi−1,...,αo|Ω|∈Γi−1

�

s

�

s�

T (s, a, s�)R(s, a, s�)b(s)

+ γ
�

o∈{o1,...,o|Ω|}

�

s

αo(s)O(o, a, s)
�

s�

T (s, a, s�)b(s)

= max
α∈Γi

α · b



Convergence and Bellman 
Optimality Equation 

•  Contraction 
–  Without loss of generality, assume HU(b)≥H(V(b) 
–  Let a* be optimal for HU(b) 
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HU(b)−HV (b) ≤ R(a∗, b) + γ
�

o

p(o|a∗, b)U(τ(o, a, b))

−R(a∗, b)− γ
�

o

p(o|a∗, b)V (τ(o, a, b))

= γ
�

o

p(o|a∗, b)[U(τ(o, a, b))− V (τ(o, a, b))]

≤ γ
�

o

p(o|a∗, b)||U − V ||∞

= γ||U − V ||∞

||HU −HV ||∞ ≤ γ||U − V ||∞



•  H is a contractive mapping 
– By the Banach fixed point theorem, value 

iteration Vi = HVi-1 converges to a unique 
fixed point V* such that V* = HV* 
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Efficient Approximation 
with Small Belief Space 

•  Policy with  
can be found in time 

•  Proof Sketch: 
– Search belief tree from b0 
– Discounting means searching tree of height 

O(log ε) is sufficient 
POMDP 
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o
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0

O

�
C
�
(1− γ)2�

4γRmax

�2

logγ
(1− γ)�

2Rmax

�

|V ∗(b0)− V (b0)| ≤ �



a
1

a
2

o
1

o
2

b
0–  Do a depth first search, backup 

α-vector at a node after 
searching children 

•  Maintain a set of beliefs Ci  
at height i 

•  If newly discovered belief within 
distance δto a belief in Ci do not expand further and use 
policy of nearest belief in Ci  (approximate dynamic 
programming) 

•  By appropriately setting δ, can show that the size of Ci 
is at most  

•  Runtime is time to find nearest neighbours within  Ci  
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C
�
(1− γ)2�

4γRmax

�



MC Backup 

•  For each action a in A 
–  Sample n states from b. For each 

sample i 
•  Generate si’  from T(si,a,si’) and oi from  

O(oi,a, si’), record reward 

–  For each o in Ω 
•  For each α in Γ and all si’ associated with o 

–  Run simulation from si’ and α, record return 
•  Find best α and associate it with o 

–  Average the return from the n 
simulations from b associated with the 
best α’s to get score for a 

•  Find the best a  
•  Construct the new policy node using 

the best a and it’s associated α’s 

a1

a2

o1

o1, o2

o2

G

a1

o1

o2



•  Let G be the current policy graph.  
Let value of point-based backup at b be 
value of MC-backup be 
With probability at least 1-τ 

•  Proof sketch: 
There are |A||G||Ω|

 possible new graphs.  
Let C be Rmax/(1-γ). 
For a single graph, Hoeffding inequality shows that the 
probability that the average return is further than ε from the 
expected return is no more than  

POMDP 

|HVG(b)− ĤbVG(b)| ≤
2Rmax

1− γ

�
2(|O| ln |G|+ ln(2|A|) + ln(1/τ))

n

HVG(b)
ĤVG(b)

2e−n�2/2C2



•  Using the union bound, the probability 
that any of the possible graphs does not 
satisfy the same condition is no more than 
Set this value to τ. 

•  The graph with the best average return r1 
is selected 
–  It’s expected return is at most  ε lower 
–  It’s average return is higher than average 

return r2 of  HVG, whose expected return is at 
most ε higher. 

–  Hence, difference in expected return at most 
2ε 

•  Manipulating the expressions gives the 
required bounds 
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|A||G|Ω|2e−n�2/2C2
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