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Abstract
Bayesian reinforcement learning (BRL) encodes
prior knowledge of the world in a model and rep-
resents uncertainty in model parameters by main-
taining a probability distribution over them. This
paper presents Monte Carlo BRL (MC-BRL), a
simple and general approach to BRL. MC-BRL
samples a priori a finite set of hypotheses for
the model parameter values and forms a dis-
crete partially observable Markov decision pro-
cess (POMDP) whose state space is a cross prod-
uct of the state space for the reinforcement learn-
ing task and the sampled model parameter space.
The POMDP does not require conjugate distri-
butions for belief representation, as earlier works
do, and can be solved relatively easily with point-
based approximation algorithms. MC-BRL nat-
urally handles both fully and partially observ-
able worlds. Theoretical and experimental re-
sults show that the discrete POMDP approxi-
mates the underlying BRL task well with guar-
anteed performance.

1. Introduction
A major obstacle in reinforcement learning is slow conver-
gence, requiring many trials to learn an effective policy.
Model-based Bayesian reinforcement learning (BRL) pro-
vides a principled framework to tackle this difficulty. To
speed up convergence, BRL encodes prior knowledge of
the world in a model. It explicitly represents uncertainty in
model parameters by maintaining a probability distribution
over them and chooses actions that maximize the expected
long-term reward with respect to this distribution. One ap-
proach to BRL is to cast it as a partially observable Markov
decision process (POMDP) P (Duff, 2002). The state of P
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is a pair (s, θ), where s is the discrete world state for the re-
inforcement learning task and θ is the unknown continuous
model parameter. POMDP policy computation automati-
cally analyzes both aspects of each action: its reward and
its contribution towards inferring unknown model parame-
ters, thus achieving optimal trade-off between exploration
and exploitation.

Despite its elegance, this approach is not easy to use in
practice. Since model parameters are continuous in gen-
eral, P has a hybrid state space and requires the restrictive
assumption of conjugate distributions to represent beliefs
during the policy computation (Duff, 2002; Poupart et al.,
2006; Ross et al., 2007; Poupart & Vlassis, 2008).

We propose Monte Carlo Bayesian Reinforcement Learn-
ing (MC-BRL), a simpler and more general approach to
BRL, based on the following observation: although there
are infinitely many parameter values, it may be possible to
compute an approximately optimal policy without consid-
ering all of them, if the objective is good average perfor-
mance with respect to a prior distribution b0P of model pa-
rameters. We sample a finite set of values from b0P and form
a discrete POMDP P̂ whose state is (s, θ̂), with θ̂ taking
values from the sampled set only. This discrete POMDP
P̂ approximates the hybrid POMDP P . P̂ does not require
conjugate distributions for belief representation and can be
solved much more easily with existing point-based approx-
imation algorithms, e.g., (Kurniawati et al., 2008). MC-
BRL also naturally handles both fully and partially observ-
able worlds.

We show that MC-BRL is approximately Bayes-optimal
with a bounded error in the average case. The output-
sensitive bound indicates that if a small approximately op-
timal policy exists, then a small number of samples is suf-
ficient for P̂ to approximate P well. In other words, if we
treat P as a generalization of P̂ with a richer model param-
eter space, a small policy results in better generalization.
This nicely mirrors similar results in learning theory. We
also provide experimental results evaluating MC-BRL on
four distinct domains, including one from an application in
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autonomous vehicle navigation.

2. Background
2.1. MDP and POMDP

An MDP is a tuple 〈S,A, T,R, γ〉, where S is a set of world
states, A is a set of actions, T (s, a, s′) specifies the transi-
tion probability of reaching state s′ when taking action a
in state s, R(s, a, s′) specifies the reward received when
taking action a in state s and reaching state s′, and γ is a
discount factor.

A policy π : S → A for an MDP is a function that specifies
which action to take in each state s ∈ S. The value of a
policy π is defined as the expected cumulative discounted
reward

E

( ∞∑
t=0

γtR (st, π(st), st+1)

)
,

where the expectation is with respect to the random vari-
able st, the state at step t. The aim of the MDP is to find an
optimal policy π? with maximum value.

MDPs assume that the agent can directly observe the
world state. POMDPs generalize MDPs by allowing par-
tially observable states. Formally, a POMDP is a tuple
〈S,A,O, T, Z,R, γ〉, where S, A, T , R, γ are as defined in
the case of MDP, O is a set of observations, and Z(s′, a, o)
is the observation function that specifies the probability of
observing o when action a was taken in the previous step
and the current state is s′.

In a POMDP, the agent does not know for sure its state.
Instead, it maintains a probability distribution or belief b(s)
over the state space S. A policy π : B → A for a POMDP
is a mapping from the belief space to actions. The value of
π at a belief b is defined as

Vπ(b) = E

( ∞∑
t=0

γtR (bt, π(bt), bt+1) | b0 = b

)
,

where the expectation is with respect to the random vari-
able bt, the belief at step t. Given an initial belief b0, the
aim of the POMDP is to find an optimal policy π? with
maximum value at b0.

2.2. Related Works

One common approach to BRL adopts the proposal in
(Duff, 2002) and casts BRL as a POMDP P with a hy-
brid state space (Wang et al., 2005; Poupart et al., 2006;
Ross et al., 2007; Castro & Precup, 2007; Poupart & Vlas-
sis, 2008; Ross & Pineau, 2008). To maintain the posterior
belief of continuous model parameters, it requires either a
closed-form representation or effective approximate infer-
ence techniques. Instead of solving P directly, MC-BRL

approximates it with a discrete POMDP P̂ by sampling
from the prior distribution and takes advantage of the re-
cent advances in point-based discrete POMDP algorithms.
This way, we avoid the restrictive assumption of close-form
belief representation and obtain a simpler and more general
approach.

Sampling has been used extensively in BRL (Castro & Pre-
cup, 2007; Ross et al., 2007; Poupart & Vlassis, 2008; Ross
& Pineau, 2008; Asmuth et al., 2009). However, the ear-
lier works draw samples from the posterior distributions to
speed up planning for P or to maintain beliefs efficiently.
This is conceptually different from our approach, which
samples hypotheses from the model parameter space a pri-
ori to form P̂ and works exclusively with the sampled hy-
potheses afterwards.

Our theoretical result shares a similar idea with that for
the (PO)MDP algorithm PEGASUS. (Ng & Jordan, 2000).
The PEGASUS analysis bounds the number of samples re-
quired to find a good policy in a policy class with finite
VC-dimension. Our result does not assume such a policy
class. It provides an output-sensitive bound that depends
on the size of the policy actually computed, instead of a
worst-case bound for all policies in a class.

3. Monte Carlo BRL
3.1. BRL as POMDP

To simplify the presentation, let us first consider BRL of
an MDP. Given an MDP 〈S,A, T,R, γ〉, the task of BRL
is to find an optimal policy when the transition function
T is unknown. Let θ = {θsas′ |s, s′ ∈ S, a ∈ A} de-
note the collection of unknown parameters of the MDP,
where θsas′ = T (s, a, s′). It has been shown that the
BRL problem can be formulated as a POMDP P =
〈SP , AP , OP , TP , ZP , RP , γ, b0P〉 (Duff, 2002). The state
space SP = S × Θ is the cross product of the MDP states
S and the parameter space Θ. A state (s, θ) consists of a
world state s of the MDP and a hypothesized value θ of the
unknown parameter. The actions AP are identical to the
actions A in the MDP. Assuming the parameter θ does not
change over time, the transition function is defined as

TP(s, θ, a, s′, θ′) = Pr(s′, θ′|s, θ, a)

= Pr(s′|s, θ, a, θ′)Pr(θ′|s, θ, a)

= θsas′δθθ′ ,

where δθθ′ is the Kronecker delta that takes value 1 if
θ = θ′ and value 0 otherwise. The observation of the
POMDP P indicates the current MDP state. Therefore,
we define OP = S and ZP(s′, θ′, a, o) = δs′o. The re-
ward does not depend on the parameter θ, so we have
RP(s, θ, a, s′, θ′) = R(s, a, s′). Finally, we put a prior
distribution b0P(θ) over θ, which reflects our initial belief
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of the unknown parameter.

This formulation explicitly represents the uncertainty in
the unknown parameter. The parameter θ forms a com-
ponent of the POMDP state, which is partially observable
and can be inferred based on the history of the observed
MDP state/action pairs. By solving the POMDP P , one
plans against both the uncertainty in the dynamics and the
uncertainty in the model parameter. An optimal policy for
P thus yields an optimal strategy for action selection that
balances exploration with exploitation.

Since the parameter θsas′ takes continuous value, P has a
hybrid state space. Two difficulties arise as a result. The
first is how to efficiently maintain a belief for the contin-
uous state variable. In order to attain a closed-form rep-
resentation, most existing work assumes a conjugate prior
b0P over the parameter θ, such as the Dirichlet distribution
(Dearden et al., 1999; Duff, 2002; Poupart et al., 2006;
Ross et al., 2007; Poupart & Vlassis, 2008). The sec-
ond difficulty is how to solve the hybrid POMDP P effi-
ciently. Although several approximate algorithms based on
function approximation and online planning have been pro-
posed (Duff, 2002; Poupart et al., 2006; Ross et al., 2007),
there is no satisfactory answer in general.

3.2. Algorithm

MC-BRL is motivated by the following observation. Al-
though there are infinitely many possible values for the pa-
rameter θ, it may be possible to compute an approximately
optimal policy without considering all of them. MC-BRL
consists of two phases, offline and online. Given a prior
distribution b0(θ) and a sample size K, the offline phase of
the algorithm works in three steps.

1. Sample K hypotheses
(
θ̂1, θ̂2, . . . , θ̂K

)
indepen-

dently from b0(θ).

2. Form a discrete POMDP P̂ =
〈SP̂ , AP̂ , OP̂ , TP̂ , ZP̂ , RP̂ , γ, b0P̂〉. The state space is
the cross product SP̂ = S × {1, 2, . . . ,K}. A state
(s, k) consists of an MDP state s and an indicator
k of the sampled hypotheses for θ. The actions
AP̂ = A and observations OP̂ = S are defined
in the same way as in Section 3.1. The transition,
observation, and reward functions are defined as
TP̂(s, k, a, s′, k′) = θ̂ksas′δkk′ , ZP̂(s′, k′, a, o) =
δs′o, and RP̂(s, k, a, s′, k′) = R(s, a, s′), respec-
tively. Finally, the initial belief b0P̂(k) is defined as
the uniform distribution over {1, 2, . . . ,K}.

3. Solve the POMDP P̂ and output a policy π̂.

In the online phase, the agent then follows the policy π̂ to
select actions.

MC-BRL sidesteps the two technical obstacles of the exist-
ing approach based on the hybrid POMDP P . The discrete
POMDP P̂ can be readily solved with point-based approxi-
mation algorithms (Pineau et al., 2003; Smith & Simmons,
2005; Kurniawati et al., 2008). There is also no restrictive
assumption on the form of the prior distribution b0(θ). The
only requirement is that it is easy to sample from.

We further note that P̂ falls into the class of mixed observ-
ability MDPs (MOMDPs). Its state (s, k) has mixed ob-
servability. While the second component k is hidden, the
first component s is fully observable. It has been shown
that MOMDPs admit a compact factored representation of
the state space, which can be exploited to speed up POMDP
planning (Ong et al., 2010). In this paper, we use SARSOP
(Ong et al., 2010) to solve P̂ which readily takes advantage
of the MOMDP representation.

MC-BRL takes a prior distribution b0(θ) as input. In prac-
tice, if we know nothing about the true parameter, we use a
non-informative prior such as uniform distribution. When
there is prior knowledge about the true parameter, more in-
formative prior can be used to bias the hypotheses towards
the ground truth.

3.3. Generalization to Partially Observable
Environments

MC-BRL can be readily generalized to BRL problems un-
der partially observable environments. Suppose we are
given a POMDP 〈S,A,O, T, Z,R, γ〉, and we aim to find
an optimal policy when both the transition function T and
the observation function Z are unknown. The unknown
parameters can be denoted as a pair (θ, ψ), where θ is as
defined before, while ψ = {ψs′ao|s′ ∈ S, a ∈ A, o ∈ O}
denotes the observation function and ψs′ao = Z(s′, a, o).

MC-BRL can be naturally adapted to address this problem
with two modifications to the offline phase. First, it sam-
ples the hypotheses from a joint prior distribution b0(θ, ψ)
instead of b0(θ). Second, the POMDP P̂ is modified by set-
ting OP̂ = O and ZP̂(s′, k′, a, o) = ψ̂k

′

s′ao. The modified
observation function ZP̂ now incorporates the uncertainty
in the unknown parameter ψ of the underlying POMDP.

4. Theoretical Analysis
MC-BRL uses the discrete POMDP P̂ to approximate the
hybrid POMDP P . To analyze the quality of this approxi-
mation, we derive a probably approximately correct (PAC)
bound on the regret of MC-BRL’s solution, compared with
the optimal solution to P .

We assume that a POMDP policy π is represented as a pol-
icy graph G, which is a directed graph with labeled nodes
and edges. Each node of G is labeled with an action a ∈ A
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and has |O| outgoing edges, each labeled with a distinct
observation o ∈ O. The size of the policy π, denoted as
|π|, is the number of nodes in G. To execute the policy, the
agent first picks a node in G according to the initial belief.
It then takes the action associated with the node, receives
an observation, and transits to the next node by following
the edge labeled with that observation. The process then
repeats.

The policy graph representation allows us to establish the
correspondence between policies forP and P̂ . If π is a pol-
icy for P , then it is also a valid policy for P̂ , and vice versa,
as P and P̂ share the same action space A and observation
space O.

Suppose that MC-BRL forms the discrete POMDP P̂ by
takingK samples from the initial belief b0P of P . There are
three policies of interest: an optimal policy π? for P , an
optimal policy π̂? for P̂ , and the policy π̂ that MC-BRL ac-
tually computes. We want to bound the regret of π̂ against
π?. Define Vπ as the value of a policy π for P with initial
belief b0P , and V̂π as the value of π for P̂ with initial be-
lief b0P̂ . The following theorem states our main theoretical
result. The proof is given in the supplementary material1.

Theorem 1. Suppose that π? is an optimal policy for P
and π̂ is the policy that MC-BRL computes by taking K
samples to form a discrete POMDP P̂ . Let Rmax =
maxs,s′∈S,a∈A |R(s, a, s′)|. If V̂π̂? − V̂π̂ ≤ δ, then for any
τ ∈ (0, 1),

Vπ? − Vπ̂ ≤ 2Rmax

1−γ

√
2((|π̂||O|+2) ln |π̂|+|π̂| ln |A|+ln(4/τ))

K

+δ

with probability at least 1− τ .

The theorem says that MC-BRL with a small set of samples
produces a good approximate solution π̂ to P with high
probability, provided that there exists a simple approximate
solution π̂ to P̂ . It is interesting to observe that although we
formulate and solve the underlying reinforcement learning
task as a planning problem, this analysis closely mirrors
similar results in learning: if we think of P as a general-
ization of P̂ with a richer model parameter space, then the
theorem implies that a small policy results in better gener-
alization.

The error bound consists of two terms. The first term de-
cays at the rate O(1/

√
K). We can reduce it by sampling

more hypotheses from the prior, but at the cost of poten-
tially increasing the complexity of the discrete POMDP P̂
and the resulting policy π̂. The second term δ bounds the
error in the approximate solution to the discrete POMDP

1Available at http://www.comp.nus.edu.sg/
˜leews/publications/icml2012-supp.pdf.

Figure 1. Chain problem.

P̂ . Algorithms such as HSVI (Smith & Simmons, 2005)
and SARSOP (Kurniawati et al., 2008) output such bounds
as a by-product of POMDP policy computation. We can
reduce δ by running these algorithms longer towards con-
vergence.

It is also important to observe that the approximate Bayes-
optimality of π̂, quantified by Vπ̂ , guarantees the average
performance of π̂ with respect to the prior distribution b0P
of models. It does not guarantee the performance of π̂ on
any particular model.

Our analysis assumes a policy graph representation of
POMDP policies. In practice, point-based discrete
POMDP algorithms, such as HSVI and SARSOP, typically
output policies represented as a set of α-vectors, which in
principle can be converted to policy graphs.

5. Experiments
We now experiment with MC-BRL on both fully observ-
able and partially observable reinforcement learning tasks.
First, we evaluate MC-BRL on two small synthetic do-
mains widely used in the existing work on BRL (Sec-
tions 5.1 and 5.2). Here the standard setup requires us
to measure the performance of an algorithm on particu-
lar model parameter values rather than the average perfor-
mance with respect to a prior distribution of model param-
eters. Therefore the bound in Theorem 1 is not applicable
here. Next, we test MC-BRL on two more realistic domains
(Sections 5.3 and 5.4), where we measure the average per-
formance of MC-BRL and show that it performs well in
this sense, as our theoretical result guarantees.

All the experiments are conducted on a 16-core Intel Xeon
2.4GHz server.

5.1. Chain

We start with the Chain problem used in (Dearden et al.,
1998; Poupart et al., 2006). This problem consists of a
chain of 5 states and 2 actions {a, b}. The actions cause
the transitions between states and receive corresponding re-
wards, as shown in Figure 1. The actions are noisy. They
slip with probability 0.2 and cause the opposite effect. The
optimal policy of this problem is to always perform action
a.

We consider two versions of the Chain problem. In the

http://www.comp.nus.edu.sg/~leews/publications/icml2012-supp.pdf
http://www.comp.nus.edu.sg/~leews/publications/icml2012-supp.pdf
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Table 1. Average total rewards (reported with two standard errors)
for the Chain problem. The results for Beetle and Exploit are from
(Poupart et al., 2006).

Semi-Tied Full

MC-BRL (K = 10) 3216±64 1661±27
MC-BRL (K = 100) 3603±32 1630±25
MC-BRL (K = 1000) 3618±29 1646±32

Upper Bound 3677 3677
Beetle 3648±41 1754±42
Exploit 3257±124 3078±49
Q-Learning 1560±18 1560±18

MC-BRL+ (K = 10) − 3655±24
MC-BRL+ (K = 100) − 3644±24
MC-BRL+ (K = 1000) − 3638±24

semi-tied version, we assume that the structure of transi-
tions between states in Figure 1 are given. The only un-
known parameters are the 2 slipping probabilities, one for
each action. In the full version, we assume that the tran-
sition function T (s, a, s′) is completely unspecified. This
leads to 40 unknown parameters.

We evaluate MC-BRL algorithm using 500 simulations
with 1000 steps in each simulation. We test K = 10, 100,
and 1000, and use the uniform prior to sample hypotheses.
Since it is a stochastic algorithm, we rerun the offline phase
of MC-BRL before each simulation, obtain a policy, and
then execute that policy online. We run the offline phase up
to 180 seconds. The online time is negligible.

Table 1 reports the average (undiscounted) total rewards of
MC-BRL. For comparison, we also report an upper bound
on the reward that could be achieved only if we had known
the true model parameters, as well as the rewards of three
alternatives: the Beetle algorithm (Poupart et al., 2006), the
Exploit heuristic, which never explores but takes the opti-
mal action with respect to the expected MDP under the cur-
rent belief, and Q-learning with ε-greedy exploration and
linear learning rate. For Q-learning, we test a wide range
of ε values from 0 to 0.5. The reward for the optimal value
is reported.

MC-BRL achieves good performance in the semi-tied ver-
sion. It obtains near-optimal reward with 1000 samples
and is comparable to Beetle. It outperforms Exploit and
Q-learning. In the full version, MC-BRL is still better than
Q-learning. However, it performs slightly worse than Bee-
tle and is unable to improve the performance substantially
with increased number of samples. Exploit performs much
better than both MC-BRL and Beetle. However, Exploit
relies on a myopic heuristic and does not explore well in
general. For example, it performs much more poorly than
MC-BRL and Beetle in the semi-tied version.

MC-BRL’s performance degrades in the full version, be-

Table 2. Average total rewards for the Tiger problem.

Total Reward

MC-BRL (K = 10) 68.63±13.45
MC-BRL (K = 100) 113.36±2.38

Upper Bound 126.34±3.73
Prior Model 7.12±0.16

cause the sample size is too small to cover the neighbor-
hood of the true parameters within the 40-dimensional pa-
rameter space using the uniform prior. To verify this, we
conduct another experiment by inserting the true param-
eter values as one of the samples of MC-BRL. The re-
sults, denoted as MC-BRL+ in Table 1, show that MC-
BRL achieves good performance in this case. Constructing
effective sampling strategies is an important direction for
future research.

5.2. Tiger

We next test MC-BRL on the Tiger problem (Kaelbling
et al., 1998) with partial observability. In this problem,
the agent must decide whether to open one of two doors
or to listen for the position of the tiger at each time step.
Opening the wrong door will cause the agent to be eaten by
a tiger with a penalty of −100, while opening the correct
door will give a reward of 10. Listening costs−1 and gives
the true position of the tiger with 15% error. We assume
that the transition and reward functions are given, but the
observation error rates are unknown.

We evaluate MC-BRL using 1000 simulations. Each sim-
ulation consists of 100 episodes. In each episode, the
agent takes actions and receives observation sequentially.
The episode ends when the agent opens a door and the
position of the tiger is reset. We test MC-BRL with
K = 10 and 100. Following (Ross et al., 2007), we use
Dirichlet(3, 5) as the prior distribution to sample the
unknown parameters. This prior corresponds to an ex-
pected error rate 37.5%. We run the offline phase of MC-
BRL up to 300 seconds.

Table 2 shows the total reward gained by MC-BRL in 100
episodes, averaged over the 1000 simulations. For refer-
ence, we also include the upper bound induced by the true
model, and the reward of the prior model in which the ob-
servation error rate is set to the prior expectation 37.5%.
With K = 100, MC-BRL achieves performance close to
the upper bound, and is far better than the prior model.

We further look into the evolution of the reward over
episodes. Figure 2 shows the reward gained by MC-BRL
per episode, averaged over the 1000 simulations. As we
do not have the exact settings used in (Ross et al., 2007),
we cannot directly compare with their experimental results.
However, we can see that MC-BRL quickly learns the un-
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Figure 2. Average reward evolving over episodes for the Tiger
problem.

known parameters and improves over the prior model. It
achieves near-optimal performance after about 20 episodes.

5.3. Iterated Prisoner’s Dilemma

The Prisoner’s Dilemma (Poundstone, 1992) is a well
known one-shot two-player game in which each player tries
to maximize his own reward by cooperating with or be-
traying the other. In this section, we studied its repeated
version, the Iterated Prisoner’s Dilemma (IPD) (Axelrod,
1984), and show that MC-BRL can achieve excellent per-
formance on this problem.

In IPD, the game is played repeatedly and each player
knows the history of his opponents moves. A key factor for
an agent to gain high reward is the capability to model the
opponent’s behaviour based on history. It has been shown
that any memoryless and one-stage memory opponent can
be modeled using 4 parameters 〈PS , PT , PR, PP 〉, which
are the probabilities that the opponent will cooperate in the
next step, given the 4 possible situations of the current step:
(1) the agent cooperates while the opponent defects (de-
noted by S); (2) the agent defects while the opponent co-
operates (T ); (3) mutual cooperation (R); and (4) mutual
defection (P ) (Kraines & Kraines, 1995).

Suppose the agent knows the parameters of its opponent.
Then the IPD can be naturally formulated as an MDP. The
state of the MDP is the current move of the two players,
which takes values from {S, T,R, P}. The agent needs to
select between cooperating or defecting for the next move.
The transition function is defined based on the parameters
of the opponent. The reward depends on the next state, and
is set to 0, 5, 3, 1 for S, T,R, P respectively, following the
setting commonly used in IPD tournaments.

In reality, the parameters of the opponent are unknown.
The agent needs to explore the opponent’s strategy and at
the same time maximize its reward. This leads to a RL
problem and we apply MC-BRL to solve it.

We are interested in the average performance of MC-BRL
when facing various opponents. Therefore, we randomly

Table 3. Average total rewards over 1000 random opponents for
the IPD problem.

Total Reward

MC-BRL (K = 250) 917.92±15.97
MC-BRL (K = 1000) 928.03±15.70

Upper Bound 942.75±15.74
OTFT 935.80±15.60
Q-Learning 841.61±13.86
Pavlov 742.15±15.49
TFT 661.24±7.98
AP 520.13±14.87

select 1000 test opponents by uniformly sampling their pa-
rameters. For each opponent, we run the offline phase of
MC-BRL for 180 seconds and obtain a policy. We then use
the policy to play against the opponent for 300 steps and
collect the total reward. This is repeated for 20 times to
account for the stochastic behaviour of the opponent. For
MC-BRL, we test K = 250 and 1000, and use the uniform
prior to sample the parameters. We set the discount factor
γ = 0.95.

Table 3 shows the total rewards averaged over the 1000 op-
ponents. With K = 250, MC-BRL already achieves good
rewards. With K = 1000, it approaches the upper bound,
which is achieved by solving the underlying MDP with the
true parameters of the opponents.

For reference, we also compare MC-BRL with two classic
hand-crafted strategies, Tit-for-Tat (TFT) (Axelrod, 1984)
and Pavlov (Nowak & Sigmund, 1993), and the two win-
ning entries of the 2005 IPD tournament, Adaptive Pavlov
(AP) (Li, 2007) and Omega Tit-for-Tat (OTFT) (Slany &
Kienreich, 2007). These four strategies are used to play
against the same 1000 test opponents under the same set-
ting as MC-BRL. The results are summarized in Table 3.
MC-BRL achieves comparable reward to OTFT, and sig-
nificantly outperforms all the others. It is interesting to note
that AP, the tournament winner, performs very poorly.

TFT, Pavlov, AP, and OTFT are all specially designed to
win the IPD tournaments, while MC-BRL is a general al-
gorithm for BRL and is not optimized for competitions. On
the other hand, one should not directly translate the good
performance of MC-BRL here to the IPD tournaments, as it
is unlikely to face random opponents. However, MC-BRL
can use more informative priors to exploit domain knowl-
edge on the opponents, as the other algorithms do.

We further compare MC-BRL with Q-learning. We fol-
low the setting suggested by (Littman & Stone, 2001). The
result is shown in Table 3. We can see that MC-BRL sig-
nificantly outperforms Q-learning on this task.

While MC-BRL achieves good average performance,
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Figure 3. A near-miss accident during the 2007 DARPA Urban
Challenge.

as our theorem guarantees, it can perform worse than
other algorithms when faced with particular oppo-
nents. For instance, for the opponent parameterized
by 〈0.806, 0.108, 0.596, 0.185〉, MC-BRL obtains a much
lower reward than that of Q-learning: 596.05 versus 659.1.

5.4. Intersection Navigation

This problem is motivated by an accident in the 2007
DARPA Urban Challenge (Leonard et al., 2008). In that
event, two autonomous vehicles, R and A, approached
an uncontrolled traffic intersection as shown in Figure 3.
R had the right-of-way and proceeded. However, possi-
bly due to sensor failure or imperfect driving strategy, A
did not yield to R and caused a near-miss. This situa-
tion is quite common and occurs frequently even with hu-
man drivers. Crossing the intersection safely and efficiently
without knowing the driving strategy of A poses a signifi-
cant challenge.

We formulate the problem as a RL problem. The underly-
ing model is a POMDP. The state consists of the positions
and velocities of R and A. For simplicity, we discretize the
environment into a uniform grid. In each step, the agent
R can take three actions: accelerate, maintain speed, and
decelerate. It then receives an observation on its own state
and the state of A. Both actions and observations are noisy.
The transition function is defined based on the driving strat-
egy of A, which is unknown to the agent R. The agent re-
ceives a reward for crossing the intersection safely, and a
large penalty for collision with A. A small penalty is given
in each step to expedite the agent to cross the intersection
faster. Due to space limitation, we give the detailed settings
in the supplementary material.

The driving strategy of A is unknown to the agent. We
parameterize the driving strategy using 4 parameters: (1)
driver imperfection, σ ∈ [0, 1], (2) driver reaction time,
τ ∈ [0.5, 2] s, (3) acceleration, a ∈ [0.5, 3] m/s2, and (4)
deceleration, d ∈ [−3,−0.5] m/s2. A preliminary study
shows that this parameterization can cover a variety of
drivers such as a reckless driver who never slows down
at the intersection and an impatient driver who performs a

Figure 4. Average discounted total reward for the Intersection
Navigation problem versus sample size K, reported with two
standard error bar.

rolling stop near the intersection. The agent needs to learn
the parameters of A and cross the intersection at the same
time.

We test MC-BRL on this RL problem. We test a range
of K values and sample the parameters from the uniform
distribution. Similar to the IPD problem, we are interested
in the average performance of MC-BRL with respect to dif-
ferent driversA. Therefore, we uniformly sampled 250 test
drivers. For each driver, we run the offline phase of MC-
BRL for 1.5 hours and obtain a policy. We then evaluate the
policy against that test driver using 200 simulations with 40
steps in each simulation.

Figure 4 shows the average discounted total rewards with
discount factor γ = 0.99. We can see that, as the sample
size K increases, the performance of MC-BRL improves
quickly. With K = 300, it gets close to the upper bound,
which is achieved when the true parameters of the driver A
are known.

We also compare MC-BRL to a hand-crafted intersection
policy that is commonly used in the traffic modeling com-
munity (Liu & Ozguner, 2007). With K = 150 and above,
MC-BRL significantly outperforms that policy. While the
hand-crafted policy is not designed to handle noisy ob-
servations, we think that the performance gap between
the hand-crafted policy and MC-BRL is more likely to be
caused by insufficient adaptivity of the hand-crafted policy
in learning the driving strategy of A.

As a final remark, this problem gives an example where it is
more natural to define the prior over the physical properties
of the environment. MC-BRL handles such priors easily,
although they are challenging to specify using methods that
rely on conjugate distributions.

6. Conclusion
We have presented MC-BRL, a simple and general ap-
proach to Bayesian reinforcement learning. We prove that
by sampling a finite set of hypotheses from the model
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parameter space, MC-BRL generates a discrete POMDP
that approximates the underlying BRL problem well with
guaranteed performance. We provide experimental results
demonstrating strong performance of the approach in prac-
tice. Furthermore, MC-BRL naturally handles both fully
and partially observable worlds.

One important issue for MC-BRL is to sample the model
parameter space effectively. A naive method is to dis-
cretize the parameter space uniformly and treat the fixed
grid points as samples. This method, however, suffers from
the “curse of dimensionality” and is difficult to scale up as
the number of parameters increases (Poupart et al., 2006).
MC-BRL takes one step further and samples a set of hy-
potheses independently from a given prior distribution. The
promising results obtained in this work open up many pos-
sibilities for future investigation, e.g., constructing better
informed prior distributions by exploiting domain knowl-
edge and adaptive sampling.
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