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Abstract

We consider adaptive pool-based active learning
in a Bayesian setting. We first analyze two com-
monly used greedy active learning criteria: the
maximum entropy criterion, which selects the
example with the highest entropy, and the least
confidence criterion, which selects the example
whose most probable label has the least probabil-
ity value. We show that unlike the non-adaptive
case, the maximum entropy criterion is not able
to achieve an approximation that is within a con-
stant factor of optimal policy entropy. For the
least confidence criterion, we show that it is able
to achieve a constant factor approximation to the
optimal version space reduction in a worst-case
setting, where the probability of labelings that
have not been eliminated is considered as the ver-
sion space. We consider a third greedy active
learning criterion, the Gibbs error criterion, and
generalize it to handle arbitrary loss functions be-
tween labelings. We analyze the properties of
the generalization and its variants, and show that
they perform well in practice.

1 INTRODUCTION

We study pool-based active learning (McCallum and
Nigam, 1998) where the training data are sequentially se-
lected and labeled from a pool of unlabeled examples, with
the aim of having good performance after only a small
number of examples are labeled. In practice, the selection
of the next example to be labeled is usually done by greedy
optimization of some appropriate objective function.

In this paper, we consider adaptive algorithms for pool-
based active learning with a budget of k queries in a
Bayesian setting. We examine three commonly used
greedy criteria and their performance guarantees. We also
generalize one of the criteria, study its properties and show
that it performs well in practice.

One of the most commonly used criteria is the maximum
entropy criterion: select the example with maximum label
entropy given the observed labels (Settles, 2010). In the
non-adaptive case where the set of examples must be se-
lected before any label is observed, the analogue of this
greedy criterion selects the example that maximally in-
creases the label entropy of the selected set. This greedy
criterion in the non-adaptive case is well-known to be near-
optimal: the label entropy of the selected examples is at
least (1 − 1/e) of the optimal set. This follows from a
property satisfied by the entropy function called submodu-
larity. Selecting a set with large label entropy is desirable,
as the chain rule of entropy implies that maximizing the la-
bel entropy of the selected set will minimize the conditional
label entropy of the remaining examples. It would be desir-
able to have a similar near-optimal performance guarantee
for the adaptive case where the label is provided after every
example is selected. Whether the greedy maximum entropy
criterion provides such a guarantee was not known (Cuong
et al., 2013), although it was suspected that it does not. In
this paper, we show that the greedy algorithm, indeed, does
not provide a constant factor approximation in the adaptive
case.

Another commonly used greedy criterion is the least confi-
dence criterion: select the example whose most likely label
has the smallest probability (Lewis and Gale, 1994; Culotta
and McCallum, 2005). In this paper, we show that this cri-
terion provides a near-optimal adaptive algorithm for max-
imizing the worst-case version space reduction, where the
version space is the probability of labelings that are consis-
tent with the observed labels. This will be derived as the
consequence of a more general result which shows such
near-optimal approximation holds for utility functions that
satisfy pointwise submodularity and minimal dependency.
Pointwise submodular functions were previously studied in
(Guillory and Bilmes, 2010) for active learning, but with a
different objective function which focuses on identifying
the true function.

The Gibbs error criterion was proposed in (Cuong et al.,
2013) as an alternative uncertainty measure suitable for ac-



Table 1: Theoretical Properties of Greedy Criteria for Adaptive Active Learning

Criterion Objective Near-optimality Property

Maximum entropy Policy entropy No constant
factor approximation (this paper)

Least confidence Worst-case (1-1/e) factor Pointwise monotone
version space reduction approximation (this paper) submodular

Maximum Gibbs error Policy Gibbs error (1-1/e) factor Adaptive monotone
(expected version approximation (Cuong et al., 2013) submodular
space reduction)

tive learning. The criterion selects the example with the
largest Gibbs error for labeling. The Gibbs error is the ex-
pected error of the Gibbs classifier, which predicts the label
by sampling from the current label distribution. Gibbs error
is a special case of Tsallis entropy, introduced in statistical
mechanics (Tsallis and Brigatti, 2004) as a generalization
of the Shannon entropy (which is used in the maximum en-
tropy criterion). In (Cuong et al., 2013), Gibbs error was
used as a lower bound to the Shannon entropy and was
maximized in order to minimize the posterior conditional
entropy. It was shown in (Cuong et al., 2013) that using
the Gibbs error criterion achieves at least (1 − 1/e) of the
optimal policy Gibbs error, a performance measure for this
criterion, given k queries in the adaptive case. This relies
on the property that the version space reduction function is
adaptive submodular (Golovin and Krause, 2011).

The results for the three commonly used greedy criteria are
shown in Table 1.

The Gibbs error criterion can be seen as a greedy algo-
rithm for sequentially maximizing the Gibbs error over the
dataset. The Gibbs error of the dataset is the expected er-
ror of a Gibbs classifier that predicts using an entire label-
ing sampled from the prior label distribution for the entire
dataset. Here, a labeling is considered incorrect if any ex-
ample is incorrectly labeled by the Gibbs classifier. Pre-
dicting an entirely correct labeling of all examples is often
unrealistic in practice, particularly after only a few exam-
ples are labeled. This motivates us to generalize the Gibbs
error to handle different loss functions between labelings,
e.g. Hamming loss which measures the Hamming distance
between two labelings. We call the greedy criterion that
uses general loss functions the average generalized Gibbs
error criterion.

The corresponding performance measure for the average
generalized Gibbs error criterion is the generalized policy
Gibbs error, which is the expected value of the general-
ized version space reduction function. The generalized ver-
sion space reduction function is an extension of the version
space reduction function with general loss functions. We
investigate whether the generalized version space reduction

function is adaptive submodular, as this property would
provide a constant factor approximation for the average
generalized Gibbs error criterion. Unfortunately, we can
show that the generalized version space reduction function
is not necessarily adaptive submodular, although it is adap-
tive submodular for the special case of the version space re-
duction function. Despite that, we show in our experiments
that the average generalized Gibbs error criterion can per-
form well in practice, even when we do not know whether
the corresponding utility function is adaptive submodular.

As in the case for the least confidence criterion, we also
consider a worst-case setting for the generalized Gibbs er-
ror. The worst case against a target labeling can be se-
vere, so we consider a variant: the total generalized version
space reduction function. This function targets the sum
of the remaining losses over all the remaining labelings,
rather than against a single worst-case labeling. We call the
corresponding greedy criterion the worst-case generalized
Gibbs error criterion. It selects the example with maximum
worst-case total generalized version space reduction as the
next query. As the total generalized version space reduction
function is pointwise submodular and satisfies the minimal
dependency property, the method is guaranteed to be near-
optimal. Our experiments show that the worst-case gener-
alized Gibbs error criterion performs well in practice. For
binary problems, the maximum entropy, least confidence,
and Gibbs error criteria are all equivalent, and the worst-
case generalized Gibbs error criterion outperforms them for
most problems in our experiments.

2 PRELIMINARIES

Let X be a finite set of items (or examples), and let Y be
a finite set of labels (or states). A labeling of X is a func-
tion fromX to Y , and a partial labeling is a partial function
fromX to Y . Each labeling ofX can be considered as a hy-
pothesis in the hypothesis spaceH = YX . In the Bayesian
setting, there is a prior probability p0[h] on H, and an un-
known true hypothesis htrue is initially drawn from p0[h].
After observing a labeled set (i.e. a partial labeling) D,



we can obtain the posterior pD[h] = p0[h|D] using Bayes’
rule.

For any S ⊆ X and any distribution p on H,
we write p[y;S] to denote the probability that a ran-
domly drawn hypothesis from p assigns labels in the
sequence y to items in the sequence S. That is,
p[y;S] def=

∑
h∈H p[h]P[h(S) = y|h], where we use the

notation h(S) to denote the sequence (h(x1), . . . , h(xi))
whenever S is a sequentially constructed set (x1, . . . , xi),
or simply the set {h(x) : x ∈ S} if the items in S are not
ordered. In our setting, h is a deterministic hypothesis, so
P[h(S) = y|h] = 1(h(S) = y), where 1(·) is the indicator
function. Note that p[ · ;S] is a probability distribution on
the set of all label sequences y of S. For x ∈ X and y ∈ Y ,
we also write p[y;x] for p[{y}; {x}].

In practice, we often consider probabilistic models (like the
naive Bayes models) which are used to generate labels for
examples, and a prior is imposed on these models instead of
on the labelings. In this case, we can follow the construc-
tion in the supplementary material of (Cuong et al., 2013)
to construct an equivalent prior on the labelings and work
with this induced prior.

We consider pool-based active learning with a fixed bud-
get: given a budget of k queries, we aim to adaptively se-
lect from the pool X the best k examples with respect to
some objective function.1 A pool-based active learning al-
gorithm corresponds to a policy for choosing training ex-
amples from X . A policy is a mapping from a partial la-
beling to the next unlabeled example to query. When the
active learning policy chooses an unlabeled example, its
label according to htrue will be revealed.

A policy can be represented by a policy tree in which each
node corresponds to an unlabeled example to query, and
edges below a node correspond to its labels. In this paper,
we use policy and policy tree interchangeably. A policy can
be non-adaptive or adaptive. In a non-adaptive policy, the
observed labels are not taken into account when the policy
chooses the next example. An adaptive policy, on the other
hand, can use the observed labels to determine the next ex-
ample to query. We will focus on adaptive policies in this
paper.

Let Πk be the set of policy trees of height k. Note that Π|X |
contains full policy trees, while Πk with k < |X | contains
partial policy trees. Following the insight in (Cuong et al.,
2013), for any (full or partial) policy π, we define a prob-
ability distribution pπ0 [·] over the paths from the root to a
leaf of π. Intuitively, pπ0 [ρ] is the probability that the policy
π follows the path ρ during its execution. This probabil-
ity distribution is induced by the randomness of htrue and is

1 In our setting, the usual objective of determining the true
hypothesis htrue is infeasible unless the support of p0 is small.
When p0[h] > 0 for all h, we need to query the whole pool X in
order to determine htrue.

defined as pπ0 [ρ] def= p0[yρ;xρ], where xρ (resp. yρ) is the
sequence of examples (resp. labels) along path ρ. Some
objective functions for pool-based active learning can be
defined using this probability distribution.

3 SUBMODULARITY

Our objective in active learning can often be stated as max-
imizing some average or worst-case performance with re-
spect to some utility function f(S) in the non-adaptive
case, or f(S, h) in the adaptive case, where S is the set
of chosen examples. When f(S) is submodular or f(S, h)
is adaptive submodular, greedy algorithms are known to be
near-optimal (Nemhauser et al., 1978; Golovin and Krause,
2011). We shall briefly summarize some results about
greedy optimization of submodular functions and adaptive
submodular functions, then prove a new result about the
worst-case near-optimality of a greedy algorithm for maxi-
mizing a pointwise submodular function.2

3.1 NEAR-OPTIMALITY OF SUBMODULAR
MAXIMIZATION

A set function f : 2X → R is submodular if it satisfies the
following diminishing return property: for all A ⊆ B ⊆ X
and x ∈ X \B,

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

The function f is called monotone if f(A) ≤ f(B) for all
A ⊆ B.

To select a set of size k that maximizes a monotone sub-
modular function, one greedy strategy is to iteratively se-
lect the next example x∗ that satisfies

x∗ = arg max
x
{f(S ∪ {x})− f(S)}, (1)

where S is the previously selected examples. The follow-
ing theorem by Nemhauser et al. (1978) states the near-
optimality of this greedy algorithm when maximizing a
monotone submodular function.

Theorem 1 (Nemhauser et al. 1978). Let f be a monotone
submodular function such that f(∅) = 0, and let Sk be the
set of examples selected up to iteration k using the greedy
criterion in Equation (1). Then for all k > 0, we have
f(Sk) ≥ (1− 1/e) max|S|=k f(S).

3.2 NEAR-OPTIMALITY OF ADAPTIVE
SUBMODULAR MAXIMIZATION

Adaptive submodularity (Golovin and Krause, 2011) is an
extension of submodularity to the adaptive setting. For a
partial labeling D and a full labeling h, we write h ∼ D to

2 Note that our result can also be applied to settings other than
active learning.



denote that D is consistent with h. That is, D ⊆ h when
we view a labeling as a set of (x, y) pairs. For two par-
tial labelings D and D′, we call D a sub-labeling of D′, if
D ⊆ D′.

We consider a utility function f : 2X × YX → R≥0
which depends on the examples selected and
the true labeling of X . For a partial labeling
D and an example x, we define ∆(x|D) def=
Eh [f(dom(D) ∪ {x}, h)− f(dom(D), h) |h ∼ D],
where the expectation is with respect to p0[h |h ∼ D] and
dom(D) is the domain of D.

From the definitions in (Golovin and Krause, 2011), f is
adaptive submodular with respect to p0 if for all D and D′
such that D ⊆ D′, and for all x ∈ X \ dom(D′), we have
∆(x|D) ≥ ∆(x|D′). Furthermore, f is adaptive monotone
with respect to p0 if for all D with p0[h ∼ D] > 0 and for
all x ∈ X , we have ∆(x|D) ≥ 0.

Let π be a policy for selecting the examples and xπh be the
set of examples selected by π under the true labeling h. We
define the expected utility of π as favg(π) def= E[f(xπh, h)],
where the expectation is with respect to p0[h]. To adap-
tively select a set of size k that maximizes favg, one greedy
strategy is to iteratively select the next example x∗ that sat-
isfies

x∗ = arg max
x

∆(x|D), (2)

where D is the partial labeling that has already been ob-
served. The following theorem by Golovin and Krause
(2011) states the near-optimality of this greedy policy when
f is adaptive monotone submodular.

Theorem 2 (Golovin and Krause 2011). Let f be an adap-
tive monotone submodular function with respect to p0, π
be the adaptive policy selecting k examples using Equa-
tion (2), and π∗ be the optimal policy with respect to favg

that selects k examples. Then for all k > 0, we have
favg(π) > (1− 1/e)favg(π∗).

3.3 NEAR-OPTIMALITY OF POINTWISE
SUBMODULAR MAXIMIZATION

Theorem 2 gives near-optimal average-case performance
guarantee for greedily optimizing an adaptive monotone
submodular function. We now give a new near-optimal
worst-case performance guarantee for greedily optimizing
a pointwise monotone submodular function. A utility func-
tion f : 2X × YX → R≥0 is said to be pointwise submod-
ular if the set function fh(S) def= f(S, h) is submodular for
all h. Similarly, f is pointwise monotone if fh(S) is mono-
tone for all h.

When f is pointwise monotone submodular, the aver-
age utility favg(S) = Eh∼p0 [f(S, h)] is monotone sub-
modular, and thus the non-adaptive greedy algorithm is a
near-optimal non-adaptive policy for maximizing favg(S)

(Golovin and Krause, 2011). However, we are more inter-
ested in the adaptive policies in this section.

For any partial labeling D, any x ∈ X \ dom(D), and any
y ∈ Y , we write D∪ {(x, y)} to denote the partial labeling
D with an additional mapping from x to y.

We assume that for any S ⊆ X and any labeling h, the
value of f(S, h) does not depend on the labels of examples
inX \S. We call this the minimal dependency property. Let
us extend the definition of f so that its second parameter
can be a partial labeling. The minimal dependency prop-
erty implies that for any partial labelingD and any labeling
h ∼ D, we have f(dom(D), h) = f(dom(D),D). With-
out this minimal dependency property, the theorem in this
section may not hold. We will see some examples of func-
tions that satisfy or do not satisfy the minimal dependency
property in Section 4 and 5.

For a partial labeling D and an example x, define

δ(x|D) def= min
y∈Y
{f(dom(D) ∪ {x},D ∪ {(x, y)})

−f(dom(D),D)}.

We consider the adaptive greedy strategy that iteratively se-
lects the next example x∗ satisfying

x∗ = arg max
x

δ(x|D), (3)

where D is the partial labeling that has already been ob-
served. For any policy π, let fworst(π) def= minh f(xπh, h) be
the worst-case objective function. The following theorem
states the near-optimality of the above greedy policy with
respect to fworst when f is pointwise monotone submodu-
lar.3

Theorem 3. Let f be a pointwise monotone submodu-
lar function such that f(∅, h) = 0 for all h, and f sat-
isfies the minimal dependency property. Let π be the
adaptive policy selecting k examples using Equation (3),
and π∗ be the optimal policy with respect to fworst that
selects k examples. Then for all k > 0, we have
fworst(π) > (1− 1/e)fworst(π

∗).

The main idea in proving this theorem is to show that at
every step, the greedy policy can cover at least (1/k)-
fraction of the optimal remaining utility. This property can
be proven by replacing the current greedy step with the op-
timal policy and considering the adversary’s path for this
optimal policy. See Appendix A for a proof of this theo-
rem.

We note that in the worst-case setting, Golovin and Krause
(2011) also considered the problem of minimizing the num-
ber of queries needed to achieve a target utility value. How-
ever, their results mainly rely on the condition that the

3 Note that in the definition of fworst(π), h has to range over
the set YX of all possible labelings. Otherwise, Theorem 3 does
not necessarily hold.



utility function is adaptive submodular, not the pointwise
submodular condition considered in this section. It is also
worth noting that our new greedy criterion in Equation (3)
is different from the greedy criterion considered by Golovin
and Krause (2011), which is essentially Equation (2). Thus,
our result does not follow from their result and is developed
using a different argument.

4 PROPERTIES OF GREEDY ACTIVE
LEARNING CRITERIA

We now briefly introduce three greedy criteria that have
been used for active learning: maximum entropy, maxi-
mum Gibbs error, and least confidence. These criteria are
equivalent in the binary-class case (i.e. they all choose the
same examples to query), but they are different in the multi-
class case. We will prove some new properties of the max-
imum entropy and the least confidence criteria.

4.1 MAXIMUM ENTROPY

The maximum entropy criterion chooses the next exam-
ple whose posterior label distribution has the maximum
Shannon entropy (Settles, 2010). Formally, this criterion
chooses the next example x∗ that satisfies

x∗ = arg max
x

Ey∼pD[y;x][− ln pD[y;x]], (4)

where pD is the posterior obtained after observing the par-
tial labeling D. From (Cuong et al., 2013), it is desirable to
maximize the policy entropy

Hent(π) def= Eρ∼pπ0 [− ln pπ0 [ρ]],

where the expectation is over all the paths in the policy tree
of π, as maximizing the policy entropy will minimize the
expected label entropy given the observations. Criterion
(4) can be viewed as a greedy algorithm for maximizing
the policy entropy.

Due to the monotonicity and submodularity of Shannon en-
tropy (Fujishige, 1978), we can construct a non-adaptive
greedy policy that achieves near-optimality with respect to
the objective function Hent in the non-adaptive setting. In
the adaptive setting, however, it was previously unknown
whether the maximum entropy criterion is near-optimal
with respect to Hent (Cuong et al., 2013).

We now show that, in general, the maximum entropy crite-
rion may not be near-optimal with respect to the objective
function Hent (Theorem 4).

Theorem 4. Let π be the adaptive policy in Πk selecting
examples using Equation (4), and π∗ be the optimal adap-
tive policy in Πk with respect to Hent. For any 0 < α < 1,
there exists a problem where Hent(π)/Hent(π

∗) < α.

The main idea in proving this theorem is to construct a set
of independent distractor examples that have highest en-
tropy but provide no information about the true hypothe-
sis. The greedy criterion is tricked to choose only these
distractor examples. On the other hand, there is an identi-
fier example which gives the identity of the true hypothesis
but has a lower entropy than the distractor examples. Once
the label of the identifier example is revealed, there will be
a number of high entropy examples to query, so that the
policy entropy achieved is higher than that of the greedy
algorithm. See the supplement for a proof of this theorem.

4.2 MAXIMUM GIBBS ERROR

The maximum Gibbs error criterion chooses the next ex-
ample whose posterior label distribution has the maximum
Gibbs error (Cuong et al., 2013). Formally, this criterion
chooses the next example x∗ that satisfies

x∗ = arg max
x

Ey∼pD[y;x][1− pD[y;x]]. (5)

This criterion attempts to greedily maximize the policy
Gibbs error

Hgibbs(π) def= Eρ∼pπ0 [1− pπ0 [ρ]],

which is a lower-bound of the policy entropy Hent(π).

It has been shown by Cuong et al. (2013, sup.) that the pol-
icy Gibbs error Hgibbs corresponds to the expected version
space reduction in H. Furthermore, the maximum Gibbs
error criterion in Equation (5) corresponds to the algorithm
that greedily maximizes the expected version space reduc-
tion. For S ⊆ X and h ∈ H, the version space reduction
function is defined as f(S, h) def= 1− p0[h(S);S].

Since the version space reduction function is adaptive
monotone submodular (Golovin and Krause, 2011), the
maximum Gibbs error criterion is near-optimal with respect
to the objective functionHgibbs in both the non-adaptive and
adaptive settings. That is, the greedy policy using Equation
(5) has the policy Gibbs error within a factor (1 − 1/e) of
the optimal policy (Cuong et al., 2013).

4.3 LEAST CONFIDENCE

The least confidence criterion chooses the next example
whose most likely label has minimal posterior probabil-
ity (Lewis and Gale, 1994; Culotta and McCallum, 2005).
Formally, this criterion chooses the next examples x∗ that
satisfies

x∗ = arg min
x
{max
y∈Y

pD[y;x]}. (6)

Note that x∗ = arg maxx{1 − maxy pD[y;x]}. Thus,
the least confidence criterion greedily optimizes the error
rate of the Bayes classifier on the distribution pD[ · ;x]. In
this section, we use the result in Section 3.3 to prove that



the least confidence criterion near-optimally maximizes the
worst-case version space reduction.

For a policy π, we define the worst-case version space re-
duction objective as

Hlc(π) def= min
h
f(xπh, h)

where f is the version space reduction function defined in
Section 4.2. We note that f satisfies the minimal depen-
dency property. It can also be shown that f is pointwise
monotone submodular, and the least confidence criterion is
equivalent to the criterion in Equation (3). Thus, it follows
from Theorem 3 that the least confidence criterion is near-
optimal with respect to the objective functionHlc (Theorem
5). See the supplement for a proof.

Theorem 5. Let π be the adaptive policy in Πk selecting
examples using Equation (6), and π∗ be the optimal adap-
tive policy in Πk with respect to Hlc. For all k > 0, we
have Hlc(π) > (1− 1/e)Hlc(π

∗).

5 ACTIVE LEARNING WITH GENERAL
LOSS

In this section, let us focus on the maximum Gibbs error
criterion in Section 4.2. The policy Gibbs error objec-
tive Hgibbs can be written as Hgibbs(π) = Eh∼p0 [f(xπh, h)],
where f is the version space reduction function (Cuong
et al., 2013, sup.). Note that f(xπh, h) is the expected 0-1
loss that a random labeling drawn from p0 differs from h
on xπh. Because of the nature of 0-1 loss, even if the ran-
dom labeling only differs from h on one element of xπh, it
is counted as an error.

To overcome this disadvantage, we formulate a new ob-
jective function that can handle an arbitrary general loss
function L : YX × YX → R≥0 satisfying the following
two properties: L(h, h′) = L(h′, h) for any two labelings
h and h′ of X , and if h = h′ then L(h, h′) = 0. For S ⊆ X
and h ∈ H, we define the generalized version space reduc-
tion function

fL(S, h) def= Eh′∼p0 [L(h, h′) 1 (h(S) 6= h′(S)) ].

Note that fL(S, h) =
∑
h′:h(S)6=h′(S) p0[h′]L(h, h′),

which can be written as∑
h′

p0[h′]L(h, h′)−
∑

h′:h(S)=h′(S)

p0[h′]L(h, h′).

If L is the 0-1 loss, i.e. L(h, h′) = 1(h 6= h′), we have
f0-1(S, h) =

∑
h′:h(S) 6=h′(S) p0[h′], which is equal to the

version space reduction function f(S, h).

Our new objective is to maximize the expected value of the
generalized version space reduction

Havg
L (π) def= Eh∼p0 [fL(xπh, h)].

When L is the 0-1 loss, this objective function is equal to
the policy Gibbs errorHgibbs(π). Thus, we callHavg

L (π) the
generalized policy Gibbs error.

5.1 AVERAGE-CASE CRITERION

To maximize Havg
L (π), a natural algorithm is to greedily

maximize fL at each step. Let D be the previously ob-
served partial labeling, this greedy criterion chooses the
next example x∗ that satisfies

x∗ = arg max
x

Eh∼pD [fL(dom(D) ∪ {x}, h)

−fL(dom(D), h)] (7)

We call this criterion the average generalized Gibbs error
criterion.

From the result in Section 3.2, if fL is adaptive monotone
submodular, then using the average generalized Gibbs er-
ror criterion is near-optimal. Theorem 6 below states this
result, which is a direct consequence of Theorem 2.
Theorem 6. Let πavg

L be the adaptive policy in Πk selecting
examples using Equation (7), and π∗ be the optimal adap-
tive policy in Πk with respect to Havg

L . If fL is adaptive
monotone submodular with respect to the prior p0, then
Havg
L (πavg

L ) > (1− 1/e)Havg
L (π∗).

Note that if L is 0-1 loss, then fL is adaptive monotone
submodular with respect to any prior. Unfortunately, in
general, fL may not be adaptive submodular with respect
to a prior p0 (Theorem 7). See the supplement for a proof.
Theorem 7. Let p0 be a prior with p0[h] > 0 for all h.
There exists a loss function L such that fL is not adaptive
submodular with respect to p0.

In the supplementary material, we also discuss a sufficient
condition for fL to be adaptive monotone submodular with
respect to p0, and hence satisfy the precondition in The-
orem 6. However, it remains open whether this sufficient
condition is true for any interesting loss function other than
0-1 loss.

5.2 WORST-CASE CRITERION

We have shown in Theorem 7 that fL may not be adaptive
submodular, and thus we may not always have a theoretical
guarantee for the average generalized Gibbs error criterion.
In this section, we will reconsider our objective in the worst
case instead of the average case.

In the worst case, we may want to maximize the objective
function Hworst

L (π) def= minh fL(xπh, h). However, using
this objective function may be too conservative since the
generalized version space reduction is computed only from
the losses between the surviving labelings4 and the worst-

4 The surviving labelings in fL(S, h) are the labelings consis-
tent with h on S.



case labeling. Instead, we propose a less conservative ob-
jective function based on the losses among all the surviving
labelings. Formally, we define the following total general-
ized version space reduction function

tL(S, h) def=
∑
h′

∑
h′′

p0[h′]L(h′, h′′) p0[h′′]

−
∑

h′:h′(S)=h(S)

∑
h′′:h′′(S)=h(S)

p0[h′]L(h′, h′′) p0[h′′].

Our new objective is to maximize the following function
called the worst-case total generalized policy Gibbs error

Tworst
L (π) def= min

h
tL(xπh, h).

To maximize Tworst
L , we propose a greedy algorithm that

maximizes the worst-case total generalized version space
reduction at every step. Note that tL(S, h) satisfies the min-
imal dependency property, i.e. its value does not depend on
the labels of X \ S in h. So, for a partial labeling D, we
have tL(dom(D), h) = tL(dom(D),D) for any h ∼ D.
Using this notation, the greedy criterion for choosing the
next example x∗ can be written as

x∗ = arg max
x
{min
y∈Y

[tL(dom(D) ∪ {x},D ∪ {(x, y)})

−tL(dom(D),D)]} (8)

where D is the previously observed partial labeling. We
call this criterion the worst-case generalized Gibbs error
criterion. It can be shown that tL is pointwise monotone
submodular and satisfies the minimal dependency prop-
erty for any loss function L. Furthermore, the criterion
in Equation (8) is equivalent to the criterion in Equation
(3). Thus, it follows from Theorem 3 that this greedy cri-
terion is near-optimal with respect to the objective function
Tworst
L (π) (Theorem 8). See the supplement for a proof.

Theorem 8. Let πworst
L be the adaptive policy in Πk se-

lecting examples using Equation (8), and π∗ be the opti-
mal adaptive policy in Πk with respect to Tworst

L . We have
Tworst
L (πworst

L ) > (1− 1/e)Tworst
L (π∗).

It is worth noting that, like tL, the function fL is also point-
wise submodular for any loss function L. The proof for the
pointwise submodularity of fL is essentially similar to the
proofs that f and tL are pointwise submodular in Theorem
5 and Theorem 8 (see the supplement for a proof of this
claim). However, fL does not satisfy the minimal depen-
dency property. Besides, Theorem 7 also shows that fL
may not be adaptive submodular. Thus, this is an exam-
ple that a pointwise submodular function is not necessar-
ily adaptive submodular, and we may not be able to use
Golovin and Krause (2011)’s result to obtain a result in the
average case for pointwise submodular functions.

5.3 COMPUTING THE CRITERIA

In this section, we discuss the computations of the crite-
ria in Equation (7) and Equation (8). First, we give two

propositions below regarding these equations. See the sup-
plement for proofs.

Proposition 1. The selected example x∗ in Equation (7) is
equal to

arg min
x

∑
y

Eh,h′∼pD [L(h, h′)1(h(x) = h′(x) = y)].

Proposition 2. The selected example x∗ in Equation (8) is
equal to

arg min
x
{max

y
Eh,h′∼pD [L(h, h′)1(h(x) = h′(x) = y)]}.

From these two propositions, we can compute Equa-
tion (7) and Equation (8) by estimating the expectation
Eh,h′∼pD [L(h, h′)1(h(x) = h′(x) = y)] for each y ∈ Y .
This estimation can be done by sampling from the poste-
rior.

We can sample directly from pD two sets H and H ′ which
contain samples of h and h′ respectively. Then, the ex-
pectation Eh,h′∼pD [L(h, h′)1(h(x) = h′(x) = y)] can be
approximated by

1

|H| × |H ′|
∑
h∈H

∑
h′∈H′

L(h, h′)1(h(x) = h′(x) = y).

Note that this approximation only requires samples of the
labelings from the posterior, and we do not need to explic-
itly maintain the set of all labelings which may be exponen-
tially large. In the case when the labelings are generated
by probabilistic models following some prior distribution,
sampling from pD may be difficult. A simple approxima-
tion is to sample H and H ′ from the MAP model.

6 EXPERIMENTS

Experimental results comparing the maximum entropy cri-
terion, the maximum Gibbs error criterion, and the least
confidence criterion were reported in (Cuong et al., 2013).
In this section, we only focus on the active learning criteria
with general loss functions, and conduct experiments with
two common loss functions used in practice: the Hamming
loss and the F1 loss. For two labelings h and h′ (viewing
them as label vectors), the Hamming loss is the Hamming
distance between them, and the F1 loss is 1 − F1(h, h′)
where F1(h, h′) ∈ [0, 1] is the F1 score between h and h′.

We experiment with various binary-class tasks from the
UCI repository (Bache and Lichman, 2013) and the
20Newsgroups dataset (Joachims, 1996). We use the
binary-class logistic regression as our model, and compare
the active learners using the greedy criteria in Section 5.1
and 5.2 with the passive learner (Pass) and the maximum
Gibbs error active learner (Gibbs). The maximum Gibbs er-
ror criterion is estimated from Equation (5) using the MAP



Table 2: AUC for Accuracy and F1 on UCI Datasets

Dataset Accuracy F1

Pass Gibbs WorstH AvgH Pass Gibbs WorstF AvgF

Adult 74.81 73.94 77.81 77.72 82.00 81.12 85.15 84.57
Breast cancer 89.81 88.90 90.66 89.96 93.42 92.80 94.09 94.91

Diabetes 64.59 68.57 67.03 68.90 36.61 42.56 48.34 42.02
Ionosphere 78.31 82.96 84.77 83.79 63.99 72.57 72.19 72.93

Liver disorders 66.91 66.65 67.25 68.09 72.07 73.83 75.94 74.70
Mushroom 75.01 85.01 89.50 80.43 66.99 83.13 73.21 82.96

Sonar 65.75 68.76 67.58 66.37 71.84 75.31 73.92 73.48

Average 73.60 76.40 77.80 76.47 69.56 74.47 74.69 75.08

Table 3: AUC for Accuracy and F1 on 20Newsgroups Dataset

Task Accuracy F1

Pass Gibbs WorstH AvgH Pass Gibbs WorstF AvgF

alt.atheism/comp.graphics 85.34 86.76 87.21 86.71 87.38 88.77 88.89 89.87
talk.politics.guns/talk.politics.mideast 73.37 80.75 75.03 77.03 77.46 82.23 79.72 79.88

comp.sys.mac.hardware/comp.windows.x 78.36 79.84 80.20 78.05 79.58 80.22 76.43 79.31
rec.motorcycles/rec.sport.baseball 82.34 82.44 85.37 83.27 80.74 83.06 84.48 83.97

sci.crypt/sci.electronics 72.75 77.07 77.83 78.71 67.53 73.92 73.82 77.69
sci.space/soc.religion.christian 80.96 85.58 87.35 87.84 79.95 84.51 86.05 87.16

soc.religion.christian/talk.politics.guns 82.10 84.01 85.81 85.83 80.43 79.24 83.37 82.46

Average 79.32 82.35 82.69 82.49 79.01 81.70 81.82 82.91

hypothesis. Note that the maximum Gibbs error criterion
is equivalent to the maximum entropy and the least confi-
dence criteria in this case since the tasks are binary-class.

We estimate the average-case criteria (AvgH and AvgF)
in Section 5.1 and the worst-case criteria (WorstH and
WorstF) in Section 5.2 using the approximation in Section
5.3 with the MAP hypothesis. AvgH and WorstH use the
Hamming loss, while AvgF and WorstF use the F1 loss. We
compare the AUCs (area under the curve) for the accuracy
scores of Pass, Gibbs, AvgH, and WorstH. We also com-
pare the AUCs for the F1 scores of Pass, Gibbs, AvgF, and
WorstF.

The AUCs are computed from the first 150 examples and
normalized so that their ranges are from 0 to 100. We ran-
domly choose the first 10 examples as a seed set. We use
the same seed set for all the algorithms.

The detailed procedure to compute the AUCs for our ex-
periments is as follows. We sequentially choose 10 (seed
size), 11, . . ., 150 training examples using active learning
or passive learning. Then for each training size, we train a
model and compute its score (accuracy or F1) on a separate
test set. Using these scores, we can compute the AUCs. We

use the AUC scores because we want to compare the whole
learning curves from choosing 10 to 150 training examples,
not just the scores at any single point (e.g. 150 examples).
This is consistent with previous works such as (Settles and
Craven, 2008) and (Cuong et al., 2013).

The results for the UCI datasets are given in Table 2. From
Table 2, all the active learning algorithms perform better
than passive learning in terms of accuracy. On average,
WorstH and AvgH perform slightly better than Gibbs, and
WorstH achieves the best average AUC for accuracy. In ad-
dition, all the active learning algorithms also perform bet-
ter than passive learning in terms of F1 score. On average,
WorstF and AvgF also perform slightly better than Gibbs,
and AvgF achieves the best average AUC for F1 score.

The results for the 20Newsgroups dataset are given in Ta-
ble 3. From Table 3, all the active learning algorithms are
better than passive learning in terms of accuracy. WorstH
and AvgH are slightly better than Gibbs on average. Over-
all, WorstH achieves the best average AUC for accuracy. In
addition, the active learning algorithms are also better than
passive learning in terms of F1 score. WorstF and AvgF
are also slightly better than Gibbs, and AvgF has the best
average AUC for F1 score.



In both datasets, using the Hamming loss or F1 loss is bet-
ter than using the 0-1 loss (the Gibbs criterion). Further-
more, the worst-case criterion with Hamming loss achieves
the best average scores in terms of accuracy, while the
average-case criterion with F1 loss achieves the best av-
erage scores in terms of F1.

7 CONCLUSION

We have discussed several theoretical properties of greedy
algorithms for active learning. In particular, we proved a
negative result for the maximum entropy criterion and a
near-optimality result for the least confidence criterion in
the worst case. We also considered active learning with
general losses and proposed two greedy algorithms, one of
which is for the average case and the other is for the worst
case. Our experiments show that the new algorithms per-
form well in practice.

A APPENDIX: PROOF OF THEOREM 3

Let π and π∗ be the policies as in the statement of The-
orem 3. Let hπ = arg minh f(xπh, h). Then we have
fworst(π) = f(xπhπ

, hπ). Note that hπ corresponds to a path
from the root to a leaf of the policy tree of π. Let the exam-
ples and labels along the path hπ (from the root of the tree
to a leaf) be: hπ def= {(x1, y1), (x2, y2), . . . , (xk, yk)}.

Since f satisfies the minimal dependency property, let us
abuse the notation and write f({xt}it=1, {yt}it=1) to denote
f({xt}it=1, hπ). Define

ui def= f({xt}it=1, {yt}it=1)− f({xt}i−1t=1, {yt}
i−1
t=1)

vi def=

i∑
t=1

ut and zi def= fworst(π
∗)− vi.

We prove the following claims.

Claim 1. For all i, we have ui+1 ≥ zi/k.

Proof. Consider the case that after observing
(x1, y1), . . . , (xi, yi), we run the policy π∗ from
its root and only follow the paths consistent with
(x1, y1), . . . , (xi, yi) down to a leaf. In this case, all
the paths of the policy π∗ must obtain a value at least
zi = fworst(π

∗) − vi, because running π∗ without any
observation would obtain at least fworst(π

∗) and the
observations (x1, y1), . . . , (xi, yi) cover a value vi.

Now we consider the adversary’s path of the policy π∗ in
this scenario which is defined as

hadv def= {(xadv
1 , yadv

1 ), (xadv
2 , yadv

2 ), . . . , (xadv
k , yadv

k )},

where yadv
j = arg miny{f({xt}it=1 ∪ {xadv

t }
j−1
t=1 ∪ {xadv

j },
{yt}it=1 ∪ {yadv

t }
j−1
t=1 ∪ {y})

−f({xt}it=1 ∪ {xadv
t }

j−1
t=1 , {yt}it=1 ∪ {yadv

t }
j−1
t=1 )}

if xadv
j has not appeared in {x1, . . . , xi}. Otherwise, if

xadv
j = xt for some t ∈ {1, . . . , i}, then yadv

j = yt. From
the previous discussion, hadv covers a value of at least zi in
k steps. Thus, one of its steps must cover a value of at least
zi/k.

Hence, what remains is to show that doing the greedy
step in π after observing (x1, y1), . . . , (xi, yi) is better
than any single step along hadv. In the trivial case where
(xadv
j , yadv

j ) ∈ {(x1, y1), . . . , (xi, yi)}, we obtain nothing
in this step since (xadv

j , yadv
j ) has already been observed.

Thus, the above is true in this case. In the non-trivial case,

ui+1

= f({xt}i+1
t=1, {yt}

i+1
t=1)− f({xt}it=1, {yt}it=1)

≥ min
y
{f({xt}it=1 ∪ {xi+1}, {yt}it=1 ∪ {y})

− f({xt}it=1, {yt}it=1)}
≥ min

y
{f({xt}it=1 ∪ {xadv

j }, {yt}it=1 ∪ {y})

− f({xt}it=1, {yt}it=1)}
≥ min

y
{f({xt}it=1 ∪ {xadv

t }
j−1
t=1 ∪ {xadv

j },

{yt}it=1 ∪ {yadv
t }

j−1
t=1 ∪ {y})

−f({xt}it=1 ∪ {xadv
t }

j−1
t=1 , {yt}it=1 ∪ {yadv

t }
j−1
t=1 )}

= f({xt}it=1 ∪ {xadv
t }

j−1
t=1 ∪ {xadv

j },

{yt}it=1 ∪ {yadv
t }

j−1
t=1 ∪ {yadv

j })

−f({xt}it=1 ∪ {xadv
t }

j−1
t=1 , {yt}it=1 ∪ {yadv

t }
j−1
t=1 ).

Note that the second inequality is due to the greedy crite-
rion, and the third inequality is due to the submodularity of
f on the adversary path. Therefore, this claim is true.

Claim 2. For all i ≥ 0, we have zi ≤ (1− 1

k
)ifworst(π

∗).

Proof. We prove this claim by induction. For i = 0, this
holds because z0 = fworst(π

∗) by definition. Assume that
zi ≤ (1− 1

k )ifworst(π
∗), then due to Claim 1,

zi+1 = fworst(π
∗)− vi+1 = fworst(π

∗)− vi − ui+1

= zi − ui+1 ≤ zi −
zi
k

= (1− 1

k
)zi

≤ (1− 1

k
)i+1fworst(π

∗).

Therefore, this claim is true.

To prove Theorem 3, we apply Claim 2 with i = k and
have zk ≤ (1 − 1

k )kfworst(π
∗) < 1

efworst(π
∗). Hence,

fworst(π) = vk = fworst(π
∗)− zk > (1− 1

e )fworst(π
∗).
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