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Abstract. We consider the problem of determining which of a set of experts has
tastes most similar to a given user by asking the user questions about his likes
and dislikes. We describe a simple and fast algorithm for a theoretical model of
this problem with a provable approximation guarantee, and prove that solving the
problem exactly is NP-Hard.

1 Introduction

Recommender systems (also known as collaborative £Iltering systems) use the opinions
of past users to make recommendations to new users. The design of many such systems
is based on the assumption that people with similar opinions about some things are
likely to have similar opinions about others (see [10, 4]). The user is typically asked

to rate a few items before any new item is recommended. Once a sufEcient number of
items have been rated, the system can use those ratings to estimate which previous users
of the system are most similar to the current user overall. The opinions of these previous
users can then used to generate recommendations; methods based on weighted majority
prediction [8] and correlation coefEcients [9] usually work quite well for this.

In this paper, we investigate a different aspect of the problem: how to select the
initial items for the user to rate. These items are not presented as recommendations, but
are asked only for the purpose of learning about the user. Since these are troublesome
to the user, a high priority must be placed on asking few of these questions. (This is in
contrast to the work on “approximate nearest neighbor searching” [3, 7, 5], where all the
components of the point being searched are assumed to be given.) If later questions are
decided based on the answers to earlier questions, the questions must also be generated
in real time.

We allow the ratings to come from any £nite ¥gtand assume that the algorithm is
given an integer-valued loss functiéron Y to measure the distance between different
ratings. We require that the loss functibbe a metric, that is, it satisEes the properties:



Lz,y) > 0,4(z,y) =0ifand only ifz = y, {(x,y) = L(y,z) andl(z,y) < l(x, z) +

{(z,y) foranyz € Y. Common loss functions that satisfy these properties include the

0 — 1 loss and the absolute loss. The distance between users will then be measured by
the sum, over all items, of the loss between their ratings on a given item.

The emphasize the role that they play, we refer to the previous usexpags our
approximation bounds will be in terms of the number of such experts. Therefore, it may
be worthwhile to cluster the previous users in a preprocessing step, and use the cluster
centers as the experts.

Before proceeding to the general case, we illustrate our techniques in a highly ide-
alized setting. We assume that there are only two possible ratings, that the distance
between ratings i if they are different and if they are the same, and that some expert
agrees with the user on all items. In this case, the problem can be described in terms of
themembership query modgl].

In the membership query model [1], the learning algorithm is trying to learn an
unknown{0, 1}-valued functionf (called the “target”) chosen from a known concept
classF'. The algorithm is allowed to ask the value fifr) for domain elements of its
choosing, and must eventually halt and output the identitf. of

In the idealized case described above, the problem of £nding the perfect expert can
be viewed as the problem of learning using membership queries. The different items
would be the domailX, the likes and dislikes of the user is the functjbto be learned,
and asking the user its opinion about an item can be interpreted as a membership query.
The experts are then the concept class/iewed this way, the problem we are faced
with is that of, given a concept clagsas input, designing a membership query algo-
rithm for F.

We begin by showing that the very simple and fast “query-by-committee” [11] al-
gorithm, which maintains a list of possible targets, and chooses the query for which
the remaining possibilities are most evenly divided, learns any élagith an approxi-
mately optimal number of membership queries in the worst case. Specifcafly )
is the optimal worst-case bound on the number of membership queries for learning ar-
bitrary elements of", then the query-by-committee algorithm leafisvhile making
at mostopt(F)(In(|F'|/opt(F)) + 1) + 1 queries. We also show that it is NP-Hard to
design a polynomial-time algorithm that, givéhas input and an membership oracle
for an elemeny of F, is guaranteed to learfiusingopt(F') queries.

Next, we look at the more general case. To study this case, we use a variant of
the membership query model similar to that proposed by Angluin, Krikis, Sloan and
Turan [2]. Here, the range of the targéf{our model of the user) and the functions in
F (the experts) is an arbitrary £nite $ét As mentioned above, the algorithm is given
an integer-valued metriconY x Y, and the distance between functiohandg is
measured by ((f(x),g(z)). The target functiory is not necessarily if’, but
the algorithm is given a parametesuch that there is a functianin F' at a distance at
mostn from f. The algorithm must output some elementfofvithin distance, (there
may be more than one). Let us refer to the optimal worst-case bound on the number of
queries for this model bypt(F, n).

The algorithm we analyze for this problem also maintains a list of elements of
that are “alive”; here, these are elements that might possibly be within distarfdhe



target functionf. Loosely speaking, it repeatedly chooses a domain element for which
any response will discredit the remaining possibilities in total by a large amount.

To analyze this algorithm, we make use of a quantity that we callytdegree
of F. In the recommender system application, this can be interpreted as a measure of
the diversity of opinion among the experts; for example, if any possible tdrgeat
a distance at mosj from a unique element of’, then thern-degree ofF is 0. The
motivation for this measure is strongest if we imagine thid the result of a clustering
preprocessing step. Note that, informallyFifconsists of the centers of tight clusters,
and users typically belong to one such cluster, being much closer to one elentent of
than to any other should often be expected in practice. Tight clustering is the implicit
assumption underlying the design of many collaborative £ltering systems.

One can view the de£nition gfdegree as follows: imagine centering balls of radius
7n at the elements af', and constructing a graph where the vertices are these balls, and
there are edges between pairs of vertices that overlapnItegree ofF’ is the edge
degree of that graph.

Our generalization of the query-by-committee algorithm is guaranteed to £nd an
element ofF” within distance; after at most

|F|
1+ deg(F,n)

queries. Thus, if each possible target is within distaned a unique element of",
2opt(F, n) In|F| + n queries suffce.

20pt(F,7n)In +n(1 + deg(£,1))

2 Membership queries

Fix some £nite domaiX'. For some functiorf from X to {0, 1}, a membership oracle
for f, when queried about an elemenbdf X, returnsf(z). For an algorithmA with
access to a membership oracle forlet Q(A, f) be the number of queries asked by
A before it outputs the identity of. For a class of functions fromX to {0, 1}, let
Q(A, F) be the maximum o) (A4, f) over all f € F. Letopt(F') be the minimum of
Q(A, F) over all algorithmsA (note that there is no limitation on the time takeny

In this section, we show that there is an algorithm that tdkes input, and, given
access to an oracle for an arbitrary elemgnif I, learnsf with a nearly optimal
number of queries in polynomial time.

The algorithm analyzed in this section is the “query-by-committee” [11] algorithm.
(Our analysis of it builds on Johnson’s analysis of his approximation algorithm for Set
Cover [6].) It maintains a list of the elements Bfconsistent with the answers received
so far, and asks the quenthat divides the elements the most evenly, i.e. for which the
number of “alive” functiong; for which g(z) = 1 and the number for which(z) = 0
are as close as possible. After receivifig:), those possibilities that are inconsistent
with this value are deleted, and the algorithm continues. When only one possibility
remains, the algorithm halts and outputs it.

The key lemma in our analysis is the following.

Lemma 1. For any domainX, and any £nite sef’ of at least two functions frorX to
{0,1}, there is ane for whichmin,c .1y [{f € F : f(z) = y}| > (|[F| — 1)/opt(F).



Proof: Let A be an optimal membership query algorithm f6r Assume for contra-
diction that for allz € X, either|{f € F : f(z) = 1}| < (|F| — 1)/opt(F), or
{f € F: f(z) = 0}| < (|F| —1)/opt(F).

Our strategy will be to use the fact that any possible query gheduld ask has an
answer that eliminates few possibilities to argue that after asking a certain number of
queries,A cannot know the function to be learned. We will design an adversary that
repeatedly gives the answer fothat eliminates the fewest possibilities.

Let Fy = F (in general ,F}; will be the possibilities remaining afteérqueries have
been asked). Let; be the £rst query asked by. Choosey; to minimize|{f € F :
f(z1) = n}|- Let 4 = {f € F : f(z1) = y1}. Then, by assumptionfy| — 1 >
|[F| =1 (|F| - 1)/opt(F).

Continuing, let eachr; be thetth query asked, and choogeto minimize|{f €
F: f(zy) = y:}|,and letFy = {f € F : f(x1) = y1,..., f(x+) = y:}. For each such
t, |Fy| — 1> |Fi_1| — 1 = (|F] — 1)/opt(F'). Telescoping,

[Fopt(ry| = 1> (1 = opt(F) /opt(F))(|F| — 1) = 0. (1)
Thus, afteropt(F') queries, there is more than one elementofonsistent with the
information received by, a contradiction. O

Theorem 1. For any £nite sefX, and any £nite sek’ of at least two functions fromx
to {0, 1}, the query-by-committee algorithm, givErand a membership oracle for any
arbitrary f € F, outputsf after asking at most

opt(F) <1 +1In L];L(FD +1

queries.

Proof: ChooseF', and a targef € F'. Suppose the query-by-committee algorithm asks
T queries before learning, and for eact) < ¢ < T, let F; be the set of functions i&’
consistent with the information received after the £rgtieries. Lemma 1 implies that
forallt <T,

|[Fi| =1 < (1 —1/opt(Fr—1))(|Fi—1] — 1) )
< (1 =1/opt(F))(|Fi—1| — 1).
We also have

|Fy| < [Fioaf — 1. 3

Let S be largest index for whichFs| — 1 > opt(F'). Then (2) implies

1 S
(1= i) (1= D= opt(r)

and, applying the fact thatr, 1 — x < e~* and solving forS, we get
[Fl-1
opt(F)’
Also, (3), together with the fact thakr_,| > 1, implies that
T—S <opt(F)+1,

completing the proof. ad

S < opt(F)In



2.1 Hardness result

We now show that the problem of, given, learning an arbitrary element gf with
opt(F) membership queries is NP-Hard. Since this is a special case of our model of the
query selection problem for collaborative £ltering, this problem is NP-hard also. Our
proof is via a reduction from the set covering problem.

An instance(X’, F') of the set covering problenconsists of a £nite seX’ and
a family I’ of subsets ofX’ such that every element of’ belongs to at least one
subset ofF”. The problem is to £nd the minimum-sized sukSet F’, such that every
element ofX’ belongs to at least one subsetaf

For any instance of the set covering problem wheéfg = n and|F’| = m, we
will construct an optimal query problem whose solution will give the solution to the
set covering problem. We £rst describe a closely related optimal query problem. An
instance of the optimal query problem can be given gd¢'ar | X| matrix. We construct
an initial matrix M of sizen x m, where an element of’ in the set covering problem
corresponds to an element#nof our optimal query problem while an elementiofin
the set covering problem corresponds to an eleme#t iof our optimal query problem.

For each subset € F”, theith entry in the corresponding column of matiif is set

to 1 if the element ofX’ corresponding to théth row is a member of, otherwise it is
set to 0. Assume that we augment the mafvixwith an all zero row which we set as
the target for a query algorithm. Each query corresponds to a memt€&ranid will
eliminate all the rows with’s at that column. When the target is identifed, all the rows
except the all zero row will have been eliminated. The subsét’ aforresponding to
the subset of queries will thus form a cover f%f.

However, our optimal query algorithm is guaranteed to give only the optiraedt
casenumber of queries which does not necessarily correspond to the smallest cover. In
order to ensure that the optimabrst casejueries gives us the optimal cover, we solve
the optimal query problem for an augmented mafvix. We £rst augment the matrix
M with n columns that are zero in every entry. Then we augment the augmented matrix
with n+ 1 rows. The last row of the matrix consist of all zero elements while:théth
row (i = 1,...,n) consist of all zeros except for element+ i which is set tol. Call
the doubly augmented matriX’. We will show that if an optimal query algorithm for
the matrix)’ uses at most + ¢ queries, then the optimal cover for the corresponding
covering problem has sizg

The all zero row will be used as the target of an optimal query algorithm. Each query
corresponding to the one of the £rstcolumns corresponds to a memberfdf Hence
the subset of” corresponding to queries from the £nstcolumns will form a cover of
X'. We call this subset the covgeneratedby the query algorithm. Note that the rows
n + 1 to 2n cannot be eliminated by any query except the query to the column where
they have entryt and that such a query will eliminate only one row. Hence to uniquely
identify the targetyp of the queries must be to the lastolumns. We now need to show
that the cover generated by the optimal query algorithm is an optimal cover.

Lemma 2. The cover generated by an optimal query algorithm for matfixis a cover
of the smallest size.



Proof: Let A be an optimal query algorithm. Assume that the cover generatetiby
not a cover of the smallest size. Hence it is possible to reduce the number of queries
needed to identify the all zero row target by generating a smaller cover3 ltet an
algorithm that uses the fewest number of queries to identify the all zero row target.
We transformB into another algorithn3’. The algorithmB’ has the property that any
query on the last columns always happens after the queries to therrsblumns.
This can be done by delaying the queries on the dasblumns while retaining the
ordering of the other queries. Since a query to column- ¢ can eliminate only row
n + i, the effect of the delays is to potentially reduce the number of queries required
for the £rstn rows while potentially increasing the number of queries required for the
other rows. The number of queries required for the all zero rows remain the same.
The algorithmB’ will take the optimal number of queries for identifying the all
zero row target and no more thanqueries to identify any of the £rst rows. This is
because rows + 1 to 2n + 1 are identically zero when restricted to the frstolumns,
giving effectively a matrix withn 4 1 distinct rows. At least + 1 queries is needed
by any algorithm to identify the all zero row target and the all zero row target always
takes more queries than rows+ 1 to 2n. Hence, algorithmB’ has better worst case
performance than algorithod contradicting the optimality of algorithr. O

3 General Case

Choose a £nite nonempty SEt a positive integed/, and a metrid mappingY” x Y
to the nonnegative integers.
For functionsf andg from X to Y defne the distancd f, g) betweenf andg by

d(f,9) = > Uf(@), g(x))-

zeX

Let F®7 consist of allg : X — {0, 1} such that there is afi € F for whichd(f, g) <
1.

In this model, the adversary picks a functigrfrom F®7 (which we will call the
target), and provides an evaluation oracle faio the algorithm; this oracle responds
to a query ofr with f(x). The algorithm then must outpite F such thatd(f,h) <
7 (there may be more than one such possibility). The worst case number of queries
for an algorithmA in this setting isQ(A, F,n), and the optimal number of queries is
opt(F,n).

For a functionf : X — Y, andU C X, denote the restriction gfto U by f,.

For a sett” of functions fromX to Y, defne the-degree of’, denoted byleg(F, ),
to be the maximum, over i€ F,of |[{f € F: 0 < d(f,g) < 2n}|.Foru: F — Z™,
defnep(F, ) to be the maximum, over ajl € F', of

> ().
feF:d(f,9)<pu(f)+n(g)

For technical reasons, we will consider a related model. In this model, instegad of
the learning algorithm is given a priori a functipn I — Z* called aquota function



and access to an evaluation oracle for sgmeX — Y such that there is ape F with
d(f,g) < p(g). The algorithm then must output @ne F such thatd(f, h) < p(h).
Let opt(F, i) be the optimal worst-case number of queries for learning in this model.

Algorithm  Our algorithm works in time polynomial inX|, |Y|, and|F|. (Note that
the latter is signi£cantly less thaf ®"|.)

Our algorithm (let’s call itBy), is deEned recursively as follows. Suppose at some
point in time Br has previously asked querigs, ..., 2;_1, which were answered with
Y1, ---, Ys—1 respectively. Let

Fr={fix_ oy i FERY Uf(20),0s) <}

s<t

Informally F; consists of the restrictions of those elementg-athat are “still alive”
to the unexplored portion oK. If |F}| = 1, it halts, and outputs an extensiénof
the single element of; to all of X that minimizes)__, £(h(zs),ys). Otherwise, it
chooses:; from X — {zy,...,x:—1 } in order to maximize

22{} (f (), ye)-

fEF:
The following is the main lemma in our analysis of this algorithm.

Lemma 3. Choose a £niteX, a £niteY’, a £nite setf” of at least2 functions fromX to
Y,andy : F — Z™. There is anz € X for which

1
min f(@e),yt) > —p—
yeYy fer Opt(Fa :U/)

A +u(f) | = (F u)

feF

Proof: Let A be an optimal membership query algorithm for learningvith a quota
function y in the model of this section. L&f' = opt(F, u). Assume without loss of
generality thatd always asks exactly queries before halting and outputting a function
in F'. Assume for contradiction that

Ve 3y, Y (@) < o ([ Sasa] —emw ). @
fer fer

Generatéz,y1), ..., (1, yr) recursively as follows. For eac¢hletx; be A’s query
when its previous queries,, ..., z;_; were answered withy,, ..., y;_1 respectively.
Choose

ye = argmin, Y ((f (), ). (5)

fEF

First, we claim thatzq, 1), ..., (xp,yr) are “legal”, in the sense that there is at
least one potential target functighsuch thatf(z1) = v1, ..., f(zr) = yr for which



there is ag € F with d(f, g) < u(g). To see this, note that (4) and (5) imply

T T
So D g u) = D03 Uyl ve)

geEF t=1 t=1 geF

< (Z(l +u(9))) — ¢(F, ) (6)

geF

geF

< (Z(1+u(g))) :

Thus, there is @ € F such thatzz;lf(g(xt),yt) < wu(g). So if f is deEned by

f(z1) = y1, ..., flxr) = yr and f(z) = g(z) for x & {x1,...,zr}, f satisEes the
requirements of a target function.

Supposed outputsh. Loosely speaking, any € F' that is too far fromh had better
be eliminated as a possible target(by, y1), ..., (1, y7), Since otherwise an adversary
could choos¢ as a target. Speci£cally, for affiye F such thati(h, f) > u(h)+pu(f),
it must be the case thgt:tT:1 O(f(xe),yr) > pu(f), since otherwise, an adversary could
modify f to get a target function with distance at mestf) from f, and therefore
distance greater thanh) from h. Thus

T
Zzg(f(xt),yt) > Z I+ pn(f)

feF t=1 FeF:d(f,h)>u(f)+u(h)

> (Zuw(m) - > uJ)
feF:d(

feF FR)<p(f)+n(h)

> (Z(Hu(f))) — 6(F, ),

feF

contradicting (6) and completing the proof. O
Now we're ready for our theorem abobBtz.

Theorem 2. ChooseX, a setF' of functions fromX to Y, and an integer; > 1. Then
Q(Br, F,n) < 20pt(F,n) In(|F[/(1 + deg(F,n))) +1(1 + deg(F, n)).

Proof: Consider a run of algorithn®Bz in which it asks queries, ..., xr, which are
answered withyy, ..., yr. For each, let

Ft:{fo{xl ,,,, Ti_1} :fesze(f(xs)ays)Sn}'

S<t

For eacht, defneu; : F; — Z™* by

pe(f) =n—min { > lg(xs),ys) g€ Foge (.. =1I}

s<t



Informally, 1 (f) is the amount of loss left beforgis eliminated as a possible target.
We divide our analysis 0B into two stages. Let

S = max {t P (L () = 20(1+ deg(F, 77))} :

feF,

Choose < S. By Lemma 3,
Z (1 + pe41(f))

fE€Ft41

< (Z(1+Mt(f))) - Z O(f(2e), ye)
fEF: fEF,

< (Z(1+Mt(f)>) - m ((Z(l‘f'ﬂt(f))) _¢(Ftaﬂt)> (7
feFr, i fer,

We will now prove that

O(Fi, pe) < (1 + deg(F,n)). (8)

For eachf € Fy, let f¥ € F be obtained by extending to X so as to minimize
Zs<t E(fE(xS)v ys) Recall that

B(Fy, puy) = max Z e (f)-

gEF
FeF:d(f,g)<pe(f)+pe(g)

Choosey, € F; achieving this maximum. We have
n(1+ deg(F,n)) = ngleagl{f € F:d(f,g) <2n}l

>nl{f € F:d(f.g7) < 2n}|

- Y

fer:d(f,gf)<2n

> > . 9

FEF:d(fF,gF)<2n

Foranyf,g € F3,
d(f7.g%) = Y U(fP(x), 9" (x))

rzeX

=d(f,9)+ > UFF (@), 9" (@,))

s<t

< d(f, g) + Zf(fE(xs),ys) + f(gE(xS),ys)

s<t

<d(f,g) +2n— (ue(f) + 1e(g))



since, by de£nition, foralf € F;, >, _, ((f¥(x5),ys) < n— pe(f). Thus (9) implies

n(1 + deg(F, 1)) > > n
FEF:d(f,9:)Spe (f)+1e(gs)

2 Z Mt(f)a

FEF:d(f,9:)Spe (f)+1e(gs)
proving (8).
Putting (8) together with (7), we have

Z (1 + pe1(f))

fEFt11

< (Z(1+Mt(f))) *m Z(1+ut(f)>

fEF: fEF:

1
N <1 - 20pt(Ft7Mt>) Z (Lt pl1))

feF:

1
< (1 - W) Z(1+Mt(f))~

fEF}:

Thus,
] s
Z(1+Ms(f))§ <1—W> |Fl(n+1).

f€Fs

But, by de£nition,_ . p (1 + ps(f)) = 2n(1 + deg(F,n)), and so

1 s
2n(1 + deg(F,n)) < <1 - W) |[F|(n+1)

2n(1 + deg(F: < - | |F 1
1+ deg(Fy) < xp (— 52 ) PG+ )
S
1 <—— 1
In2+Inn+ In(1 + deg(F, n)) < 2opt(F,n)+ln|F|+ln(n+ )

S < 20pt(F,n) In(|F'|/(1 + deg(F,n)))-
Forallt < T, since|F;| > 1, andl(u,v) > 1 foru # v,
Z (1 + pera(f)) < (Z(1+Mt(f))> - L (10)
fEF41 fEF:

Sincey e p,,, (1 + pss1(f) < 2n(1 + deg(F,m)) and ¥ ;e p, (1 + pr(f)) > 1,
(10) implies thafl’ — S < 2n(1 + deg(F,n)). This completes the proof. O
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