
A Theoretical Analysis
of Query Selection

for Collaborative Filtering

Wee Sun Lee1 and Philip M. Long2

1 Department of Computer Science
National University of Singapore

Singapore 117543, Republic of Singapore
2 Genome Institute of Singapore

1 Research Link
IMA Building

National University of Singapore
Singapore 117604, Republic of Singapore

Abstract. We consider the problem of determining which of a set of experts has
tastes most similar to a given user by asking the user questions about his likes
and dislikes. We describe a simple and fast algorithm for a theoretical model of
this problem with a provable approximation guarantee, and prove that solving the
problem exactly is NP-Hard.

1 Introduction

Recommender systems (also known as collaborative £ltering systems) use the opinions
of past users to make recommendations to new users. The design of many such systems
is based on the assumption that people with similar opinions about some things are
likely to have similar opinions about others (see [10, 4]). The user is typically asked
to rate a few items before any new item is recommended. Once a suf£cient number of
items have been rated, the system can use those ratings to estimate which previous users
of the system are most similar to the current user overall. The opinions of these previous
users can then used to generate recommendations; methods based on weighted majority
prediction [8] and correlation coef£cients [9] usually work quite well for this.

In this paper, we investigate a different aspect of the problem: how to select the
initial items for the user to rate. These items are not presented as recommendations, but
are asked only for the purpose of learning about the user. Since these are troublesome
to the user, a high priority must be placed on asking few of these questions. (This is in
contrast to the work on “approximate nearest neighbor searching” [3, 7, 5], where all the
components of the point being searched are assumed to be given.) If later questions are
decided based on the answers to earlier questions, the questions must also be generated
in real time.

We allow the ratings to come from any £nite setY , and assume that the algorithm is
given an integer-valued loss function` onY to measure the distance between different
ratings. We require that the loss function` be a metric, that is, it satis£es the properties:

`(x, y) ≥ 0, `(x, y) = 0 if and only if x = y, `(x, y) = `(y, x) and`(x, y) ≤ `(x, z) +
`(z, y) for anyz ∈ Y . Common loss functions that satisfy these properties include the
0 − 1 loss and the absolute loss. The distance between users will then be measured by
the sum, over all items, of the loss between their ratings on a given item.

The emphasize the role that they play, we refer to the previous users asexperts; our
approximation bounds will be in terms of the number of such experts. Therefore, it may
be worthwhile to cluster the previous users in a preprocessing step, and use the cluster
centers as the experts.

Before proceeding to the general case, we illustrate our techniques in a highly ide-
alized setting. We assume that there are only two possible ratings, that the distance
between ratings is1 if they are different and0 if they are the same, and that some expert
agrees with the user on all items. In this case, the problem can be described in terms of
themembership query model[1].

In the membership query model [1], the learning algorithm is trying to learn an
unknown{0, 1}-valued functionf (called the “target”) chosen from a known concept
classF . The algorithm is allowed to ask the value off(x) for domain elementsx of its
choosing, and must eventually halt and output the identity off .

In the idealized case described above, the problem of £nding the perfect expert can
be viewed as the problem of learning using membership queries. The different items
would be the domainX, the likes and dislikes of the user is the functionf to be learned,
and asking the user its opinion about an item can be interpreted as a membership query.
The experts are then the concept classF . Viewed this way, the problem we are faced
with is that of, given a concept classF as input, designing a membership query algo-
rithm for F .

We begin by showing that the very simple and fast “query-by-committee” [11] al-
gorithm, which maintains a list of possible targets, and chooses the query for which
the remaining possibilities are most evenly divided, learns any classF with an approxi-
mately optimal number of membership queries in the worst case. Speci£cally, ifopt(F)
is the optimal worst-case bound on the number of membership queries for learning ar-
bitrary elements ofF , then the query-by-committee algorithm learnsF while making
at mostopt(F)(ln(|F |/opt(F)) + 1) + 1 queries. We also show that it is NP-Hard to
design a polynomial-time algorithm that, givenF as input and an membership oracle
for an elementf of F , is guaranteed to learnf usingopt(F) queries.

Next, we look at the more general case. To study this case, we use a variant of
the membership query model similar to that proposed by Angluin, Krikis, Sloan and
Turán [2]. Here, the range of the targetf (our model of the user) and the functions in
F (the experts) is an arbitrary £nite setY . As mentioned above, the algorithm is given
an integer-valued metric̀ on Y × Y , and the distance between functionsf andg is
measured by

∑
x∈X `(f(x), g(x)). The target functionf is not necessarily inF , but

the algorithm is given a parameterη such that there is a functiong in F at a distance at
mostη from f . The algorithm must output some element ofF within distanceη (there
may be more than one). Let us refer to the optimal worst-case bound on the number of
queries for this model byopt(F, η).

The algorithm we analyze for this problem also maintains a list of elements ofF
that are “alive”; here, these are elements that might possibly be within distanceη of the

target functionf . Loosely speaking, it repeatedly chooses a domain element for which
any response will discredit the remaining possibilities in total by a large amount.

To analyze this algorithm, we make use of a quantity that we call theη-degree
of F . In the recommender system application, this can be interpreted as a measure of
the diversity of opinion among the experts; for example, if any possible targetf is at
a distance at mostη from a unique element ofF , then theη-degree ofF is 0. The
motivation for this measure is strongest if we imagine thatF is the result of a clustering
preprocessing step. Note that, informally, ifF consists of the centers of tight clusters,
and users typically belong to one such cluster, being much closer to one element ofF
than to any other should often be expected in practice. Tight clustering is the implicit
assumption underlying the design of many collaborative £ltering systems.

One can view the de£nition ofη-degree as follows: imagine centering balls of radius
η at the elements ofF , and constructing a graph where the vertices are these balls, and
there are edges between pairs of vertices that overlap. Theη-degree ofF is the edge
degree of that graph.

Our generalization of the query-by-committee algorithm is guaranteed to £nd an
element ofF within distanceη after at most

2opt(F, η) ln
|F |

1 + deg(F, η)
+ η(1 + deg(F, η))

queries. Thus, if each possible target is within distanceη of a unique element ofF ,
2opt(F, η) ln |F | + η queries suf£ce.

2 Membership queries

Fix some £nite domainX. For some functionf from X to {0, 1}, a membership oracle
for f , when queried about an elementx of X, returnsf(x). For an algorithmA with
access to a membership oracle forf , let Q(A, f) be the number of queries asked by
A before it outputs the identity off . For a classF of functions fromX to {0, 1}, let
Q(A,F) be the maximum ofQ(A, f) over allf ∈ F . Let opt(F) be the minimum of
Q(A,F) over all algorithmsA (note that there is no limitation on the time taken byA).

In this section, we show that there is an algorithm that takesF as input, and, given
access to an oracle for an arbitrary elementf of F , learnsf with a nearly optimal
number of queries in polynomial time.

The algorithm analyzed in this section is the “query-by-committee” [11] algorithm.
(Our analysis of it builds on Johnson’s analysis of his approximation algorithm for Set
Cover [6].) It maintains a list of the elements ofF consistent with the answers received
so far, and asks the queryx that divides the elements the most evenly, i.e. for which the
number of “alive” functionsg for which g(x) = 1 and the number for whichg(x) = 0
are as close as possible. After receivingf(x), those possibilities that are inconsistent
with this value are deleted, and the algorithm continues. When only one possibility
remains, the algorithm halts and outputs it.

The key lemma in our analysis is the following.

Lemma 1. For any domainX, and any £nite setF of at least two functions fromX to
{0, 1}, there is anx for whichminy∈{0,1} |{f ∈ F : f(x) = y}| ≥ (|F | − 1)/opt(F).

Proof: Let A be an optimal membership query algorithm forF . Assume for contra-
diction that for allx ∈ X, either |{f ∈ F : f(x) = 1}| < (|F | − 1)/opt(F), or
|{f ∈ F : f(x) = 0}| < (|F | − 1)/opt(F).

Our strategy will be to use the fact that any possible query thatA could ask has an
answer that eliminates few possibilities to argue that after asking a certain number of
queries,A cannot know the function to be learned. We will design an adversary that
repeatedly gives the answer toA that eliminates the fewest possibilities.

Let F0 = F (in general,Ft will be the possibilities remaining aftert queries have
been asked). Letx1 be the £rst query asked byA. Choosey1 to minimize |{f ∈ F :
f(x1) = y1}|. Let F1 = {f ∈ F : f(x1) = y1}. Then, by assumption,|F1| − 1 >
|F | − 1 − (|F | − 1)/opt(F).

Continuing, let eachxt be thetth query asked, and chooseyt to minimize |{f ∈
F : f(xt) = yt}|, and letFt = {f ∈ F : f(x1) = y1, ..., f(xt) = yt}. For each such
t, |Ft| − 1 > |Ft−1| − 1 − (|F | − 1)/opt(F). Telescoping,

|Fopt(F)| − 1 > (1 − opt(F)/opt(F))(|F | − 1) = 0. (1)

Thus, afteropt(F) queries, there is more than one element ofF consistent with the
information received byA, a contradiction. ut
Theorem 1. For any £nite setX, and any £nite setF of at least two functions fromX
to {0, 1}, the query-by-committee algorithm, givenF and a membership oracle for any
arbitrary f ∈ F , outputsf after asking at most

opt(F)
(

1 + ln
|F | − 1
opt(F)

)
+ 1

queries.

Proof: ChooseF , and a targetf ∈ F . Suppose the query-by-committee algorithm asks
T queries before learningf , and for each0 ≤ t ≤ T , let Ft be the set of functions inF
consistent with the information received after the £rstt queries. Lemma 1 implies that
for all t ≤ T ,

|Ft| − 1 ≤ (1 − 1/opt(Ft−1))(|Ft−1| − 1)
≤ (1 − 1/opt(F))(|Ft−1| − 1). (2)

We also have
|Ft| ≤ |Ft−1| − 1. (3)

Let S be largest index for which|FS | − 1 ≥ opt(F). Then (2) implies(
1 − 1

opt(F)

)S

(|F | − 1) ≥ opt(F)

and, applying the fact that∀x, 1 − x ≤ e−x and solving forS, we get

S ≤ opt(F) ln
|F | − 1
opt(F)

.

Also, (3), together with the fact that|FT−1| > 1, implies that

T − S < opt(F) + 1,

completing the proof. ut

2.1 Hardness result

We now show that the problem of, givenF , learning an arbitrary element off with
opt(F) membership queries is NP-Hard. Since this is a special case of our model of the
query selection problem for collaborative £ltering, this problem is NP-hard also. Our
proof is via a reduction from the set covering problem.

An instance(X ′, F ′) of the set covering problemconsists of a £nite setX ′ and
a family F ′ of subsets ofX ′ such that every element ofX ′ belongs to at least one
subset ofF ′. The problem is to £nd the minimum-sized subsetC ⊆ F ′, such that every
element ofX ′ belongs to at least one subset ofC.

For any instance of the set covering problem where|X ′| = n and |F ′| = m, we
will construct an optimal query problem whose solution will give the solution to the
set covering problem. We £rst describe a closely related optimal query problem. An
instance of the optimal query problem can be given as an|F |×|X| matrix. We construct
an initial matrixM of sizen ×m, where an element ofX ′ in the set covering problem
corresponds to an element inF of our optimal query problem while an element ofF ′ in
the set covering problem corresponds to an element ofX in our optimal query problem.
For each subsets ∈ F ′, theith entry in the corresponding column of matrixM is set
to 1 if the element ofX ′ corresponding to theith row is a member ofs, otherwise it is
set to 0. Assume that we augment the matrixM with an all zero row which we set as
the target for a query algorithm. Each query corresponds to a member ofF ′ and will
eliminate all the rows with1’s at that column. When the target is identi£ed, all the rows
except the all zero row will have been eliminated. The subset ofF ′ corresponding to
the subset of queries will thus form a cover forX ′.

However, our optimal query algorithm is guaranteed to give only the optimalworst
casenumber of queries which does not necessarily correspond to the smallest cover. In
order to ensure that the optimalworst casequeries gives us the optimal cover, we solve
the optimal query problem for an augmented matrixM ′. We £rst augment the matrix
M with n columns that are zero in every entry. Then we augment the augmented matrix
with n+1 rows. The last row of the matrix consist of all zero elements while then+ ith
row (i = 1, . . . , n) consist of all zeros except for elementm + i which is set to1. Call
the doubly augmented matrixM ′. We will show that if an optimal query algorithm for
the matrixM ′ uses at mostn + q queries, then the optimal cover for the corresponding
covering problem has sizeq.

The all zero row will be used as the target of an optimal query algorithm. Each query
corresponding to the one of the £rstm columns corresponds to a member ofF ′. Hence
the subset ofF ′ corresponding to queries from the £rstm columns will form a cover of
X ′. We call this subset the covergeneratedby the query algorithm. Note that the rows
n + 1 to 2n cannot be eliminated by any query except the query to the column where
they have entry1 and that such a query will eliminate only one row. Hence to uniquely
identify the target,n of the queries must be to the lastn columns. We now need to show
that the cover generated by the optimal query algorithm is an optimal cover.

Lemma 2. The cover generated by an optimal query algorithm for matrixM ′ is a cover
of the smallest size.

Proof: Let A be an optimal query algorithm. Assume that the cover generated byA is
not a cover of the smallest size. Hence it is possible to reduce the number of queries
needed to identify the all zero row target by generating a smaller cover. LetB be an
algorithm that uses the fewest number of queries to identify the all zero row target.
We transformB into another algorithmB′. The algorithmB′ has the property that any
query on the lastn columns always happens after the queries to the £rstm columns.
This can be done by delaying the queries on the lastn columns while retaining the
ordering of the other queries. Since a query to columnm + i can eliminate only row
n + i, the effect of the delays is to potentially reduce the number of queries required
for the £rstn rows while potentially increasing the number of queries required for the
other rows. The number of queries required for the all zero rows remain the same.

The algorithmB′ will take the optimal number of queries for identifying the all
zero row target and no more thann queries to identify any of the £rstn rows. This is
because rowsn+1 to 2n+1 are identically zero when restricted to the £rstm columns,
giving effectively a matrix withn + 1 distinct rows. At leastn + 1 queries is needed
by any algorithm to identify the all zero row target and the all zero row target always
takes more queries than rowsn + 1 to 2n. Hence, algorithmB′ has better worst case
performance than algorithmA contradicting the optimality of algorithmA. ut

3 General Case

Choose a £nite nonempty setY , a positive integerM , and a metric̀ mappingY × Y
to the nonnegative integers.

For functionsf andg from X to Y de£ne the distanced(f, g) betweenf andg by

d(f, g) =
∑
x∈X

`(f(x), g(x)).

Let F⊕η consist of allg : X → {0, 1} such that there is anf ∈ F for whichd(f, g) ≤
η.

In this model, the adversary picks a functionf from F⊕η (which we will call the
target), and provides an evaluation oracle forf to the algorithm; this oracle responds
to a query ofx with f(x). The algorithm then must outputh ∈ F such thatd(f, h) ≤
η (there may be more than one such possibility). The worst case number of queries
for an algorithmA in this setting isQ(A,F, η), and the optimal number of queries is
opt(F, η).

For a functionf : X → Y , andU ⊆ X, denote the restriction off to U by f|U .
For a setF of functions fromX toY , de£ne theη-degree ofF , denoted bydeg(F, η),

to be the maximum, over allg ∈ F , of |{f ∈ F : 0 < d(f, g) ≤ 2η}|. Forµ : F → Z+,
de£neφ(F, µ) to be the maximum, over allg ∈ F , of

∑
f∈F :d(f,g)≤µ(f)+µ(g)

µ(f).

For technical reasons, we will consider a related model. In this model, instead ofη,
the learning algorithm is given a priori a functionµ : F → Z+ called aquota function,

and access to an evaluation oracle for somef : X → Y such that there is ang ∈ F with
d(f, g) ≤ µ(g). The algorithm then must output anh ∈ F such thatd(f, h) ≤ µ(h).
Let opt(F, µ) be the optimal worst-case number of queries for learning in this model.

Algorithm Our algorithm works in time polynomial in|X|, |Y |, and|F |. (Note that
the latter is signi£cantly less than|F ⊕η|.)

Our algorithm (let’s call itBF), is de£ned recursively as follows. Suppose at some
point in timeBF has previously asked queriesx1, ..., xt−1, which were answered with
y1, ..., yt−1 respectively. Let

Ft = {f|X−{x1,...,xt−1} : f ∈ F,
∑
s<t

`(f(xs), ys) ≤ η}.

Informally Ft consists of the restrictions of those elements ofF that are “still alive”
to the unexplored portion ofX. If |Ft| = 1, it halts, and outputs an extensionh of
the single element ofFt to all of X that minimizes

∑
s<t `(h(xs), ys). Otherwise, it

choosesxt from X − {x1, ..., xt−1} in order to maximize

min
y∈Y

∑
f∈Ft

`(f(xt), yt).

The following is the main lemma in our analysis of this algorithm.

Lemma 3. Choose a £niteX, a £niteY , a £nite setF of at least2 functions fromX to
Y , andµ : F → Z+. There is anx ∈ X for which

min
y∈Y

∑
f∈F

`(f(xt), yt) ≥ 1
opt(F, µ)





∑

f∈F

(1 + µ(f))


 − φ(F, µ)




Proof: Let A be an optimal membership query algorithm for learningF with a quota
function µ in the model of this section. LetT = opt(F, µ). Assume without loss of
generality thatA always asks exactlyT queries before halting and outputting a function
in F . Assume for contradiction that

∀x,∃y,
∑
f∈F

`(f(x), y) <
1
T





∑

f∈F

(1 + µ(f))


 − φ(F, µ)


 . (4)

Generate(x1, y1), ..., (xT , yT) recursively as follows. For eacht, letxt beA’s query
when its previous queriesx1, ..., xt−1 were answered withy1, ..., yt−1 respectively.
Choose

yt = argminu
∑
f∈F

`(f(xt), u). (5)

First, we claim that(x1, y1), ..., (xT , yT) are “legal”, in the sense that there is at
least one potential target functionf such thatf(x1) = y1, ..., f(xT) = yT for which

there is ag ∈ F with d(f, g) ≤ µ(g). To see this, note that (4) and (5) imply

∑
g∈F

T∑
t=1

`(g(xt), yt) =
T∑

t=1

∑
g∈F

`(g(xt), yt)

<


∑

g∈F

(1 + µ(g))


 − φ(F, µ) (6)

≤

∑

g∈F

(1 + µ(g))


 .

Thus, there is ag ∈ F such that
∑T

t=1 `(g(xt), yt) ≤ µ(g). So if f is de£ned by
f(x1) = y1, ..., f(xT) = yT andf(x) = g(x) for x 6∈ {x1, ..., xT }, f satis£es the
requirements of a target function.

SupposeA outputsh. Loosely speaking, anyf ∈ F that is too far fromh had better
be eliminated as a possible target by(x1, y1), ..., (xT , yT), since otherwise an adversary
could choosef as a target. Speci£cally, for anyf ∈ F such thatd(h, f) > µ(h)+µ(f),
it must be the case that

∑T
t=1 `(f(xt), yt) > µ(f), since otherwise, an adversary could

modify f to get a target function with distance at mostµ(f) from f , and therefore
distance greater thanµ(h) from h. Thus

∑
f∈F

T∑
t=1

`(f(xt), yt) ≥
∑

f∈F :d(f,h)>µ(f)+µ(h)

(1 + µ(f))

≥

∑

f∈F

(1 + µ(f))


 −

∑
f∈F :d(f,h)≤µ(f)+µ(h)

µ(f)

≥

∑

f∈F

(1 + µ(f))


 − φ(F, µ),

contradicting (6) and completing the proof. ut
Now we’re ready for our theorem aboutBF .

Theorem 2. ChooseX, a setF of functions fromX to Y , and an integerη ≥ 1. Then
Q(BF , F, η) ≤ 2opt(F, η) ln(|F |/(1 + deg(F, η))) + η(1 + deg(F, η)).

Proof: Consider a run of algorithmBF in which it asks queriesx1, ..., xT , which are
answered withy1, ..., yT . For eacht, let

Ft = {fX−{x1,...,xt−1} : f ∈ F,
∑
S<t

`(f(xs), ys) ≤ η}.

For eacht, de£neµt : Ft → Z+ by

µt(f) = η − min
{ ∑

s<t

`(g(xs), ys) : g ∈ F, g|X−{x1,...,xt−1} = f
}
.

Informally, µt(f) is the amount of loss left beforef is eliminated as a possible target.
We divide our analysis ofBF into two stages. Let

S = max


t :

∑
f∈Ft

(1 + µt(f)) ≥ 2η(1 + deg(F, η))


 .

Chooset ≤ S. By Lemma 3,∑
f∈Ft+1

(1 + µt+1(f))

≤

 ∑

f∈Ft

(1 + µt(f))


 −

∑
f∈Ft

`(f(xt), yt)

≤

 ∑

f∈Ft

(1 + µt(f))


 − 1

opt(Ft, µt)





 ∑

f∈Ft

(1 + µt(f))


 − φ(Ft, µt)


 . (7)

We will now prove that

φ(Ft, µt) ≤ η(1 + deg(F, η)). (8)

For eachf ∈ Ft, let fE ∈ F be obtained by extendingf to X so as to minimize∑
s<t `(fE(xs), ys). Recall that

φ(Ft, µt) = max
g∈Ft

∑
f∈Ft:d(f,g)≤µt(f)+µt(g)

µt(f).

Chooseg∗ ∈ Ft achieving this maximum. We have

η(1 + deg(F, η)) = η max
g∈F

|{f ∈ F : d(f, g) ≤ 2η}|

≥ η|{f ∈ F : d(f, gE
∗) ≤ 2η}|

=
∑

f∈F :d(f,gE∗)≤2η

η

≥
∑

f∈Ft:d(fE ,gE∗)≤2η

η. (9)

For anyf, g ∈ Ft,

d(fE , gE) =
∑
x∈X

`(fE(x), gE(x))

= d(f, g) +
∑
s<t

`(fE(xs), gE(xs))

≤ d(f, g) +
∑
s<t

`(fE(xs), ys) + `(gE(xs), ys)

≤ d(f, g) + 2η − (µt(f) + µt(g))

since, by de£nition, for allf ∈ Ft,
∑

s<t `(fE(xs), ys) ≤ η − µt(f). Thus (9) implies

η(1 + deg(F, η)) ≥
∑

f∈Ft:d(f,g∗)≤µt(f)+µt(g∗)

η

≥
∑

f∈Ft:d(f,g∗)≤µt(f)+µt(g∗)

µt(f),

proving (8).
Putting (8) together with (7), we have

∑
f∈Ft+1

(1 + µt+1(f))

≤

 ∑

f∈Ft

(1 + µt(f))


 − 1

2opt(Ft, µt)

∑
f∈Ft

(1 + µt(f))

=
(

1 − 1
2opt(Ft, µt)

) ∑
f∈Ft

(1 + µt(f))

≤
(

1 − 1
2opt(F, k)

) ∑
f∈Ft

(1 + µt(f)).

Thus, ∑
f∈FS

(1 + µS(f)) ≤
(

1 − 1
2opt(F, η)

)S

|F |(η + 1).

But, by de£nition,
∑

f∈FS
(1 + µS(f)) ≥ 2η(1 + deg(F, η)), and so

2η(1 + deg(F, η)) ≤
(

1 − 1
2opt(F, η)

)S

|F |(η + 1)

2η(1 + deg(F, η)) ≤ exp
(
− S

2opt(F, η)

)
|F |(η + 1)

ln 2 + ln η + ln(1 + deg(F, η)) ≤ − S

2opt(F, η)
+ ln |F | + ln(η + 1)

S ≤ 2opt(F, η) ln(|F |/(1 + deg(F, η))).

For all t ≤ T , since|Ft| > 1, and`(u, v) ≥ 1 for u 6= v,

∑
f∈Ft+1

(1 + µt+1(f)) ≤

 ∑

f∈Ft

(1 + µt(f))


 − 1. (10)

Since
∑

f∈FS+1
(1 + µS+1(f)) < 2η(1 + deg(F, η)) and

∑
f∈FT

(1 + µT (f)) ≥ 1,

(10) implies thatT − S ≤ 2η(1 + deg(F, η)). This completes the proof. ut

4 Acknowledgements

We gratefully acknowledge the support of National University of Singapore Academic
Research Fund grant R252–000–070–107.

References

1. D. Angluin. Queries and concept learning.Machine Learning, 2:319–342, 1988.
2. D. Angluin, M. Krikis, R. H. Sloan, and G. Turán. Malicious omissions and errors in answers

to membership queries.Machine Learning, 28:211–255, 1997.
3. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for

approximate nearest neighbor searching.Proc. 5th ACM-SIAM Sympos. Discrete Algorithms,
pages 573–582, 1994.

4. J.S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for
collaborative ltering.Proceedings of the Fourteenth Conference on Uncertainty in Articial
Intelligence, pages 43–52, 1998.

5. P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality.Proceedings of the 30th ACM Symposium on the Theory of Computing, pages
604–613, 1998.

6. D. S. Johnson. Approximation algorithms for combinatorial problems.Journal of Computer
and System Sciences, 9:256–278, 1974.

7. E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Ef£cient search for approximate nearest neigh-
bor in high dimensional spaces.Proceedings of the 30th ACM Symposium on the Theory of
Computing, pages 614–623, 1998.

8. Atsuyoshi Nakamura and Naoki Abe. Collaborative £ltering using weighted majority pr
ediction algorithms. InProceedings of the Fifteenth International Confere nce on Machine
Learning, 1998.

9. P. Resnick, N. Iacovou, M. Suchak, P. Ber gstrom, and J. Riedl. Grouplens: An open archi-
tecture for collaborative £ltering of netnews. InProceedings of the ACM 1994 Conference
on Computer Supported Cooperative Work, 1994.

10. P. Resnick and H. R. Varian. Recommender systems.Communications of the ACM, 40:56–
58, 1997.

11. H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee.Proceedings of the 1992
Workshop on Computational Learning Theory, pages 287–294, 1992.

