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Abstract

We investigate the task of compressing an image by using different probability
models for compressing different regions of the image. In an earlier paper, we intro-
duced a class of probability models for images, thek-rectangular tiling of an image,
which is formed by partitioning the image intok rectangular regions and generating
the coefficients within each region by using a probability model selected from a finite
classC of probability models. We also described a computationally efficient sequen-
tial probability assignment algorithm that is able to code an image with a code length
that is close to the code length produced by the best model in the class. In this paper,
we investigate the performance of the algorithm experimentally on the task of com-
pressing wavelet subbands. We compare the method with compression methods that
aim to compress as well as the best pruning of a quad-tree and compression methods
that exploit the local statistics in a window around the coefficient being compressed.
For a classC consisting of a small number of Laplacian distributions and the uni-
form distribution, we find that the best tiling method works best, but the difference in
performance is significant for only a few of the images tested.

1 Introduction

Wavelet coefficients are known to be large around edges and small in smooth regions of
an image. For effective compression of these coefficients, it is desirable to use different
probability models for compressing different regions of a wavelet subband. In this paper,
we compare the performance of compression methods that are able to adapt the probability
assignment to the region that is being coded, by either choosing one of a finite number of
probability models or weighting the probability models to form a weighted distribution.

In an earlier paper [7], we introduced a class of probability models formed by partition-
ing an image intok rectangular regions and generating the coefficients within each region
by using a probability model from the finite class ofN probability models. We call the
class of probability models that is generated in this way, the class ofk-rectangular tilingof
the image. We also described a computationally efficient sequential probability assignment
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algorithm,best tiling, which is able to code an image with a code length that is close to the
code length produced by the best model in the class.

In this paper, we compare experimentally the best tiling method withquad-treemethods
which aim to compress as well as the best pruning of a quad-tree, andwindowingmethods
which use the local statistics to estimate the best probability assignment for the current
coefficient. For the quadtree methods, we use both optimal pruning and a Bayesian tree
weighting method. For windowing, we use two methods: using the neighbouring pixels to
select a probability model to use and using the neighbouring pixels to find a weighting for
the probability models.

We work with wavelet coefficients quantized with a single scalar quantizer. With
quadtrees, optimal pruning can be performed in a rate-distortion sense, where different
quantizers are selected with different probability models. However, in this work, we use
only a single scalar quantizer and attempt to minimize the code length for the fixed quan-
tizer. For the tree weighting method, we use the Bayesian tree weighting method which has
been used for compressing finite memory sources in [11] and for prediction in [5]. The tree
weighting method is guaranteed to outperform an optimal pruning method (with a single
scalar quantizer) when coding is done using the same prior distribution.

Variants of windowing have previously been used in successful wavelet image coders
[3, 8]. The methods essentially assume that the coefficients outside a small window around
the coefficient that is being coded are irrelevant. We use two simple variants of windowing,
one that weighs a finite numberN of probability models using Bayesian weighting assum-
ing that only the pixels inside the window exist and another that selects the most probable
model given the pixels inside the window.

Algorithms that compress close to thebest segmentationof a sequence, where a differ-
ent model is used in each segment have been considered in [12, 10]. In [10], methods that
switch between two text compression algorithms that have different properties are stud-
ied. The class ofk-rectangular tiling of an image can be considered as a two dimensional
extension of the class of segmentation of a sequence. As in [10], the tiling method can
also be used withN different compression algorithms, each of which performs well in a
different region of the image. However, in this paper, we use a finite number of Laplacian
distributions and a uniform distribution as our probability models.

We find that the best tiling method uniformly outperforms all the other methods de-
scribed here, although the difference in performances of the methods are not large. All the
methods used here do not exploit inter-band information in compressing the wavelet coef-
ficients. We also compared the performance of the coders against a zerotree coder (SPIHT
[9]) which exploits a parent-child relationship between wavelet subbands. We find that the
zerotree coder performs better on some synthetic images but provides approximately the
same compression performance on natural images.

2 Compression Methods

All the methods, except optimal pruning, can be considered as sequential probability as-
signment methods. In sequential probability assignment, the predictor provides probability
assignmenta(xijxi�1) for xi given xi�1, wherexi�1 denote the sequence of coefficients
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(x0; : : : ; xi�1). The probability assigned to the image(x0; : : : ; xt) is then

p(x0; : : : ; xt�1) = a(x0)a(x1jx1) � � � a(xijx
i�1) � � � a(xt�1jx

t�2):

Using an arithmetic coder, the code length� log2 p(x0; : : : ; xt�1) can be approached with a
very small redundancy. Each probability assignment method attempts to provide an appro-
priate assignment functiona(�jxi�1) such that a high probability is assigned to the image
in order to minimize the code length.

2.1 Quadtree

We describe a simple dynamic programming algorithm for finding the pruned quadtree
model that minimizes the total description length of transmitting the image. Start the rou-
tinePruneby using the root as a parameter. If the current node is a leaf, the routine returns
the minimum total description length of coding the node as thecostof the node. If the
current node is an internal node,Prune calls itself four times with the four children as
the parameters. It then compares the following two sums: the minimum total description
length of coding the node plus one and the sum of the costs of all its children. If the former
is smaller, the children of the nodes are pruned away and the former becomes the cost of
the node. Otherwise, the children are retained and the latter becomes the cost of the node.
One bit is kept at the node to indicate whether or not the children are pruned away. The
routine then returns the cost of the node.

For an imagex0; : : : ; xt�1, the Bayesian tree weighting produces

p(x0; : : : ; xt�1) =
M�1X
i=0

p(fi)p(x0; : : : ; xt�1jfi)

whereM is the number of possible tree probability models induced by possible tree prun-
ings and assignments of models at the leaves. The value of� log p(fi) is the resulting ideal
code length of the pruned tree modelfi coded using the tree coding procedure used in the
optimization method and the prior probabilities for the models at the leaves. Note that the
sum includesp(fopt)p(x0; : : : ; xt�1jfopt), wherefopt is the the optimal model according
to the optimization process described above. Hence, for uniform scalar quantization, the
weighting method will always be at least as good as the optimization method. If a very
large number of the terms in the sum are of similar magnitude as the optimal term, then
the weighting method will result in significantly better performance than the optimization
method.

The tree weighting algorithm used here is a variant of the weighting algorithm presented
in [5, 11] and is fully described in [7]. The models in each node is initialized to the prior
distribution onC. At time t, the coefficient traces a path from the root to the leaf, hence we
can partition the nodes in the quadtreeT into those that are on the path and those that are
not on the path. Letat be the probability vector produced by the algorithm for coding the
coefficient at timet and letaj = (a0; : : : ; ab�1) be the probability vector associated with
modelcj 2 C with an alphabet of sizeb. We code coefficientxt using

at =
NX
j=1

W t

total(r; j)a
j
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wherer is the root ofT . The functionW t

total(u; j) is the sum of the weights of all the
models generated by all possible prunings of the subtree ofT rooted atu that havecj as the
path leaves. This function is calculated by

W t

total(u; j) =

8>>>><
>>>>:

W t

model(u; j) path leaf

1

2
W t

model(u; j) u path internal node;
+1

2
W t

total(s; j)
Q

v2children ofu;v 6=s W
t

node(v) s path node child ofu

where the the functionsW t

model(u; j) andW t

node(u) are updated by

W t+1

model(u; j) =

8><
>:

W t

model(u; j) off path

W t

model(u; j)a
j
xt
=at;xt on path

and

W t+1

node(u) =

8>>>>>><
>>>>>>:

W t

node(u) off path

PN
j=1W

t+1

model(u; j) path leaf

1

2

PN
j=1W

t+1

model(u; j) +
1

2

Q
v2children ofuW

t+1

node(v) path internal node:

All the calculations happen only along the path of the coefficient and hence the com-
putational complexity for each coefficient is proportional to the length of the path. If each
node is partitioned into four (approximately) equal sized children, the height of the tree is
O(log n). Hence the total computational complexity isO(n2 log n).

2.2 Windowing

When assigning a probability massa(xijxi�1), windowing considers only members ofxi�1

that fall within a window of neighbouring pixels. We denote these members asxi�1;w.
GivenN possible models, the weighting method sets

a(xijx
i�1) = p(xijx

i�1;w) =

PN
j=1 p(cj)p(x

i�1;wjcj)p(xijcj)PN
j1 p(cj)p(x

i�1;wjcj)

for probability modelsfc1; : : : ; cNg, while the selection method uses the probability model
that performs best in the window.

In this paper, we use a rectangular window of width2w + 1, centered around the coef-
ficient being coded with uniform probability for the a priori probabilityp(cj). Windowing
should work well when the statistics of the image change slowly. However, when a large
region can be coded optimally with the same probability model, windowing may be sub-
optimal since it only considers the statistics in a small region around the coefficient that is
being coded.
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2.3 Best Tiling

The best tiling method is derived using the specialist model, first proposed by Blum [2] and
studied in [4]. Using the specialist model, a sequential probability assignment algorithm
that has redundancyO(k log Nn

k
) with respect to the class of any tiling of an image withk

arbitrary sized rectangular tiles was given in [7]. By redundancy, we mean the additional
code length produced by the algorithm compared to the optimal tiling usingk tiles of
probability models. The bound holds regardless of the input sequence encountered and the
value ofk does not have to be known in advance by the algorithm. Hence, the algorithm
should perform well whenever a tiling of the image which works well with a small number
of tiles exists. The computational complexity of the algorithm isO(Nn3). If we restrict the
comparison class to rectangles withW discrete widths, which is what we do in this paper,
the computational complexity can be improved toO(WNn2).

We first consider the case of tiling ann � n image with rectangles of arbitrary height
but one fixed widthw. We assume that the coefficients are processed in a raster scan order.
The origin is at the top left hand corner of the image, the vertical coordinate isy, the
horizontal coordinate isz and the coordinates increase in the direction of the scan. Let
a(y;z) be the probability vector produced by the algorithm for coding the pixel(y; z) and let
a
j = (a0; : : : ; ab�1) be the probability vector associated with modelcj with an alphabet of

sizeb. From [7], we have

a(y;z) =

PN
j=1Q

(y;z)
j a

j

PN
j=1Q

(y;z)
j

;

whereQ(y;z)
j is updated by the following equations:

Q
(y;z+1)
j = R

(y;z)
j Q

(y;z)
j �R

(y;z)
j Z

(y;z)
j (y; z) + Z

(y;z)
j (y; z + w)

Z
(y;z)
j (y; z + w)) = (n� y)

0
@R

(y�1;z+w)
j Z

(y�1;z+w)
j (y � 1; z + w)

(n� y + 1)
+ 1

1
A

R
(y;z)
j Z

(y;z)
j (y; z)) = (n� y)R(y;z);w

j

0
@R

(y�1;z)
j Z

(y�1;z)
j (y � 1; z)

(n� y + 1)
+ 1

1
A

R
(y;z);w
j =

8>>>>>>>><
>>>>>>>>:

R
(y;z)
j if z = 0

R
(y;z�1);w
j R

(y;z)
j if z < w

R
(y;z�1);w
j

R
(y;z)
j

R
(y;z�w)
j

if w � z � n� 1

R
(y;z�1);w
j

R
(y;z�w)
j

if z > n � 1

R
(y;z)
j = ajx(y;z)=a(y;z);x(y;z)

The initial conditions needed areQ(0;0)
j = nw and

Q
(y;0)
j =

w�1X
k=0

(n� y)

0
@R

(y�1;k)
j Z

(y�1;k)
j (y � 1; k)

(n� y + 1)
+ 1

1
A :
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With D distinct widths, we only have to runD distinct copies of the algorithm and
sum the values ofQ(y;z)

j for eachj. A minor complication arises at the boundaries of thez

coordinate since multiple rectangles of different widths which goes beyond the boundaries
are in fact equivalent. One simple method of getting around this is to modify the algorithm
for all values of widthsw other than the largest width in such a way thatR

(y;z)
j Z

(y;z)
j (y; z) =

0 for z < w, Z(y;z)
j (y; z + w) = 0 for z � n�w � 1 andQ(y;0)

j = 0.

3 Simulation Results

For all the simulations, we use 8 probability models inC: a uniform distribution and seven
Laplacian distributionsp(x) = 1

2�j
e�jxj=�j with �j 2 f1; 2; 4; 8; 16; 32; 64g that has been

discretized according to the quantization intervals. Uniform quantization with a dead band
(bin containing zero is twice as large as the other bins) is used. Uniform prior distribution
for the models inC is used in all cases. The tiling method is used with tiles of five different
widths: 2,4,8,16 and 32. For windowing, we find that a valuew = 2 performs best for most
of the images, hence results are presented only for that value ofw. For quadtrees (before
pruning), nodes which contain no more than 2 rows or columns are considered as leaves.
A five level decomposition with the 9-7 tap biorthogonal spline filters [1] is used.

We performed simulations on 24 images, 12 images of size256 � 256
from GreySet1 and 12 larger images fromGraySet2 of the Waterloo Bragzone
(http://links.uwaterloo.ca/bragzone.base.html). The first six smaller images are synthetic
and are shown in the first row of Figure 1 while the other six shown in the second row are
natural images. The images fromGraySet2are shown in Figure 2.

Figure 1:Synthetic images. From left to right, the images arecircles, crosses, horiz, slope, squares,
text. Natural images. From left to right, the images arebird, bridge, camera, goldhill, lena, montage.

The PSNR results for the synthetic images at 0.25 and 0.5 bits per pixel are shown the
first halves of Table 1 and Table 2.

As expected, quadtree weighting performed uniformly better than optimal quadtree
pruning. For windowing, weighting performed better for the higher entropy images while
selecting performed better for the lower entropy images. Windowing and quadtree meth-
ods perform better for different images. The tiling method gave uniformly better result
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Figure 2:Larger images. In raster scan order, the images arebarbara, boat, france, frog, goldhill,
lena, library, mandrill, mountain, peppers, washsat, zelda.

Image Quadtree Quadtree Window Window Tile SPIHT
Prune Weight Select Weight

circles 31.47 32.10 32.07 32.48 32.63 32.95
crosses 26.08 26.43 27.55 27.55 27.55 28.45
horiz 43.22 44.38 44.72 43.49 50.23 50.62
slope 41.19 41.92 41.14 40.98 43.75 44.07
squares 52.24 53.32 52.41 50.90 57.93 61.16
text 14.93 14.97 14.39 14.89 15.21 14.40
bird 37.2 37.29 37.33 37.29 37.72 37.75
bridge 24.20 24.24 23.92 24.19 24.34 24.33
camera 27.43 27.67 27.55 27.79 27.97 27.97
goldhill 26.96 27.03 26.76 27.02 27.19 27.10
lena 28.57 28.74 28.52 28.79 29.01 28.96
montage 29.78 30.24 29.86 30.16 31.02 30.76

Table 1:PSNR values for GraySet1 at 0.25 bits per pixel.

than quadtree and windowing for this experiment. The tiling method performed signif-
icantly better for the imageshoriz andsquares. Visual inspection of the images reveal
that these images (and hence their corresponding wavelet coefficients) can be tiled using a
small number of tiles. These results are in agreement with the theory which assures us that
the algorithm will perform well whenever the subbands can be tiled using a small number
of tiles. The tiling method performed similarly to windowing on the imagescircles and
crosses. The imagecircles contains circular objects which can only be tiled using many
rectangular tiles. Similarly, crosses contains many diagonal lines which again can only be
satisfactorily covered using many rectangular tiles of probability models.

For the synthetic images, SPIHT performed significantly better than the other methods
on the low entropy images. One reason for this is that the lowest entropy model we used is
the Laplacian modelp(x) = 1

2�j
e�jxj=�j with �j = 1, hence we are unable to take advantage

of lower entropy areas. Another possible reason is that interband dependencies may provide
a significant amount of information which may not be available locally for these images.
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Image Quadtree Quadtree Window Window Tile SPIHT
Prune Weight Select Weight

circles 38.38 39.42 39.83 40.12 40.15 41.65
crosses 31.90 32.65 32.99 33.24 33.13 34.93
horiz 54.23 55.15 54.22 54.03 59.15 72.89
slope 49.51 49.66 49.51 49.26 50.44 51.08
squares 60.31 60.31 59.70 59.70 61.36 inf
text 17.09 17.16 16.20 16.97 17.70 17.04
bird 40.89 40.99 41.17 41.17 41.36 41.34
bridge 26.29 26.36 25.90 26.31 26.50 26.39
camera 30.93 31.16 30.97 31.39 31.49 31.47
goldhill 29.33 29.39 29.04 29.44 29.59 29.52
lena 32.30 32.49 32.38 32.71 32.79 32.74
montage 35.02 35.41 35.10 35.47 36.29 36.20

Table 2:PSNR values for GraySet1 at 0.5 bits per pixel.

The rest of the images tested are natural images. The PSNR results at 0.25 and 0.5 bits
per pixel forGreyset 1are shown in the second halves of Table 1 and Table 2. The results
for the images fromGreyset 2are shown in Table 3 and Table 4.

Image Size Quadtree Quadtree Window Window Tile SPIHT
Prune Weight Select Weight

barbara 512� 512 28.17 28.35 28.32 28.40 28.57 28.13
boat 512� 512 30.57 30.74 30.57 30.69 30.97 30.97
france 496� 672 23.00 23.28 22.71 23.22 23.87 22.91
frog 498� 621 25.35 25.38 25.22 25.36 25.43 25.33
goldhill 512� 512 30.34 30.41 30.22 30.42 30.58 30.56
lena 512� 512 33.77 33.92 33.84 33.92 34.12 34.11
library 352� 464 19.56 19.73 19.40 19.73 20.17 19.82
mandrill 512� 512 23.18 23.24 22.94 23.20 23.39 23.27
mountain 480� 640 19.25 19.32 18.99 19.31 19.46 19.37
peppers 512� 512 32.87 33.05 33.07 33.16 33.45 33.47
washsat 512� 512 34.14 34.14 33.84 34.07 34.21 34.18
zelda 512� 512 37.34 37.39 37.34 37.31 37.51 37.50

Table 3:PSNR values for GraySet2 at 0.25 bits per pixel.

Again quadtree weighting is uniformly better than quadtree pruning. However, for
almost all the images, the advantage of quadtree weighting is rather small. For windowing,
weighting performed better on almost all the images but again the margin is rather small.
The performance of windowing and quadtrees are rather similar for the natural images, with
different methods being slightly better on different images. Tiling uniformly outperformed
both quadtrees and windowing on these experiments but the margin is rather small for
almost all the images. The exceptions includemontage, franceandlibrary which contains
either strong vertical and horizontal components or large areas of low entropy.
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Image Size Quadtree Quadtree Window Window Tile SPIHT
Prune Weight Select Weight

barbara 512� 512 31.98 32.10 32.19 32.27 32.38 32.11
boat 512� 512 33.97 34.13 34.03 34.25 34.41 34.45
france 496� 672 27.55 27.85 27.37 27.85 29.10 28.04
frog 498� 621 26.60 26.61 26.25 26.56 26.66 26.64
goldhill 512� 512 32.89 32.98 32.76 33.01 33.16 33.13
lena 512� 512 36.86 36.97 36.90 37.09 37.17 37.21
library 352� 464 22.31 22.51 22.09 22.53 22.99 22.75
mandrill 512� 512 25.52 25.58 25.29 25.60 25.76 25.65
mountain 480� 640 21.23 21.31 20.83 21.27 21.48 21.44
peppers 512� 512 35.47 35.58 35.50 35.70 35.82 35.92
washsat 512� 512 36.08 36.13 35.76 36.13 36.22 36.19
zelda 512� 512 39.48 39.54 39.38 39.54 39.59 39.66

Table 4:PSNR values for GraySet2 at 0.5 bits per pixel.

The performance of tiling is similar to the performance of SPIHT, with significant ad-
vantage only in the imagefrance.

4 Discussion

In this paper, we used only simple Laplacian distributions as our models. More complex
distributions such as the Generalized Gaussian Distributions used in [8] may be able to
perform better. An equally interesting possibility is to switch between compression al-
gorithms instead of static probability distributions, as is done in [10]. More sophisticated
quantization methods such as trellis-coded quantization [6] may also improve performance.
It is straight forward to use such quantizers with forward adaptation methods which send
the models before the quantized coefficients (such as optimal quadtree pruning). Unfor-
tunately, we do not know how to perform forward adaptation efficiently with the class of
k-rectangular tiling of the image.

5 Conclusions

We have compared the performance of quadtree, windowing and best tiling for for com-
pression of wavelet coefficients. As expected from the theoretical results, weighting outper-
formed pruning for quadtree compression of wavelet coefficients quantized with a single
quantizer but the margin of improvement is small. Weighting is also slightly better than
selecting for windowing methods on most natural images. The performance of the best
tiling method in our simulations agrees with the theoretical result which suggests that the
method will work well when the image can be tiled using a small number of rectangular
tiles. Best tiling worked better than the other methods on the experiments we performed
but the improvement is significant for only a few images.
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