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Abstract

We propose a new approximate inference algo-
rithm for graphical models, tensor belief prop-
agation, based on approximating the messages
passed in the junction tree algorithm. Our al-
gorithm represents the potential functions of the
graphical model and all messages on the junction
tree compactly as mixtures of rank-1 tensors. Us-
ing this representation, we show how to perform
the operations required for inference on the junc-
tion tree efficiently: marginalisation can be com-
puted quickly due to the factored form of rank-1
tensors while multiplication can be approximated
using sampling. Our analysis gives sufficient
conditions for the algorithm to perform well, in-
cluding for the case of high-treewidth graphs, for
which exact inference is intractable. We com-
pare our algorithm experimentally with several
approximate inference algorithms and show that
it performs well.

1. Introduction
Probabilistic graphical models provide a general frame-
work to conveniently build probabilistic models in a modu-
lar and compact way. They are commonly used in statistics,
computer vision, natural language processing, machine
learning and many related fields (Wainwright & Jordan,
2008). The success of graphical models depends largely
on the availability of efficient inference algorithms. Unfor-
tunately, exact inference is intractable in general, making
approximate inference an important research topic.

Approximate inference algorithms generally adopt a vari-
ational approach or a sampling approach. The variational
approach formulates the inference problem as an optimi-
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sation problem and constructs approximations by solving
relaxations of the optimisation problem. A number of well-
known inference algorithms can be seen as variational algo-
rithms, such as loopy belief propagation, mean-field varia-
tional inference, and generalized belief propagation (Wain-
wright & Jordan, 2008). The sampling approach uses sam-
pling to approximate either the underlying distribution or
key quantities of interest. Commonly used sampling meth-
ods include particle filters and Markov-chain Monte Carlo
(MCMC) algorithms (Andrieu et al., 2003).

Our proposed algorithm, tensor belief propagation (TBP),
can be seen as a sampling-based algorithm. Unlike parti-
cle filters or MCMC methods, which sample states (also
known as particles), TBP samples functions in the form of
rank-1 tensors. Specifically, we use a data structure com-
monly used in exact inference, the junction tree, and per-
form approximate message passing on the junction tree us-
ing messages represented as mixtures of rank-1 tensors.

We assume that each factor in the graphical model is orig-
inally represented as a tensor decomposition (mixture of
rank-1 tensors). Under this assumption, all messages and
intermediate factors also have the same representation. Our
key observation is that marginalisation can be performed
efficiently for mixtures of rank-1 tensors, and multiplica-
tion can be approximated by sampling. This leads to an ap-
proximate message passing algorithm where messages and
intermediate factors are approximated by low-rank tensors.

We provide analysis, giving conditions under which the
method performs well. We compare TBP experimentally
with several existing approximate inference methods using
Ising models, random MRFs and two real-world datasets,
demonstrating promising results.

2. Related Work
Exact inference on tree-structured graphical models can
be performed efficiently using belief propagation (Pearl,
1982), a dynamic programming algorithm that involves
passing messages between nodes containing the results of
intermediate computations. For arbitrary graphical models,
the well-known junction tree algorithm (Shafer & Shenoy,
1990; Lauritzen & Spiegelhalter, 1988; Jensen et al., 1990)
is commonly used. The model is first compiled into a junc-
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tion tree data structure and a similar message passing algo-
rithm is then run over the junction tree. Unfortunately, for
non-tree models the time and space complexity of the junc-
tion tree algorithm grows exponentially with a property of
the graph called its treewidth. For high-treewidth graphical
models, exact inference is intractable in general.

Our work approximates the messages passed in the junc-
tion tree algorithm to avoid the exponential runtime caused
by exact computations in high-treewidth models. Various
previous work has taken the same approach. Expectation
propagation (EP) (Minka, 2001) approximates messages by
minimizing the Kullback-Leiber (KL) divergence between
the actual message and its approximation. Structured mes-
sage passing (Gogate & Domingos, 2013) can be consid-
ered as a special case of EP where structured representa-
tions, in particular algebraic decision diagrams (ADDs) and
sparse hash tables, are used so that EP can be performed
efficiently. In contrast to ADDs, the tensor decomposi-
tions used for TBP may provide a more compact represen-
tation for some problems. An ADD partitions a tensor into
axis-aligned hyper-rectangles – it is possible to represent
a hyper-rectangle using a rank-1 tensor but a rank-1 ten-
sor is generally not representable as an axis-aligned rectan-
gle. Furthermore, the supports of the rank-1 tensors in the
mixture may overlap. However, ADD compresses hyper-
rectangles that share sub-structures and this may result in
the methods having different strengths. Sparse tables, on
the other hand, work well for cases with extreme sparsity.

Several methods use sampled particles to approximate mes-
sages (Koller et al., 1999; Ihler & McAllester, 2009; Sud-
derth et al., 2010). To allow their algorithms to work well
on problems with less sparsity, Koller et al. (1999) and Sud-
derth et al. (2010) use non-parametric methods to smooth
the particle representation of messages. In contrast, we de-
compose each tensor into a mixture of rank-1 tensors and
sample the rank-1 tensors directly, instead of through the
intermediate step of sampling particles. Another approach,
which pre-samples the particles at each node and passes
messages between these pre-sampled particles was taken
by Ihler & McAllester (2009). The methods of Ihler &
McAllester (2009) and Sudderth et al. (2010) were also ap-
plied on graphs with loops using loopy belief propagation.

Xue et al. (2016) use discrete Fourier representations for in-
ference via the elimination algorithm. The discrete Fourier
representation is a special type of tensor decomposition. In-
stead of sampling, the authors perform approximations by
truncating the Fourier coefficients, giving different approx-
imation properties. Other related works include (Darwiche,
2000; Park & Darwiche, 2002; Chavira & Darwiche, 2005),
where belief networks are compiled into compact arith-
metic circuits (ACs). On the related problem of MAP infer-
ence, McAuley & Caetano (2011) show that junction tree

clusters that factor over subcliques or consist only of latent
variables yield improved complexity properties.

3. Preliminaries
For simplicity we limit our discussion to Markov ran-
dom fields (MRFs), but our results apply equally to
Bayesian networks and general factor graphs. We focus
only on discrete models. A Markov random field G is
an undirected graph representing a probability distribu-
tion P (X1, . . . , XN ), such that P factorises over the max-
cliques in G, i.e.

P (X1, . . . , XN ) =
1

Z

∏
c∈cl(G)

φc(Xc) (1)

where cl(G) is the set of max-cliques in G and Z =∑
X

∏
c∈cl(G) φc(Xc) ensures normalisation. We call the

factors φc clique potentials or potentials.

TBP is based on the junction tree algorithm (see e.g.
(Koller & Friedman, 2009)). A junction tree is a special
type of cluster graph, i.e. an undirected graph with nodes
called clusters that are associated with sets of variables
rather than single variables. Specifically, a junction tree is a
cluster graph that is a tree and which also satisfies the run-
ning intersection property. The running intersection prop-
erty states that if a variable is in two clusters, it must also be
in every cluster on the path that connects the two clusters.

The junction tree algorithm is essentially the well-known
belief propagation algorithm applied to the junction tree
after the cluster potentials have been initialized. At ini-
tialisation, each clique potential is first associated with a
cluster. Each cluster potential Φt(Xt) is computed by mul-
tiplying all the clique potentials φc(Xc) associated with the
cluster Xt. Thereafter, the algorithm is defined recursively
in terms of messages passed between neighbouring clus-
ters. A message is always a function of the variables in the
receiving cluster, and represents an intermediate marginali-
sation over a partial set of factors. The messagemt→s(Xs)
sent from a cluster t to a neighbouring cluster s is defined
recursively by

mt→s(Xs) =
∑

Xt\Xs

Φt(Xt)
∏

u∈N(t)\{s}

mu→t(Xt), (2)

where N(t) is the set of neighbours of t. Since the junc-
tion tree is singly connected, this recursion is well-defined.
After all messages have been computed, the marginal dis-
tribution on a cluster of variables Xs is computed using

Ps(Xs) ∝ Φs(Xs)
∏

t∈N(s)

mt→s(Xs), (3)

and univariate marginals can be computed by summation
over cluster marginals. The space and time complexity of
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the junction tree inference algorithm is exponential in the
induced width of the graph, i.e. the number of variables in
the largest tree cluster minus 1 (Koller & Friedman, 2009).
The lowest possible induced width (over all possible junc-
tion trees for the graph) is defined as the treewidth of the
graph1.

4. Tensor Belief Propagation
The TBP algorithm we propose (Algorithm 1) is the same
as the junction tree algorithm except for the approximations
at line 1 and line 4, which we describe below.

Algorithm 1 Tensor Belief Propagation

input Clique potentials {φc(Xc)}, junction tree J .
output Approximate cluster marginals {P̃s(Xs)} for all s.

1: For each cluster Xt, compute Φ̃t(Xt) ≈
∏
c φc(Xc),

where the product is over all cliques c associated with
t.

2: while there is any unsent message do
3: Pick an unsent message mt→s(Xs) with all mes-

sages to t from neighbours other than s sent.
4: Send m̃t→s(Xs) ≈

∑
Xt\Xs

Φ̃t(Xt)
∏

u∈N(t)\{s}

m̃u→t(Xt).

5: end while
6: return P̃s(Xs) ∝ Φ̃s(Xs)

∏
t∈N(s) m̃t→s(Xs).

There are two challenges in applying the junction tree al-
gorithm to high-treewidth graphical models: representing
the intermediate potential functions, and computing them.
For representation, using tables to represent the cluster po-
tentials and messages requires space exponential in the in-
duced width. For computation, the two operations relevant
to the complexity of the algorithm are marginalisation over
a subset of variables in a cluster and multiplication of mul-
tiple factors. When clusters become large, these operations
become intractable unless additional structure can be ex-
ploited.

TBP alleviates these difficulties by representing all poten-
tial functions as mixtures of rank-1 tensors. We show how
to perform exact marginalisation of a mixture (required in
line 4) efficiently, and how to perform approximate multi-
plication of mixtures using sampling (used for approxima-
tion in lines 1 and 4).

4.1. Mixture of Rank-1 Tensors

As we are concerned with discrete distributions, each po-
tential φc can be represented by a multidimensional ar-
ray, i.e. a tensor. Furthermore, a d-dimensional tensor
T ∈ RN1×···×Nd can be decomposed into a weighted sum

1Finding the treewidth of a graph is NP-hard; in practice we
use various heuristics to construct the junction tree.

of outer products of vectors as

T =

r∑
k=1

wk a1k ⊗ a2k ⊗ · · · ⊗ adk, (4)

where wk ∈ R, aik ∈ RNi and ⊗ is the outer product, i.e.(
a1k ⊗ a2k ⊗ · · · ⊗ adk

)
i1,...,id

=
(
a1k
)
i1
· · · · ·

(
adk
)
id

. We
denote the vector of weights {wk} as w. The smallest r
for which an exact r-term decomposition exists is called
the rank of T and a decomposition (4) using this r is a ten-
sor rank decomposition. This decomposition is known by
several names including CANDECOMP/PARAFAC (CP)
decomposition and Hitchcock decomposition (Kolda &
Bader, 2009). In this paper, we assume without loss of
generality that the weights are non-negative and sum to 1,
giving a mixture of rank-1 tensors. Such a mixture forms
a probability distribution over rank-1 tensors, which we re-
fer to as a tensor belief. We also assume that the decom-
position is non-negative, i.e. the rank-1 tensors are non-
negative, although the method can be extended to allow
negative values.

For a (clique or cluster) potential function φs(Xs) over
|Xs| = Ns variables, (4) is equivalent to decomposing φs
into a sum of fully-factorised terms, i.e.

φs(Xs) =

r∑
k=1

wsk ψ
s
k(Xs)

=

r∑
k=1

wsk ψ
s
k,1(Xs1) · · ·ψsk,Ns

(XsNs
). (5)

This observation allows us to perform marginalisation and
multiplication operations efficiently.

4.2. Marginalisation

Marginalising out a variable Xi from a cluster Xs simpli-
fies in the same manner as if the distribution was fully-
factorised, namely∑
Xi

φs(Xs) =

r∑
k=1

wsk

(∑
Xi

ψsk,j(Xi)

)
· (6)

ψsk,1(Xs1)ψsk,2(Xs2) · · ·ψsk,Ns
(XsNs

)︸ ︷︷ ︸
excluding ψs

k,j(Xi)

where we simply push the sum
∑
Xi

inside and only eval-
uate it over the univariate factor ψsk,j(Xi). We can then
absorb this sum into the weights {wsk} and the result stays
in decomposed form (5). To marginalise over multiple vari-
ables, we evaluate (6) for each variable in turn.

4.3. Multiplication

The key observation for multiplication is that a mixture of
rank-1 tensors can be treated as a probability distribution
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over the rank-1 tensors with expectation equal to the true
function, by considering the weight of each rank-1 term
wk as its probability.

To multiply two potentials φi and φj , we repeatedly sam-
ple rank-1 terms from each multiplicand to build the prod-
uct. We draw a sample of K pairs of indices {(kr, lr)}Kr=1

independently from wi and wj respectively, and use the
approximation

φi(Xi) · φj(Xj) ≈
1

K

K∑
r=1

ψikr (Xi) · ψjlr (Xj). (7)

The approximation is also a mixture of rank-1 tensors, with
the rank-1 tensors being the ψikr (Xi) · ψjlr (Xj), and their
weights being the frequencies of the sampled (kr, lr) pairs.
This process is equivalent to drawing a sample of the same
size from the distribution representing φi(Xi) ·φj(Xj) and
hence provides an unbiased estimate of the product func-
tion. Multiplication of each pair ψikr (Xi) · ψjlr (Xj) can
be performed efficiently due to their factored forms. It is
possible to extend the method to allow multiplication of
more potential functions simultaneously but we only use
pairwise multiplication in this paper, repeating the process
as necessary to multiply more functions.

4.4. Theoretical Analysis

For simplicity, we give results for binary MRFs. Extension
to non-binary variables is straightforward. We assume that
exact tensor decompositions are given for all initial clique
potentials.

Theorem 1. Consider a binary MRF with C max-cliques
with potential functions represented as non-negative tensor
decompositions. Consider the unnormalised distribution
D(X) =

∏
c∈cl(G) φc(Xc). Let Di(Xi) =

∑
X\Xi

D(X)
be the unnormalised marginal for variableXi. Assume that
the values of the rank-1 tensors in any mixture resulting
from pairwise multiplication is upper bounded by M , and
that the approximation target for any cell in any multiplica-
tion operation is lower bounded by B. Let D̃i(Xi) be the
estimates produced by TBP using a junction tree with an
induced width T . With probability at least 1 − δ, for all i
and xi,

(1− ε)Di(xi) ≤ D̃i(xi) ≤ (1 + ε)Di(xi)

if the sample size used for all multiplication operations is
at least

Kmin(ε, δ) ∈ O
(
C2

ε2
M

B

(
logC + T + log

2

δ

))
.

Furthermore, D̃i(Xi) remains a consistent estimator for
Di(Xi) if B = 0.

Proof. We give the proof for the case B 6= 0 here. The
consistency proof for the case B = 0 can be found in the
supplementary material.

The errors in the unnormalised marginals are due to the
errors in approximate pairwise multiplication defined by
Equation (7). We first give bounds for the errors in all the
pairwise multiplication by sampling operations, then derive
the bounds for the errors in the unnormalised marginals.

Recall that by the multiplicative Chernoff bound (see e.g.
(Koller & Friedman, 2009)), for K i.i.d. random variables
Y1, . . . , YK in range [0,M ] with expected value µ, we have

P

(
1

K

K∑
i=1

Yi /∈ [(1− ζ)µ, (1 + ζ)µ]

)
≤ 2 exp

(
−ζ

2µK

3M

)
.

The number of pairwise multiplications required to initial-
ize the cluster potentials {Φ̃t(Xt)} is at most C (line 1).
The junction tree has at most C clusters, and thus at most
2(C − 1) messages need to be computed. Each message
requires at most C pairwise multiplications (line 4). Hence
the total number of pairwise multiplications needed is at
most 2C2. Each pairwise multiplication involves func-
tions defined on at most T binary variables, and thus it si-
multaneously estimates at most 2T values. Hence at most
2T+1C2 values are estimated by sampling in the algorithm.

Since each estimate satisfies the Chernoff bound, we can
apply a union bound to bound the probability that the esti-
mate for any µj is outside [(1− ζ)µj , (1 + ζ)µj ], giving

Pζ

(
1

K

K∑
i=1

Xj
i /∈ [(1− ζ)µj , (1 + ζ)µj ] for

any estimate j

)
≤ 2T+2C2 exp

(
−ζ

2BK

3M

)
,

whereB is a lower bound on the minimum value of all cells
estimated during the algorithm. If we set an upper-bound
on this error probability of δ and rearrange for K, we have
that with probability at least δ, all estimates are within a
factor of (1± ζ) of their true values when

K ≥ 3

ζ2
M

B
ln

2T+2C2

δ
. (8)

We now seek an expression for the sample size required
for the unnormalised marginals to have small errors. First
we argue that at most C + Q − 1 pairwise multiplications
are used in the process of constructing the marginals at any
node u, where Q is the number of clusters. This is true
for the base case of a tree of size 1 as no messages need
to be passed. As the inductive hypothesis, assume that the
statement is true for trees of size less than n. The node u is
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considered as the root of the tree and by the inductive hy-
pothesis the number of multiplications used in each subtree
i is at most Ci + Qi − 1 where Ci and Qi are the number
of clique potentials and clusters associated with subtree i.
Summing them up and noting that we need to perform at
most one additional multiplication for each clique potential
associated with u for initialisation, and one additional mul-
tiplication for each subtree, gives us the required result. To
simplify analysis, we bound C + Q − 1 by 2C from here
onwards.

At worst, each pairwise multiplication results in an extra
(1 ± ζ) factor in the bound. Since we are using a multi-
plicative bound, marginalisation operations have no effect
on the bound. As we do no more than 2C multiplications,
the final marginal estimates are all within a factor (1±ζ)2C

of their true value.

To bound the marginal so that it is within a factor (1 ± ε)
of its true value for a chosen ε > 0, we note that choosing
ζ = ln(1+ε)

2C implies (1 − ζ)2C ≥ 1 − ε and (1 + ζ)2C ≤
(1 + ε):

(1− ζ)2C =

(
1− ln(1 + ε)

2C

)2C

(9)

≥
(

1− ε

2C

)2C
≥ 1− ε

(1 + ζ)2C =

(
1 +

ln(1 + ε)

2C

)2C

(10)

≤ exp (ln(1 + ε)) = 1 + ε.

In (9) we use Bernoulli’s inequality together with ln(1 +
ε) ≤ ε, and in (10) we use (1 + x)r ≤ exp(rx).

Substituting this ζ into (8), we have that all marginal esti-
mates are accurate within factor (1± ε) with probability at
least 1− δ, when

K ≥ 12C2

(ln(1 + ε))2
M

B
ln

2T+2C2

δ
(11)

Using the fact that ln(1 + ε) ≥ ε · ln 2 for 0 ≤ ε ≤ 1, and
24
ln 2 < 35, we can relax this bound to

K ≥ 35C2

ε2
M

B

(
logC + T + log

2

δ

)
.

Corollary 1. Under the same conditions as Theorem 1,
with probability at least 1− δ, the normalised marginal es-
timates p̃i(xi) satisfy

(1− γ)pi(xi) ≤ p̃i(xi) ≤ (1 + γ)pi(xi)

for all i and xi, if the sample size used for all multiplication
operations is at least

K ′min(γ, δ) ∈ O
(
C2

γ2
M

B

(
logC + T + log

1

δ

))
.

Proof. Suppose the unnormalised marginals have relative
error bounded by (1± ε), i.e.

(1− ε)Di(xi) ≤ D̃i(xi) ≤ (1 + ε)Di(xi)

for all i and xi. Then we have

p̃i(xi) =
D̃i(xi)∑
xi
D̃i(xi)

≤ (1 + ε)Di(xi)∑
xi
(1− ε)Di(xi)

=
1 + ε

1− εpi(xi).

To bound the relative error on p̃i(xi) to (1 + γ), we set

1 + ε

1− ε
= 1 + γ =⇒ ε =

γ

γ + 2
.

Since 1
ε2 =

(
γ+2
γ

)2
<
(

3
γ

)2
= O

(
1
γ2

)
for γ < 1, the

increase in Kmin required to bound the normalised esti-
mates rather than the unnormalised estimates is at most a
constant. Thus,

K ′min(γ, δ) ∈ O
(
C2

γ2
M

B

(
logC + T + log

1

δ

))
.

as required. The negative side of the bound is similar.

Interestingly, the sample size does not grow exponen-
tially with the induced width, and hence the treewidth
of the graph. As the inference problem is NP-hard,
we expect the ratio M/B to be large in difficult prob-
lems. The M/B ratio comes from bounding the relative
error when sampling a mixture φ(x) =

∑r
k=1 wkψk(x).

A more refined bound can be obtained by bounding
maxk maxx ψk(x)/φ(x) instead; this bound would not
grow as quickly if ψk(x) is always small whenever φ(x)
is small. Understanding the properties of function classes
where these bounds are small may help us understand when
TBP works well.

Theorem 1 suggests that that it may be useful to reweight
the rank-1 tensors in a multiplicand to give a smaller
M/B ratio. The following proposition gives a reweighting
scheme that minimises the maximum value of the rank-1
tensors in a multiplicand, which leads to a smaller M with
B fixed. Theorem 1 still holds with this reweighting.

Proposition 1. Let φ(x) =
∑r
k=1 wkψk(x) where wk ≥

0,
∑r
k=1 wk = 1 and ψk(x) ≥ 0 for all x. Con-

sider a reweighted representation
∑r
k=1 w

′
kψ
′
k(x), where

ψ′k(x) = wk

w′
k
ψk(x), each w′k ≥ 0, and

∑
k w
′
k =

1. Then maxk maxx ψ
′
k(x) is minimized when w′k ∝

wk maxx ψk(x).

Proof. Let ak = wk maxx ψk(x), and let v =
maxk maxx ψ

′
k(x) = maxk

ak
w′

k
. For any choice of w′, we

have v ≥
∑

k ak∑
k w

′
k

=
∑
k ak. The first inequality holds be-

cause vw′k ≥ ak for any k by the definition of v. Since
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k ak is a constant lower bound for v, and this is clearly

achieved by setting w′k ∝ ak, we have the claimed re-
sult.

Note that with ψk(x) represented as a rank-1 tensor, the
maximum value over x can be computed quickly with the
help of the factored structure.

Reweighting the rank-1 tensors as described in Proposi-
tion 1 and then sampling gives a form of importance sam-
pling. Importance sampling is often formulated instead
with the objective of minimizing the variance of the es-
timates. Since we expect lowering the variance of inter-
mediate estimates to lead to lower variance on the final
marginal estimates, we also examine the following alter-
native reweighting scheme.
Proposition 2. Let φ(x) =

∑r
k=1 wkψk(x) where wk ≥

0,
∑r
k=1 wk = 1. Consider a reweighted representa-

tion
∑r
k=1 w

′
kψ
′
k(x), where ψ′k(x) = wk

w′
k
ψk(x), each

w′k ≥ 0, and
∑
k w
′
k = 1. Let φ̃(x) = 1

K

∑K
i=1 ψ

′
Ki

(x)
be an estimator for φ(x), where each Ki is drawn inde-
pendently from the categorical distribution with parame-
ters {w′1, . . . , w′r}. Then φ̃(x) is unbiased, and the to-
tal variance

∑
x Var[φ̃′(x)] is minimized when w′k ∝

wk
√∑

x ψk(x)2.

Proof. Clearly φ̃(x) is an unbiased estimator for φ(x). The
variance of this estimator is

Var[φ̃(x)] =
1

K
Var[ψ′K′

i
(x)]

=
1

K

(
E[ψ′Ki

(x)2]− E[ψ′Ki
(x)]

2
)

=
1

K

(∑
k

w′kψ
′
k(x)2 − φ(x)2

)

=
1

K

(∑
k

w′k
w2
k

w′2k
ψk(x)2 − φ(x)2

)

=
1

K

(∑
k

w2
k

w′k
ψk(x)2 − φ(x)2

)
.

Since K and φ(x) are constant, we have

{w′k}∗ = argmin
{w′

k}

∑
x

Var[φ̃′(x)]

= argmin
{w′

k}

∑
x

∑
k

1

w′k
(wkψk(x))2,

where each w′k ≥ 0,
∑
k w
′
k = 1. A straightforward appli-

cation of the method of Lagrange multipliers yields

w′k =
wk
√∑

x ψk(x)2∑
l wl
√∑

x ψl(x)2
.

The factored forms of rank-1 tensors again allows the im-
portance reweighting to be computed efficiently.

Propositions 1 and 2 could be applied directly to the al-
gorithm by multiplying two potential functions fully be-
fore sampling. If each potential function has K terms, the
multiplication would result in K2 terms which is computa-
tionally expensive. We only partially exploit the results of
Propositions 1 and 2 in our algorithm. When multiplying
two potential functions, we draw K pairs of rank-1 ten-
sors from their respective distributions and multiply them
as described earlier but re-weight the resulting mixture us-
ing either Proposition 1 or 2. We call the former max-norm
reweighting, and the latter min-variance reweighting.

5. Experiments
We present experiments on grid-structured Ising models,
random graphs with pairwise Ising potentials, and two
real-world datasets from the UAI 2014 Inference Compe-
tition (Gogate, 2014). We test our algorithm against com-
monly used approximate inference methods, namely loopy
belief propagation (labelled BP), mean-field (MF), tree-
reweighted BP (TRW) and Gibbs sampling using existing
implementations from the libDAI package (Mooij, 2010).
TBP was implemented in C++ inside the libDAI frame-
work using Eigen (Guennebaud et al., 2010) and all tests
were executed on a single core of a 1.4 GHz Intel Core i5
processor. In each experiment, we time the execution of
TBP and allow Gibbs sampling the same wall-clock time.
We run the other algorithms until convergence, which oc-
curs quickly in each case (hence only the final performance
is shown). Parameters used for BP, MF, TRW and Gibbs are
given in the supplementary material. To build the junction
tree, we use the min-fill heuristic2 implemented in libDAI.

5.1. Grid-structured Ising Models

Figure 1 gives results for 10×10 Ising models. TheN×N
Ising model is a planar grid-structured MRF described by
the joint distribution

p(x1, . . . , xN2) =
1

Z
exp

∑
(i,j)

wijxixj +
∑
i

bixi


where (i, j) runs over all edges in the grid. Each vari-
able Xi takes value either 1 or −1. In our experiments,
we choose the wij uniformly from [−2, 2] (mixed interac-
tions) or [0, 2] (attractive interactions), and the b uniformly
from [−1, 1]. We use a symmetric rank-2 tensor decompo-
sition for the pairwise potentials. We measure performance

2Min-fill repeatedly eliminates variables that result in the low-
est number of additional edges in the graph (Koller & Friedman,
2009).
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Figure 1: Marginal error of TBP for various sample sizes K on 10 × 10 Ising models compared with other approximate
inference methods (NONE = no reweighting, MAX = max-norm reweighting, VAR = min-variance reweighting).

by the mean L1 error of marginal estimates over the N2

variables,

1

N2

N2∑
i=1

|Pexact(Xi = 1)− Papprox(Xi = 1)|.

Exact marginals were obtained using the exact junction tree
algorithm (possible because the grid size is small). Results
are all averages over 100 model instances generated ran-
domly with the specified parameters; error bars show stan-
dard error. We give a description of the tensor decomposi-
tion and additional results for a range of grid sizes N and
interaction strengths wij in the supplementary material.

As we increase the number of samples used for multiplica-
tion K, and hence running time, the performance of TBP
improves as expected. On both attractive and mixed inter-
action models, loopy BP, mean-field and tree-reweighted
BP perform poorly. Gibbs sampling performs poorly on
models with attractive interactions but performs better on
models with mixed interactions. This is expected since
models with mixed interactions mix faster. Reweighting
gives a noticeable improvement over not using reweighting;
both max-norm reweighting and min-variance reweighting
give very similar results (in Figure 1, they not easily differ-
entiated). For the remainder of our experiments, we show
results for max-norm reweighting only.

5.2. Random Pairwise MRFs

We also test TBP on random binary N -node MRFs with
pairwise Ising potentials. We construct the graphs by inde-
pendently adding each edge (i, j) with probability 0.5, with
the requirement that the resulting graph is connected. Pair-
wise potentials are of the same form as Ising models (i.e.
exp[wijxixj ]), where interaction strengths wij are chosen
uniformly from [0, 2] (attractive) or [−2, 2] (mixed) and the

bi are chosen uniformly from [−1, 1].

Figure 2a shows the performance of TBP with increas-
ing sample size K on 15-node models. Similar to grid-
structured Ising models, TBP performs well as the sample
size is increased. Notably, TBP performs very well on at-
tractive models where other methods perform poorly.

Figure 2b shows the performance of the algorithms as the
graph size is increased to 30 nodes. Interestingly, TBP
starts to fail for mixed interaction models as the graph size
is increased but remains very effective for attractive inter-
action models while other methods perform poorly.

5.3. UAI Competition Problems

Finally, we show results of TBP on two real-world datasets
from the UAI 2014 Inference Competition, namely the
Promedus and Linkage datasets. We chose these two prob-
lems following Zhu & Ermon (2015). To compute the ini-
tial tensor rank decompositions, we use the non-negative
cp nmu method from Bader et al. (2015), an iterative op-
timisation method based on (Lee & Seung, 2001). The ini-
tial potential functions are decomposed into mixtures with
r components. We show results for r = 2 and r = 4. We
measure performance by the mean L1 error over all states
and all variables

1

NSi

N∑
i=1

∑
xi

|Pexact(Xi = xi)− Papprox(Xi = xi)|,

where Si is the number of states of variableXi. Results are
averages over all problem instances in (Gogate, 2014).

We see that TBP outperforms Gibbs sampling on both
problems3. On the Linkage dataset, using r = 2 mix-

3We omit results for BP, MF and TRW for these problems be-
cause the libDAI package was unable to run them.
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(a) Effect of sample size K for N = 15 nodes
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(b) Effect of graph size N

Figure 2: Performance of TBP on random pairwise MRFs compared with other approximate inference algorithms.
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Figure 3: Marginal error of TBP vs Gibbs sampling on UAI 2014 Inference Competition problems for various sample sizes
K.

ture components for the initial decompositions performs
best and increasing r does not improve performance. On
the Promedus dataset r = 4 performs better; in this case,
increasing r may improve the accuracy of the decompo-
sition of the initial potential functions. For reference, the
marginal error achieved by the random projection method
of Zhu & Ermon (2015) is 0.09 ± 0.02 for Linkage and
0.21 ± 0.06 for Promedus. TBP with K = 105 achieved
error of 0.08±0.01 for Linkage and 0.12±0.01 for Prome-
dus despite using substantially less running time 4.

6. Conclusion and Future Work
We proposed a new sampling-based approximate inference
algorithm, tensor belief propagation, which uses a mixture-
of-rank-1-tensors representation to approximate cluster po-
tentials and messages in the junction tree algorithm. It

4TBP with K = 105 takes an average across all problem
instances of approximately 10 minutes (Linkage) and 3 minutes
(Promedus) per problem on our machine, and does not differ sub-
stantially for r = 2 vs r = 4. The results described by Zhu &
Ermon (2015) were comparable in running time to 10 million iter-
ations of Gibbs sampling, which we estimate would take several
hours on our machine without parallelism.

gives consistent estimators, and performs well on a range
of problems against well-known algorithms.

In this paper, we have not addressed how to perform the ini-
tial tensor decomposition. There exist well-known optimi-
sation algorithms for this problem to minimize Euclidean
error (Kolda & Bader, 2009), though it is not clear that this
is the best objective for the purpose of TBP. We are cur-
rently investigating the best way of formulating and solving
this optimisation problem to yield accurate results during
inference. Further, when constructing the junction tree, it
is not clear whether min-fill and other well-known heuris-
tics remain appropriate for TBP. In particular, these cost
functions aim to minimise the induced width of the junc-
tion tree which is no longer directly relevant to the perfor-
mance of the algorithm. Further work may investigate other
heuristics, for example with the goal of minimising cluster
variance.

Finally, approximate inference algorithms have applica-
tions in learning (for example, in the gradient computa-
tions when training restricted Boltzmann machines) and
thus TBP may improve learning as well as inference in
some applications.
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