
Properties of Forward Pruning in Game-Tree Search

Yew Jin Lim and Wee Sun Lee
School of Computing

National University of Singapore
{limyewji,leews}@comp.nus.edu.sg

Abstract

Forward pruning, or selectively searching a subset of moves,
is now commonly used in game-playing programs to reduce
the number of nodes searched with manageable risk. Forward
pruning techniques should consider how pruning errors in a
game-tree search propagate to the root to minimize the risk
of making errors. In this paper, we explore forward pruning
using theoretical analyses and Monte Carlo simulations and
report on two findings. Firstly, we find that pruning errors
propagate differently depending on the player to move, and
show that pruning errors on the opponent’s moves are poten-
tially more serious than pruning errors on the player’s own
moves. This suggests that pruning on the player’s own move
can be performed more aggressively compared to pruning on
the opponent’s move. Secondly, we examine the ability of the
minimax search to filter away pruning errors and give bounds
on the rate of error propagation to the root. We find that if
the rate of pruning error is kept constant, the growth of er-
rors with the depth of the tree dominates the filtering effect,
therefore suggesting that pruning should be done more ag-
gressively near the root and less aggressively near the leaves.

Introduction
The Alpha-Beta (αβ) algorithm (Knuth & Moore 1975) is
the standard approach used in game-tree search to explore
all combinations of moves to some fixed depth. However,
even with αβ pruning, search complexity still grows expo-
nentially with increasing search depth. To further reduce
the number of nodes searched, practical game-playing pro-
grams perform forward pruning (Marsland 1986; Buro 1995;
Heinz 1999), where a node is discarded without searching
beyond that node if it is believed that the node is unlikely to
affect the final minimax value of the node. As all forward
pruning techniques inevitably have a non-zero probability
of making pruning errors, employing any forward pruning
technique requires a compromise between accepting some
risk of error and pruning more in order to search deeper.

Forward pruning techniques should therefore consider
how pruning errors propagate in game-tree search. In this
paper, two properties of forward pruning are reported. We
first show, using theoretical analysis and Monte Carlo simu-
lations, that the severity of forward pruning errors is asym-
metric with respect to the player to move; the error is likely

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to be more severe when pruning on the opponent’s moves
rather than the player’s own moves. This effect arises be-
cause pruning errors, when pruning exclusively on children
of Max nodes, cannot cause a poor move to be deemed bet-
ter than a good move whose subtree does not contain errors;
however, this is not the case when pruning exclusively on
children of Min nodes. This suggests that to do well, prun-
ing should be done more aggressively on the player’s own
move and less aggressively on the opponent’s move.

We also analyzed the error filtering effect of the minimax
evaluation process, showing that the probability of a prun-
ing error propagating to the root decreases exponentially
with the depth of the pruned node. Unfortunately, with con-
stant pruning error probability, the exponential increase in
the number of nodes with depth introduces an exponential
number of errors as well. We use Pearl’s error propagation
model (Pearl 1984) to derive the rate of error propagation,
showing that with constant pruning error probability, the in-
crease in the number of errors overwhelms the filtering ef-
fect. The theoretical analysis and Monte Carlo simulations
suggests that to achieve a fixed probability of error at the
root, the rate of pruning errors (and hence the aggressive-
ness of the pruning method) should decrease exponentially
with the depth of the node.

To the best of our knowledge, the first effect has not been
reported in the literature. The second effect is novel as
an analysis of forward pruning although it builds on prior
work of minimax pathology, or the property that minimax-
ing amplifies errors as search depth increases. In addition,
the Monte Carlo simulations used game-trees with branch-
dependent leaf values, which have been shown to be non-
pathological (Nau 1982; Smith & Nau 1994), to simulate
more realistic game-trees.

Preliminaries
Consider a perfect-information zero-sum game between two
players, Max and Min. The minimax value of a node u is

score∗(u) =






utility(u) u is a leaf node,
max{score∗(child(u))} u is a Max node,
min{score∗(child(u))} u is a Min node.

where child(u) returns the set of child nodes of u. We define
forward pruning as eliminating children of u to be consid-
ered by returning a subset of child(u). If forward pruning

1020



discards all children of a node, then the node returns a value
of −∞ for a Max node and +∞ for a Min node. We also as-
sume game-trees have uniform branching factor b and height
h, where b is the number of children each node has and h is
the number of nodes in the longest path from the root node
to a leaf node. The depth of a node u is one less the number
of nodes in the path from the root node to u. The depths of
the root node and a leaf node for a game-tree of height h are
therefore 0 and h − 1, respectively.

Effect of Player to Move
In this section, we show that forward pruning errors are
propagated differently depending on the player to move. We
first state a lemma showing how the different pruning errors
affect minimax results:

Lemma 1. Assume that we are performing forward prun-
ing only on the children of Max nodes throughout the tree.
Then, for any unpruned node u, scoreMax(u) ≤ score∗(u),
where scoreMax(u) is the score of the algorithm that only
forward prunes children of Max nodes. Conversely, if we
are performing forward pruning only on the children of
Min nodes, then for any unpruned node u, scoreMin(u) ≥
score∗(u), where scoreMin(u) is the score of the algorithm
that only forward prunes children of Min nodes.

The proof is by induction on the height of the tree.
The standard approach for game-playing is to use the re-

sult of the game-tree search with the root node representing
the current board position. We assume without loss of gen-
erality that the root node is a Max node.

Theorem 1. Assume there are b moves at the root node and
that there is a strict ordering based on the utility of the moves
such that score∗(ui) > score∗(uj) if 1 ≤ i < j ≤ b and ui

is the ith child.
If forward pruning is applied only to children of Max

nodes, then ∀i such that no pruning error occurs in the sub-
tree of ui, i.e. scoreMax(ui) = score∗(ui), the new rank i′

based on scoreMax has the property i′ ≤ i.
The converse holds if forward pruning is applied only to

the children of Min’s nodes, i.e., ∀i such that no pruning
error occurs in the subtree of ui, i.e. scoreMin(ui) =
score∗(ui), the new rank i′ based on scoreMin has the
property i′ ≥ i.

Proof. We will only prove the first statement, as the proof
of the converse statement is similar. Assume, on the con-
trary, that i′ > i. This implies that ∃j > i such that
score∗(uj) < score∗(ui), but the new ordering j′ based on
scoreMax is j′ < i′ and scoreMax(uj) > scoreMax(ui).
But scoreMax(uj) ≤ score∗(uj) by Lemma 1, and
score∗(uj) < score∗(ui) = scoreMax(ui) which imply
that scoreMax(uj) < scoreMax(ui). Contradiction.

Observing the Effect using Simulations

In order to show the significance of Theorem 1, we perform
Monte Carlo simulations of random game-trees searched us-
ing algorithms that perform forward pruning.

In our simulations, we used game-trees of uniform
branching factor 5. The values of the leaf nodes were cho-
sen from the uniform distribution [0, 1) and the root is a Max
node. We fix the number of nodes to be forward pruned –
in each instance, three randomly chosen children at either
Max or Min nodes were forward pruned. Unfortunately, er-
ror filtering effects that reduce error propagation to the root
makes comparison more difficult; the type of pruning errors
that is filtered more depends on the height of the tree. To en-
sure that the observed effects are not because of the filtering
effect, we experimented with trees of heights ranging from
4 to 6 so that there would instances of both cases: having
fewer Max nodes and having fewer Min nodes.

We recorded the rank of the move at the root (as ranked
by a search without forward pruning) that was eventually
chosen by the search. For each experimental setup, we ran a
simulation of 106 randomly generated game-trees.

Figure 1 shows the number of times the search with for-
ward pruning chooses a move of a particular rank. We see
that when children of Max nodes are pruned erroneously,
the probability of choosing a ranked 4th or 5th move de-
creases sharply towards zero; when children of Min nodes
are pruned wrongly, the probability of choosing a ranked
4th or 5th move only tapers gradually. In other words, if we
have to choose between forward pruning only the children
of Max or Min nodes, and the eventual rank of the move
chosen is important, we should choose to forward prune the
children of Max nodes.

1

10

100

1000

10000

100000

1000000

1 2 3 4 5

Rank of Move Choice at Root

Min Prunes in trees of height 4 Min Prunes in trees of height 5

Max Prunes in trees of height 5 Max Prunes in trees of height 6

N
u
m

b
er

 o
f 

O
cc

u
rr

en
ce

s

Figure 1: Log plot of the number of times ranked moves are
chosen where either Max or Min nodes are forward pruned.

We also simulated more realistic game-trees, using the
approach of Newborn (Newborn 1977). In his approach,
every node in the tree receives a random number, and the
value of a leaf node is the average of all random numbers
in the nodes on the path from the root of the tree to the
leaf node. This ensures some level of correlation between
the minimax values of sibling nodes, which is known to be
non-pathological (Nau 1982). The random number in each
node is chosen from the uniform distribution [0, 1). The
results with such branch-dependent leaf valued game-trees
were similar to Figure 1 but slightly less pronounced.

We may want to prune of both types of nodes in prac-
tice, if pruning on only children of Max nodes does not pro-

1021



1

10

100

1000

10000

100000

1000000

1 2 3 4 5
Rank of Move Choice at Root

More Min Prunes in trees of height 4 More Min Prunes in trees of height 5

More Max Prunes in trees of height 5 More Max Prunes in trees of height 6

N
u
m

b
er

 o
f 

O
cc

u
rr

en
ce

s

Figure 2: Log plot of the number of times ranked moves are
chosen with unequal forward pruning on both Max and Min
nodes.

vide enough computational savings. To simulate this, we ran
experiments with branch-dependent leaf valued trees where
three randomly chosen children at either Max or Min nodes
and one randomly chosen child of the other node type were
forward pruned. Figure 2 shows the results of these experi-
ments for various search depths. We see that the asymmetric
effects of the severity of errors are still present. Most of the
errors that resulted in a rank 4th or 5th move being chosen
are likely to have come from pruning children of Min nodes.

Discussion
In two-player perfect information games, the player can typ-
ically make only one move, so if the best move has been
pruned, the game-tree search should then preferably return
the second best move. Theorem 1 and our simulation results
suggest that different pruning errors relative to the player at
the root node have different effects on the move quality cho-
sen by the game-tree search. Pruning errors in children of
Max nodes will not decrease the rank of moves that are cor-
rectly evaluated. This means that if the second best move is
correctly evaluated but the best move is incorrectly evaluated
due to pruning errors, then the game-tree search will return
the second best move as the move to play. On the other hand,
pruning errors in children of Min nodes can incorrectly in-
crease the rank of moves and the game-tree search could
possibly return the worst move as the move to play, even if
the best move is correctly evaluated.

This suggests the risk management strategy of forward
pruning more aggressively on the children of Max nodes and
more conservatively on the children of Min nodes. We have
done initial experiments in chess: a small scale preliminary
study suggests that pruning more aggressively on children
of Max nodes results in a stronger chess program compared
with pruning equally on all nodes and pruning more aggres-
sively on children of Min nodes. However, a more detailed
experimental study is required to confirm this.

Effect of Depth of Node
The minimax algorithm propagates scores from leaf nodes
via a process of alternating between maximizing and min-

imizing. This process confers some measure of filtering
for pruning errors. In this section, we build on Pearl’s er-
ror propagation model (Pearl 1984), which constructs game-
trees from the leaf nodes to the root. For ease of explanation
we use the height of a node u, defined as one less the num-
ber of nodes in the longest path from u to a leaf node. Depth
and height of a node are closely related; a node of depth d is
at height h − d − 1 for a game-tree of height h. To obtain
some insights, we first consider the case of a single pruning
error.

Proposition 1. Assume a complete b-ary tree of height at
least 3. Then the probability of a change in value of a ran-
dom node at height k, selected with uniform probability from
all nodes at that height, affecting the minimax evaluation of
its grandparent node at height k + 2 is no more than 1

b .

Proof. Consider the case where height k consists of Max
nodes and a node at height k is chosen with uniform proba-
bility from all nodes at that height to have a change in value.
We assume that the grandparent node g at height k + 2 has
the true value of v. We consider the case where the error de-
creases the node value first. If more than one child of g has
value v, a single value reduction at depth k will not change
g’s value, so we consider the case where only one child, say
m, has value v. Note that the value of g can only change if
the value reduction occurs in m’s children and not anywhere
else. The probability of this occurring is no more than 1/b,
since m has b children. Now, consider the case where the
error increases the node value. Consider any one of g’s chil-
dren, say m. Let m have value v. The value of the node m
can change only in the case where only one of its children
has value v and that child is corrupted by error. Hence the
number of locations at height k that can change g’s value is
no more than b out of the b2 nodes at that height.

The cases for Min nodes are the same when we inter-
change the error type.

Proposition 1 can be recursively applied to show that the
probability of an error propagating through l depths is no
more than 1/bdl/2e. However, the number of leaves in a b-
ary tree of height l is bl−1. If the probability of a leaf being
mistakenly pruned is constant, the faster growth of the leaves
will swamp the filtering effect, as we show in the next sec-
tion.

Theoretical model for the propagation of error
Theoretical models have found that the minimax algorithm
can amplify the evaluation errors that occur at the leaf nodes.
This is known as the minimax pathology and was indepen-
dently discovered by Nau (Nau 1979) and Beal (Beal 1980).
Pearl (Pearl 1984) used a probabilistic game model, which
we reproduce here, to examine this distortion and quantify
the amplification of errors. Let pk be the probability of a
WIN for a node at height k and consider a uniform binary
game-tree where the leaf nodes are either WIN or LOSS
with probability p0 and 1 − p0, respectively. The leaf nodes
also have an imperfect evaluation function that estimates the
values with a bi-valued variable e, where e = 1 or e = 0
represent a winning and losing position, respectively. We

1022



denote the minimax evaluation at position i as ei and the
WIN-LOSS status at position i as Si. Positions where i = 0
represent leaf nodes. ei and Si are represented in negamax
notation and refer to the player to move at position i. If node
3 has two children, 1 and 2, (Figure 3) we write

S3 =
{

L, if S1 = W and S2 = W ,
W, otherwise

(1)

e3 =
{

0, if e1 = 1 and e2 = 1,
1, otherwise

(2)

3

1 2

Figure 3: Node 3 has two children, 1 and 2.

Denote the probability of erroneously evaluating a LOSS
position as winning and the probability of erroneously eval-
uating a WIN position as losing at position i as αi and βi

respectively. In other words,

α0 = P (e = 1|S = L) (3)

β0 = P (e = 0|S = W ) (4)
The recurrence equations are:

αk+1 = 1 − (1 − βk)2 (5)

βk+1 =
αk

1 + pk
[(1 − pk)αk + 2pk(1 − βk)] (6)

pk+1 = 1 − p2
k (7)

Pearl also considered uniform b-ary game trees where each
non-leaf node has b successors, and similarly we obtain:

αk+1 = 1 − (1 − βk)b (8)

βk+1 =

{
[pk(1 − βk) + (1 − pk)αk]b − [pk(1 − βk)]b

}

1 − pb
k

(9)
pk+1 = 1 − pb

k (10)
Furthermore, pk has three limit points (Pearl 1984):

lim
k→∞

p2k =






1 if p0 > ξ,
ξ if p0 = ξ,
0 if p0 < ξ,

(11)

where ξ is the solution to xb + x − 1 = 0. The limit points
show that when the height of the tree is large enough, under
this model, the outcome at the root is uncertain only for p0 =
ξ. Hence, we are mostly interested in the behavior at these
three limit points.

While Pearl’s model assumed an imperfect evaluation
function at the leaf nodes, we assume that the evaluation of
leaf nodes are reliable, since we are considering only prun-
ing errors. We adapt Pearl’s model to understand the effects
of forward pruning by considering α0 and β0 as the proba-
bilities of pruning errors made at the frontier nodes (nodes
that have leaf nodes as children). We can now demonstrate
the effects of the depth of the node in forward pruning:

Theorem 2. Assume that errors exists only at the leaves
of uniform b-ary game trees. Then βk+2/βk ≤ b with
βk+2/βk = b for some cases. Similarly, αk+2/αk ≤ b with
αk+2/αk = b for some cases.

Proof. We recurse equations (8) and (9) once to get

αk+2 = 1 − (1 − 1

1 − pb
k

×

{[pk(1 − βk) + (1 − pk)αk]b − [pk(1 − βk)]b})b (12)

βk+2 =
1

1 − pb
k+1

{
[
(1 − pb

k)(1 − βk+1) + pb
kαk+1

]b

−
[
(1 − pb

k)(1 − βk+1)
]b} (13)

The value of αk+2 in equation (12) reaches its maximum
value when βk = 0. We also see that βk+1 = 0 when αk =
0 and therefore βk+2 in equation (13) reaches its maximum
value when αk = 0.

We denote αk when β0 = 0 by α′
k. When β0 = 0, we

have βk = 0 when k is even. α′
k+2/α′

k gives us the rate of
increase in error propagation based on the value of α′

k:

α′
k+2

α′
k

=






1−[1−(α′
k)b]b

α′
k

if pk → 0,
1−(1−α′

k)b

α′
k

if pk → 1,
(14)

lim
αk→0

α′
k+2

α′
k

=
{

0 if pk → 0,
b if pk → 1,

(15)

Similarly, we denote βk when α0 = 0 as β′
k:

β′
k+2

β′
k

=






[1−(1−β′
k)b]

β′
k

if pk → 0,

[1−(1−β′
k)b]b

β′
k

if pk → 1,
(16)

lim
βk→0

β′
k+2

β′
k

=
{

b if pk → 0,
0 if pk → 1,

(17)

Lastly, the proof in Proposition 1 can be modified to show
that βk+2/βk ≤ b and αk+2/αk ≤ b by considering one
type of error instead of a single error.

To help us gain more insight into the rate of error propaga-
tion, we simplify the analysis by considering uniform binary
game trees. Setting β0 = 0 and reapplying the recurrence
equations for b = 2, we get

α′
k+2 =

α′
k

1 + pk
[(1 − pk)α′

k + 2pk]×
{

2 − α′
k

1 + pk
[(1 − pk)α′

k + 2pk]
}

. (18)

Similarly, we can set α0 = 0 to get:

β′
k+2 =

β′
k(2 − β′

k)
2 − p2

k

{
p2

k

[
1 − (1 − β′

k)2
]
+ 2(1 − p2

k)
}

(19)
Several interesting observations can be made from Figure

4, which shows the plot of α′
k+2/α′

k and β′
k+2/β′

k for the

1023



0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

1.75

2

1-ξ ξ

p
k
→ 0

β'
k+2

β'k{p
k
→ ξ

p
k
→ 1

p
k
→ 1

α'
k+2

α'k

p
k
→ ξ

p
k
→ 0

{
α'k β'k

α'
k+2

α'k

β'
k+2

β'k
or

or

Figure 4: Rates of change in error propagation for b = 2

limit points of pk. If pk → 1, errors are being filtered out
when β′

k < 1− ξ, giving limk→∞ β′
2k = 0. However, when

β′
k > 1 − ξ, error rate will increase with the height giving

limk→∞ β′
2k = 1. If β′

k = 1 − ξ, the rate of error propa-
gation is constant, limk→∞ β′

2k = 1 − ξ. Similarly, when
pk → 0, limk→∞ α′

2k is 0 when α′
k < ξ, is 1 when α′

k > ξ,
and is ξ when α′

k = ξ. For pk = ξ, both types of errors grow
with the height. These results are also given in (Pearl 1984)
for errors caused by imperfect evaluation functions.

The upper bound on the rates of change in error propaga-
tion to the root of b by Theorem 2 is clearly too conservative
as shown in Figure 5. For example, when b = 2, the maxi-
mum of β′

k+2/β′
k for p0 = ξ occurs when β′

k ≈ 0.099 where
β′

k+2/β′
k ≈ 1.537, which is less than the bound of 2 that the

theorem suggests.

0.2 0.4 0.6 0.8 1

2.5

5

7.5

10

12.5

15

17.5

β'
k+2

β'k

β'k

b = 2
b = 3
b = 4
b = 5

b = 10

b = 20

b = 30

b = 40

b = 50

1

Figure 5: Plot of
β′

k+2
β′

k
when p0 = ξ for various b

Observing the Effect using Simulations
To illustrate the implications of our results, we once again
perform a number of Monte Carlo simulations. In our exper-
iments, we use game-trees with uniform branching factor 5
and branch-dependent leaf values to simulate actual game-
trees. Each node is assigned a pruning probability qi: dur-

ing search, a Bernoulli trial with probability qi of pruning
each child is performed, where i is the depth of the node.
We test two different pruning reduction schemes – Multi-
plicative and Linear pruning reduction. The multiplicative
pruning reduction schemes multiply the pruning probabil-
ity by a constant factor for every additional 2 depths, or
qi+2 = qi × c, and q1 = q0 × c, where c is the multiplicative
factor. A multiplicative factor of 1.0 is equivalent to a Con-
stant Pruning scheme. Linear pruning reduction schemes
reduce qi for each depth by subtracting a constant c from the
previous depth, or qi+1 = qi−c. Figure 6 shows the propor-
tion of correct minimax evaluations for various pruning re-
duction schemes with starting pruning probability q0 = 0.1.
We see that the linear pruning reduction schemes are clearly
inadequate to prevent amplification of pruning errors propa-
gating to the root, even though the linear pruning scheme of
c = 0.02 reduces qi to zero when at search depth 6.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Search Depth

Multiplicative - 0.2 Multiplicative - 1/sqrt(5) Multiplicative - 0.5 Linear - 0.02

Multiplicative - 0.75 Linear - 0.01 Multiplicative - 1.0

P
ro

p
o
rt

io
n
 o

f 
C

o
rr

ec
t 

A
n
sw

er
s

Figure 6: Comparison of various pruning reduction schemes

While the experiments have shown that multiplicative
pruning reduction schemes can prevent the amplification of
pruning errors propagating to the root, it might be possible
that multiplicative pruning reduction schemes are not prun-
ing enough to justify forward pruning at all. It is more in-
teresting to consider the question “Given a fixed time limit,
what is the best pruning reduction scheme that allows the
deepest search while making less than a pre-defined thresh-
old of errors?”.

We set the error threshold at 0.25, which means that the
search should return a back-up evaluation equal to the true
minimax value of the tree at least 75% of the time1. To simu-
late a fixed time limit, we used αβ search and iterative deep-
ening to search until the maximum number of nodes, which
we set at 1000, were searched. We tested two additional
pruning reduction schemes – Root Pruning and Leaf Prun-
ing. In the Root pruning scheme, only the root node forward
prunes, or q0 = c > 0 and qi = 0, for i > 0. The Leaf
pruning scheme only forward prunes leaf nodes, or qi = 0,
for i < d and qd = c > 0, where d is the search depth.

1In a real game, we would be able to use domain dependent
information to decide when to prune. This is likely to result in a
smaller pruning error rate for the same aggressiveness in pruning

1024



We first used 8 iterations of binary searches with 105 sim-
ulated game-trees each time to find pruning probabilities p0

for the various pruning schemes that return correct answers
at least 75% of the time. Next, we ran a simulation of 106

game-trees and, for each generated game-tree, we performed
every pruning scheme with the pruning probabilities found
using binary search.

Root Multiplicative - 0.5 Linear - 0.02 Constant Multiplicative - 1.2 Leaf

5.25

5.5

5.75

6

6.25

6.5

6.75

7

µ = 5.76 
σ = 0.25

µ = 5.73 
σ = 0.24

µ = 5.71
σ = 0.24

µ = 5.70
σ = 0.23

µ = 5.70 
σ = 0.22

µ = 5.67
σ = 0.22

S
ea

rc
h

 D
ep

th
 R

ea
ch

ed

Figure 7: Box plot showing the search depths reached with
correct answers by each pruning scheme. A box plot gives a
five-number summary of: minimum data point, first quartile,
median, third quartile, and maximum data point. The mean
and standard deviation of the search depths reached for each
pruning scheme are also given.

The Root pruning scheme is the best pruning scheme as
it achieves, on average, the deepest search depths among all
pruning schemes as shown in Figure 7. It remains to be seen
if this is also true for trees from real games, using practical
pruning schemes. However, the results suggest that pruning
rate should decrease with the depth of the nodes.

Discussion
There is anecdotal evidence that supports our analysis of
the effect of the depth of nodes in forward pruning. In de-
veloping adaptive null-move pruning (Heinz 1999), it was
initially expected that the best performance in an adaptive
form of null-move pruning would come from pruning more
when near the leaf nodes and less when closer to the root.
However, Heinz found that the opposite is true: adaptive
null-move pruning works better by pruning less near the leaf
nodes, which agrees with our results.

The theoretical analysis agrees with an intuitive forward
pruning strategy: prune more on your own move and less on
your opponent’s when you are winning. The player who is
winning will generally have several good moves, and prun-
ing some of them would not affect the possibility of finding
a winning move, but pruning on the opponent’s move may
cause a refutation to be missed. Figure 4 similarly suggests
that pruning errors in Max nodes are tolerated best when
the leaf nodes are mostly wins (and are actually filtered out
when the error is small), and tolerated least when the leaf
nodes are mostly losses; and vice versa for Min nodes.

Lastly, existing literature had painted the pessimistic pic-
ture that the minimax algorithm corrupts the back-up values
in the presence of errors. While there are alternative expla-
nations for minimax pathology, including but not limited to,
(Smith & Nau 1994; Sadikov, Bratko, & Kononenko 2005;
Lustrek, Gams, & Bratko 2005), our analysis show that the
minimax algorithm is filtering pruning errors, but at a slower
rate than the rate of growth of leaf nodes.

Conclusion
We have shown theoretical and simulation results that sug-
gest that the player to move and the depth of a node affect
how forward pruning errors propagate to the root node. In
particular, pruning errors in Max nodes generally result in
better quality moves than if the same amount of pruning er-
rors were made in Min nodes. This suggests that forward
pruning techniques should adjust how much they forward
prune based on the player to move. We also showed that the
probability of errors propagating to the root node decreases
as depth of the error location increases. Unfortunately, the
rate at which the minimax algorithm can filter out errors is
smaller than the rate at which leaf nodes are introduced for
each additional search depth. This suggests that forward
pruning techniques should prune less as search depth in-
creases. While the simulations used non-pathological game-
trees with correlated leaf values, experiments with actual
game-trees are needed to verify the results.

Acknowledgement
This work is supported by an A*Star-NUS Graduate Fellow-
ship to Y. J. Lim. We thank Jürg Nievergelt, Oon Wee Chong
and the anonymous referees for their helpful comments.

References
Beal, D. F. 1980. An analysis of minimax. In Advances in
Computer Chess 2, 103–109. Edinburgh University Press.
Buro, M. 1995. ProbCut: An effective selective exten-
sion of the α−β algorithm. International Computer Chess
Association Journal 18(2):71–76.
Heinz, E. A. 1999. Adaptive null-move pruning. Inter-
national Computer Chess Association Journal 22(3):123–
132.
Knuth, D. E., and Moore, R. W. 1975. An analysis of
alpha-beta pruning. Artificial Intelligence 6:293–326.
Lustrek, M.; Gams, M.; and Bratko, I. 2005. Why minimax
works: An alternative explanation. In IJCAI, 212–217.
Marsland, T. A. 1986. A review of game-tree pruning.
International Computer Chess Association Journal 9(1):3–
19.
Nau, D. S. 1979. Quality of decision versus depth of search
on game trees. Ph.D. Dissertation, Duke University.
Nau, D. S. 1982. An investigation of the causes of pathol-
ogy in games. Artificial Intelligence 19:257–278.
Newborn, M. M. 1977. The efficiency of the alpha-
beta search on trees with branch-dependent terminal node
scores. Artificial Intelligence 8:137–153.
Pearl, J. 1984. Heuristics – Intelligent Search Strategies
for Computer Problem Solving. Reading, MA: Addison-
Wesley Publishing Co.
Sadikov, A.; Bratko, I.; and Kononenko, I. 2005. Bias
and pathology in minimax search. Theoretical Computer
Science 349(2):268–281.
Smith, S. J. J., and Nau, D. S. 1994. An analysis of forward
pruning. In Proceedings of 12th National Conference on
Artificial Intelligence (AAAI-94), 1386–1391.

1025


