
Adaptive Informative Path Planning in
Metric Spaces

Zhan Wei Lim David Hsu Wee Sun Lee

Department of Computer Science
National University of Singapore

Singapore, 117417, Singapore

Abstract

In contrast to classic geometric motion planning,
informative path planning (IPP) seeks a path for
a robot to sense the world and gain information.
In adaptive IPP, the robot chooses the next
sensing location conditioned on all information
acquired so far, and the robot’s goal is to
minimize the travel cost required for identifying
a true hypothesis. Adaptive IPP is NP-hard,
because the robot must trade off information
gain and travel cost optimally. This paper
presents Recursive Adaptive Identification (RAId),
a new polynomial-time approximation algorithm
for adaptive IPP. We prove a polylogarithmic
approximation bound when the robot travels in
a metric space. Furthermore, our experiments
suggest that RAId is practical and provides
good approximate solutions for two distinct robot
planning tasks. Although RAId is designed
primarily for noiseless observations, a simple
extension allows it to handle some tasks with noisy
observations.

1 Introduction

Path planning typically seeks a collision-free path
for a robot to reach a physical location. In contrast,
informative path planning (IPP) seeks a path for the
robot to sense the world and gain information:

• An unmanned aerial vehicle (UAV) searches a
disaster region to pinpoint the location of sur-
vivors.

• A mobile manipulator moves around and
senses an object with laser range find-
ers (Platt Jr et al., 2011) or tactile sensors (Jav-
dani et al., 2013) in order to estimate the ob-
ject pose for grasping.

• An autonomous underwater vehicle inspects
the submerged part of a ship hull (Hollinger
et al., 2013).

In all these tasks, the robot has a set of hypotheses
on the underlying state of the world—the location
of survivors, the pose of an object, etc.—and must
move to different locations in order to sense and
eventually identify the true hypothesis. Each sens-
ing operation provides new information, which en-
ables the robot to act more effectively in the future.
To acquire this information, the robot, however,
must move around and incur movement cost, in ad-
dition to sensing cost. A key issue in designing effi-
cient IPP algorithms is the trade-off between infor-
mation gain and robot movement cost. This paper
presents a new algorithm, recursive adaptive iden-
tification (RAId), which computes a near-optimal
path for the robot to identify the true hypothesis.

IPP contains, as a special case, the well-studied
optimal decision tree (ODT) problem (Chakar-
avarthy et al., 2007), in which we want to build

1

a decision tree that minimizes the expected num-
ber of tests required to identify a hypothesis. ODT
is basically IPP with a single location containing
all sensing operations. Thus the costs of all sens-
ing operations are the same. Unfortunately, ODT,
even with noiseless sensing, is not only NP-hard,
but also NP-hard to approximate within a factor of
Ω(log n), where n is the total number of hypothe-
ses (Chakaravarthy et al., 2007).

There are two general classes of algorithms for
IPP, nonadaptive and adaptive. In nonadaptive
planning, we compute a sequence of sensing op-
erations in advance. A robot executes these opera-
tion in order, regardless of the outcomes of earlier
operations. In adaptive planning, we choose, in
each step, new sensing operations conditioned on
the outcomes of earlier sensing operations. Con-
sider the simple problem of searching for an ele-
ment in an sorted array of n numbers. Linear search
is nonadaptive. It compares the search key with
each element of the array in order. The outcome of
a comparison does not affect the next element cho-
sen. In contrast, binary search is adaptive. Each
comparison splits the array into two halves, and
the outcome of the comparison determines which
half is processed further. While linear search re-
quires O(n) comparisons, binary search requires
only O(log n) comparisons. Clearly adaptive plan-
ning is more powerful in general.

RAId performs adaptive planning, just as bi-
nary search. Each recursive step of binary search
chooses a single most discriminating comparison
that prunes half of all hypotheses. RAId shares this
basic idea, but is more complex. There are two dif-
ficulties. In binary search, each comparison has the
same cost. In IPP, the costs of traveling to different
sensing locations vary, and we must address the key
trade-off between information gain and movement
cost. Further, we cannot choose sensing locations
independently one at a time, because different lo-
cations provide different sensing information and
moving to a location affects future choices. The
main idea of RAId is to construct a near-optimal
adaptive plan in each recursive step by solving a
group Steiner problem (Calinescu and Zelikovsky,

2005). Under the plan, the robot traverses a sub-
set of sensing locations and terminates the traversal
when it encounters an “informative” observation,
which guarantees to eliminate a significant fraction
of existing hypotheses.

In the following, Section 2 provides the back-
ground of this work. Section 3 defines informative
path planning and presents RAId. Section 4 ana-
lyzes the performance of the algorithm. Section 5
presents experimental comparisons of RAId with
several alternative algorithms. Although our algo-
rithm is designed primarily for noiseless observa-
tions, Section 6 presents an extension of RAId to
handle some tasks with noisy observations. Finally,
Section 7 discusses limitations of this work and di-
rections for future research.

2 Background

2.1 Related Work

IPP is important to robotics and various related
fields. The importance and the difficulty of com-
puting optimal solutions for IPP have attracted sig-
nificant interest in recent years. One idea is to
choose a set of “informative” sensing locations
and then construct a minimum-cost tour to traverse
them (Hollinger et al., 2013). The heuristic algo-
rithm may work in practice, but it does not pro-
vide any theoretical performance guarantee. An-
other idea is to search for a plan over a finite
horizon (Hollinger et al., 2011). The guarantee,
if any, is limited by the search horizon. Finite-
horizon search search can also be combined with
sampling-based motion planning to achieve asymp-
totic optimality (Hollinger and Sukhatme, 2013).
The NAIVE algorithm replans in each step, using
a nonadaptive IPP algorithm, in order to achieve
adaptivity (Singh et al., 2009b). It guarantees
near-optimal performance when the adaptivity gap
is small, in other words, when adaptive planning
does not have significant advantage over nonadap-
tive planning. Unfortunately the adaptive gap can
be exponentially large even for very simple prob-
lems (Hollinger et al., 2013). This is unsurpris-

2

ing in light of the well-known benefit of acting
adaptively (Dean et al., 2004; Golovin and Krause,
2011). Furthermore, to achieve nontrivial perfor-
mance bound, NAIVE requires explicit construc-
tion of a submodular function with the locality
property (Singh et al., 2009b). This is not always
easy or possible. One strength of NAIVE is its abil-
ity to handle noisy observations. Our current work
makes the assumption of noiseless observations,
though we are extending the algorithm to handle
noisy observations (Section 6).

IPP is closely related to the adaptive traveling
salesman (ATSP) problem (Gupta et al., 2010). In
contrast to the standard TSP, the traveling sales-
man here services only a subset of locations with
requests, but does not know this subset initially.
When the salesman arrives at a location, he finds
out whether there is a request there. The goal is to
find an adaptive strategy for the salesman to service
all requests and minimize the expected cost of trav-
eling. IPP contains ATSP as a special case. Each
hypothesis represents a subset of locations with re-
quests. Each “sensing” operation is binary and an-
swers the query whether the current location has
a service request or not. RAId has its root in the
isolation algorithm for ATSP (Gupta et al., 2010).
To provide the theoretical performance bound, the
isolation algorithm uses linear programming in the
inner loop to solve the group Steiner problem (see
Section 2.2). This is impractical. RAId solves the
more general IPP problem, which allows arbitrary
hypothesis space and removes the restriction of bi-
nary sensing. To solve the group Steiner problem, it
uses a combinatorial approximation algorithm (Ca-
linescu and Zelikovsky, 2005) that is far more ef-
fective in practice.

Our IPP algorithm contains three main ingredi-
ents: information gathering, robot movement cost,
and adaptivity. It touches on several important re-
search topics, which contain one or two, but not
all three ingredients. If we focus on information
gathering only and ignore location-dependent robot
movement cost, IPP becomes sensor placement,
view planning, or ODT, which admits efficient so-
lutions through, e.g., submodular optimization, in

both non-adaptive (Krause and Guestrin, 2009) and
adaptive settings (Golovin and Krause, 2011; Jav-
dani et al., 2013, 2014). Our work does not rely
on adaptive submodularity in either the algorithm
or the proofs. If we account for movement cost,
there are several nonadaptive algorithms with per-
formance guarantee, e.g., (Hollinger et al., 2009;
Singh et al., 2009a).

Although active localization (Fox et al., 1998)
and simultaneous localization and mapping
(SLAM) (Feder et al., 1999) bear some similarity
to IPP, they are in fact different, because IPP
assumes that the robot location is fully observable.
Reducing active localization or SLAM to IPP in-
curs significant representational and computational
cost.

IPP, as well as other information-gathering
tasks mentioned above, can all be modeled as
partially observable Markov decision processes
(POMDPs) (Kaelbling et al., 1998), which pro-
vide a general framework for planning under un-
certainty. However, solving large-scale POMDP
models near-optimally remains a challenge, despite
the dramatic progress in recent years (Pineau et al.,
2003; Smith and Simmons, 2005; Kurniawati et al.,
2008). The underlying structure of IPP allows sim-
pler and more efficient solutions.

2.2 Preliminaries on Group Steiner Trees

RAId makes critical use of the seemingly unrelated
group Steiner problem to trade off information gain
and robot movement cost. A group Steiner prob-
lem is defined by two elements. One is an edge-
weighted graph G = (V,E,WE), where V is the
set of vertices, E is the set of edges, and WE

contains the edge weights. The other is a collec-
tion of groups V = {V1, V2, . . . , Vm} with corre-
sponding group-weights WV = {ν1, ν2, . . . , νm}.
Each group Vi contains a subset of vertices in V .
A subgraph of G covers a group Vi ⊆ V if the
subgraph contains at least one vertex in Vi. In
the standard group Steiner problem, the goal is to
find a minimum-edge-weight tree that covers a sub-
collection of groups with total group-weight at least
ν, for some given constant ν.

3

The group Steiner algorithm used in RAId con-
structs a tree T in a greedy manner (Calinescu and
Zelikovsky, 2005). Define the density of a tree
as the ratio of its total edge-weight over the to-
tal group-weight of the groups covered by the tree.
Each step of the greedy algorithm constructs a low-
density subtree T ′ and adds it to a partial solution
T being constructed. The greedy step repeats until
the total weight of groups covered by T exceeds the
target ν. Each subtree T ′ is constructed by recur-
sively applying the greedy algorithm on its children
nodes with a series of different target values ν and
then picking the lowest density one among all the
subtrees found. It can be shown that a low-density
subtree always exists and can be constructed effi-
ciently. Furthermore, the union of low-density trees
remains a low-density tree, which provides an ap-
proximately optimal solution to the group Steiner
problem. The algorithm uses a series of technical
ideas to limit the number of recursive calls so that
it runs in polynomial time.

Theorem 1 (Calinescu and Zelikovsky 2005). As-
sume that the group-weights of a group Steiner
problem are represented as non-negative integers.
For any constant ε > 0, there is a polynomial-
time algorithm that computes a near-optimal group
Steiner tree within a factor O(log |V |2+ε log ν) of
the optimal one.

The constant ε is a parameter that can be tuned to
improve the approximation ratio, but at a greater
computational cost.

3 Informative Path Planning

3.1 Problem Definition

Formally an IPP problem is specified as a tuple
I = (X, d,H, ρ,O,Z, r). First, X is a finite set
of sensing locations, with associated distance met-
ric d(x, x′) for any two locations x, x′ ∈ X . Next,
H is a finite set of hypotheses, and ρ(h) specifies
the prior probability of hypothesis h ∈ H . We also
have a finite set of observations O and a set of ob-
servation functions Z = {Zx | x ∈ X}, with one

A

B C

D

0 1

0 1 0 1

0 1
h1

h3 h4

h2 h5

Figure 1: A policy tree with sensing loca-
tions {A,B,C,D}, observations {0, 1}, hypothe-
ses {h1, h2, . . . , h5}. With noiseless observations,
every path in a policy tree from the root to a leaf
uniquely identifies a hypothesis. Suppose that a
robot follows the shaded path σ. Then a hypothesis
h is consistent with all observations received along
σ if and only if h belongs to the subtree rooted at
the node D, i.e., {h3, h4}.

observation function Zx associated with each loca-
tion x. For generality, we define the observation
functions probabilistically: Zx(h, o) = p(o|x, h).
For noiseless observations, Zx(h, o) is either 1 or
0. In this work, we focus mainly on the noiseless
case. Finally, r is the robot’s start location. To sim-
plify the presentation, we assume r 6∈ X . Either r
provides no useful sensing information or the robot
has already visited r and acquired the information.

We say that a hypothesis h is consistent with an
observation o at a sensing location x if Zx(h, o) =
1. Otherwise, it is inconsistent. If a hypothesis is
inconsistent with a received observation, it clearly
is not the true hypothesis and can be eliminated
from further consideration.

In adaptive planning, the solution is a policy π,
which can be represented as a tree. Each node of
the policy tree is labeled with a sensing location
x ∈ X , and each edge is labeled with an observa-
tion o ∈ O (Fig. 1). To execute such a policy, the
robot starts by moving to the location at the root of
the policy tree and receives an observation o. It then
follows the edge labeled with o and moves to the
next location at the child node. The process con-

4

s

s

The long range
sensor detects the
target in the 3 × 3
area.

The short range
sensor detects the
target in the grid
cell at the current
UAV location.

true target location

c = 10

c = 1

c = 4

Figure 2: Search for a stationary target in an 8× 8 grid. At the high altitude, the long-range sensor provides
no information in the area shaded in gray, due to occlusion. The red curve indicates a sample path generated
by RAId.

tinues until the robot identifies the true hypothesis.
Thus every path in the policy tree of π uniquely
identifies a hypothesis h ∈ H . Let C(π, h) denote
the total cost of traversing this path. Our goal is
to find a policy that identifies the true hypothesis
by taking observations at the chosen locations and
minimizes the expected cost of travel.

We now state the problem formally:

Problem 1. Given an IPP problem I =
(X, d,H, ρ,O,Z, r), compute an adaptive policy π
that minimizes the expected cost to uniquely iden-
tify a hypothesis

C(π) = EHC(π, h) =
∑
h∈H

C(π, h)ρ(h). (1)

We assume without loss of generality that in the
worst case, the true hypothesis can be identified by
visiting all locations in X .

Example. We now illustrate the definition above
with a concrete example. A UAV searches for a
stationary target in an area modeled as an 8 × 8
grid and must identify the grid cell that contains
the target (Fig. 2). Initially the target may lie in any
of the cells with equal probabilities.

The UAV can operate at two different altitudes.
At the high altitude, it uses a long-range sensor that
determines whether the 3×3 grid around its current

location contains the target. At the low altitude, the
UAV uses a more accurate short-range sensor that
determines whether the current grid cell contains
the target. Some grid cells are not visible from the
high altitude because of occlusion, and the UAV
must descend to the low altitude in order to search
these cells.

The UAV starts at the low altitude. We use the
Manhattan distance between two grid cells as the
basis of calculating the movement cost. The cost
of flying between two adjacent cells at the high al-
titude is 1. The corresponding cost at the low alti-
tude is 4. The cost to move between high and low
altitudes is 10.

Compared with the high altitude, the low altitude
offers more accurate information over a smaller
area and incurs a higher cost. The challenge is then
to manage this trade-off.

In this example, the hypotheses are the grid cells
that may contain the target: H =

{
(i, j) | i, j ∈

{1, 2, . . . , 8}
}

. The prior probability ρ over the hy-
potheses is the uniform distribution. The sensing
locations are the UAV locations at the two altitudes:
X =

{
(i, j, k) | i, j ∈ {1, 2, . . . , 8}, k ∈ {1, 2}

}
.

The metric d is the shortest distance to move be-
tween two grid cells. There are two observation:
O = {1, 0}, indicating whether the target is de-
tected or not. The observation function Zx(h, o)
specifies whether the hypothesis h is consistent

5

with the observation o received at location x. For
example, if the UAV receives observation o = 0
at a low-altitude location x = (2, 2, 1), a single
hypothesis h = (2, 2) is inconsistent and can be
eliminated. In comparision, if the UAV receives
o = 0 at the corresponding high-altitude location
x = (2, 2, 2), nine hypotheses corresponding to
grid cells adjacent to (2, 2) are inconsistent and can
all be eliminated. �

3.2 Informative Observations

Let Hx,o ⊆ H be the subset of hypotheses consis-
tent with observation o at x:

Hx,o = {h ∈ H | Zx(h, o) = 1}.

Let p(Hx,o) be the sum of probabilities of hypothe-
ses in the subset. We consider an observation o at
location x informative if p(Hx,o) ≤ 0.5 and define
the informative observation set at x ∈ X:

Ωx = {o ∈ O | p(Hx,o) ≤ 0.5}.

If an observation o is informative, then by defini-
tion, Hx,o has small probability (less than 0.5), and
H\Hx,o, the set of hypotheses inconsistent with o,
has large probability (greater than 0.5). The obser-
vation o is informative, because it narrows down
the consistent hypotheses to a small set measured
in probability.

Let o∗x be the most likely observation at x: o∗x =
arg maxo∈O p(Hx,o). It is interesting to observe
that there are only two possibilities for Ωx:

Ωx =

{
O if p(Hx,o) ≤ 0.5 for all o ∈ O,
O \ {o∗x} otherwise.

Consider the UAV search example again. Ini-
tially, the observation o = 1 at every low-altitude
location x is informative, as p(Hx,1) = 1/64 ≤
0.5. The notion of being informative is intuitively
correct here, because the observation o = 1 at a
low-altitude location identifies the target location
exactly. In contrast, the observation o = 0 is
not informative at any low-altitude location x, as
p(Hx,0) = 63/64 > 0.5. It eliminates a single
inconsistent hypothesis with probablity 1/64 and
does not help narrow down consistent hypotheses
significantly.

3.3 Algorithm

RAId is a recursive divide-and-conquer algorithm.
Each recursive step constructs a near-optimal adap-
tive plan to traverse a subset of sensing locations
in X and eliminates inconsistent hypotheses using
the observations received. The traversal terminates
when it reduces the probability of the current hy-
pothesis set H by at least a half. RAId then re-
curses on the remaining hypotheses until only one
hypothesis remains. A sketch of the algorithm is
shown in Algorithm 1.

The key step in RAId is to construct a traver-
sal that significantly reduces the current hypothe-
sis set at a low cost. Informative observation helps
in eliminating inconsistent hypotheses. If a traver-
sal encouters an informative observation o at loca-
tion x, we can eliminate all hypotheses in H\Hx,o,
which has probability great than 0.5 by definition,
and end the traversal. However, what happens if a
traversal does not encounter any informative obser-
vations? To guarantee that each traversal reduces
the probability of the current hypothesis set H by
at least a half, RAId constructs and solves a group
Steiner problem.

The underlying graph for the group Steiner prob-
lem is the complete graph over X , and the edge-
weight between two vertices x and x′ is d(x, x′).

Next, we define one group for every hypothesis
h ∈ H:

Xh = {x ∈ X | Zx(h, o) = 1 for some o ∈ Ωx},
(2)

which consists of all locations with informative ob-
servations consistent with h. The group-weight for
Xh is simply ρ(h). Our definition of a group im-
plies that an uninformative observation o 6∈ Ωx

must be inconsistent with h at a location x ∈ Xh,
because observations are noiseless and there is only
one observation consistent with a given hypothesis.
Thus, if a traversal encounters an uninformative ob-
servation at a location x ∈ Xh, we can eliminate h.

Finally, we set the target ν = min
(
0.5, 1 −

maxh∈H ρ(h)
)
. It would be desirable, but is not

possible to simply set ν = 0.5. If the true hypoth-
esis has high probability, RAId may not be able to

6

Algorithm 1 RAId
1: procedure RAId(X, d,H, ρ,O,Z, r)
2: if |H| = 1 then
3: return H .
4: else
5: ν ← min

(
0.5, 1−maxh∈H ρ(h)

)
.

6: τ ← GROUPSTEINERTOUR(X, X ×X, d, {Xh}h∈H , ρ, ν),
where τ = (x0, x1, . . . , xt) and x0 = xt = r.

7: (H, r)← EXECUTEPLAN(τ,H, r).
8: Renormalize the probability ρ(h) for all h ∈ H so that

∑
h∈H ρ(h) = 1.

9: RAId(X, d,H, ρ,O,Z, r)

10: procedure EXECUTEPLAN(τ,H, r)
11: i← 1.
12: repeat
13: r ← xi.
14: Visit location r and receive observation o.
15: Remove from H all hypotheses inconsistent with o.
16: i← i+ 1.
17: until o ∈ Ωr or i = t.
18: r ← xt.
19: Move to location r.
20: return (H, r).

achieve substantial pruning, as the remaining hy-
potheses have small total probability.

RAId guarantees that a traversal constructed
from the group Steiner problem prunes inconsistent
hypotheses that have total probability at least ν. If
the robot encounters an informative observation o
at a location x during the traversal, the inconsis-
tent hypotheses H\Hx,o have probability greater
than 0.5 by definition. Now suppose that the robot
encounters only uninformative observations during
the traversal. At each location x ∈ Xh along the
way, the robot eliminates the hypothesis h. Each
hypothesis has an associated group in the group
Steiner problem. The target value ν ensures that
the total weight of groups covered by the traversal
is greater than ν. So is the probability of eliminated
hypotheses. The formal proof is given in Lemma 1.

In Algorithm 1, the procedure
GROUPSTEINERTOUR(V,E,WE ,V,WV , ν)
solves the group Steiner problem defined in
Section 2.2. However, it computes a group

Steiner tour, i.e., a cycle in a graph-theoretic
sense, instead of a tree. GROUPSTEINERTOUR

consists of two steps. First, it solves for a group
Steiner tree T using a greedy approximation
algorithm (Calinescu and Zelikovsky, 2005). Next,
it applies Christofides’ metric TSP approximation
algorithm (Christofides, 1976) to the vertex set
of T and generates a tour. Both approximation
algorithms rely critically on the metric property of
the edge weight d.

RAId is an online algorithm, which interleaves
planning and plan execution. In the planning phase,
RAId computes a tour (Algorithm 1, line 6), which
is a partial plan. The robot executes the plan by
traversing the locations on the tour (Algorithm 1,
line 7). At each location, the robot prunes all hy-
potheses inconsistent with the received observa-
tion. If the robot receives an uninformative obser-
vation, it moves to the next location on the tour. If
the robot receives an informative observation or ex-
hausts the tour, it ends the traversal and returns to

7

A

B

D

E

1

1

1

A

B

D

E

1

1

1

C

A

B

D

E

F

1

0

1

1

1
C

A

B

D

E

F

1

0

1

1

h4

0 1

(a) (b) (c) (d)

Figure 3: A example run of RAId with two recursive calls. Shaded edges in color indicate the two tours
planned in the recursive calls. Shaded nodes indicate the locations that the robot traverses while executing
the plans. We assume that observation 0 is informative and observation 1 is uninformative. (a) RAId’s
first recursive call generates the tour (A,B,D,E). The robot moves to the first location A on the tour and
receives observation 1. (b) Since observation 1 is uninformative, the robot next moves to B and receives
observation 1 again. (c) Upon receiving the first informative observation 0 atD, the robot ends the traversal.
RAId replans in the second recursive call and generates a new tour (C,F). (d) The robot moves to C. It
receives 0 at C and identifies the hypothesis h4.

the start location. RAId then replans a new tour,
and the whole process repeats.

Returning to the start location simplifies the
analysis in Section 4. However, it is not required
in practice. In our experiments in Section 5, the
robot starts the new traversal from its current loca-
tion without returning. Fig. 3.3 shows an example
run of RAId.

4 Analysis

The analysis of RAId focuses two main issues:

• the total probability of hypotheses eliminated
in each traversal, and

• the associated travel cost.

We proceed in two main steps. In the first step,
we analyze a variant of IPP, called rooted IPP, in
which the robot must return to the start location r in
the end. Our main idea is to show that each group
Steiner tour computed enables the robot to either
prune inconsistent hypotheses with probability at
least 0.5 or identify the true hypothesis (Lemma 1).

Furthermore, the robot traversing such a tour incurs
a cost not more than twice the expected cost of an
optimal policy (Lemmas 2 and 3). By bounding the
number of recursive calls to RAId, we then obtain
a result on its performance for rooted IPP (Theo-
rem 2). In the second step, we exploit this result to
bound the performance of RAId for IPP itself (The-
orem 3).

We consider only rooted IPP for Lemma 1–4 and
Theorem 2.

Lemma 1. Let H ′ ⊂ H be the set of remaining hy-
potheses after a single recursive call to RAId. Then,
either p(H ′) ≤ 0.5 or |H ′| = 1.

Proof. In each recursive call to RAId, the robot
follows a group Steiner tour τ . If it receives an ob-
servation o ∈ Ωx at some location x on τ , then
the robot returns to r immediately (Algorithm 1,
line 19) and p(H ′) = p(Hx,o) ≤ 0.5 by defini-
tion of Ωx. Otherwise, the robot visits every lo-
cation x on τ and receives at every x an observa-
tion o∗x 6∈ Ωx. Consider x ∈ Xh for some x on
τ and h ∈ H . If the robot receives the obser-
vation o∗x 6∈ Ωx at x, then h is inconsistent with

8

o∗x by the definition of Xh and is pruned. Since
the target of our group Steiner problem is ν, the
pruned hypotheses has probability at least ν, and
the remaining hypothesis set H ′ has probability at
most 1 − ν. If there is a single hypothesis h∗ with
p(h∗) ≥ 0.5, then h∗ must be the only remaining
hypothesis. Otherwise, p(H ′) ≤ 1− ν ≤ 0.5. �

Next, we bound the edge-weight of an optimal
group Steiner tour.

Lemma 2. Let π∗ be an optimal policy for a rooted
IPP problem I. Let W ∗ be the total edge-weight of
an optimal group Steiner tour for I. Then W ∗ ≤
2C(π∗).

Proof. First, we extract a path σ from an optimal
policy tree π∗ and use σ to construct a feasible,
but not necessarily optimal solution σr to the group
Steiner problem for I. Next, we show that the opti-
mal policy traverses σ with probability at least 0.5.
This allows us to bound the total edge-weight of σr
and thus that of an optimal group Steiner tour by
the cost of the optimal policy.

Let (r, x1, x2, . . . , r) be a path in the optimal
policy tree π∗ such that every edge following a
node xi in the path is labeled with the most likely
observation o∗xi = arg maxo∈O p(Hxi,o). For any
subpath φ, Hφ = {h ∈ H | Zxi(h, o∗xi) =
1 for all xi in φ} is the set of hypotheses consistent
with the observations received at all locations in
φ. Let σ = (r, x1, x2, . . . , xs) be the shortest sub-
path of (r, x1, x2, . . . , r) such that p(Hσ) ≤ 1− ν,
where the length of σ is measured in the number of
nodes in the path.

We now show that the tour σr =
(r, x1, x2 . . . , xs, r) is a feasible solution to
the group Steiner tour problem. The key issue
is to determine the total group-weight of X , the
collection of groups covered by x1, x2, . . . , xs.
At each location xi on σ, the robot receives
an observation o∗xi . If a hypothesis h ∈ H is
inconsistent with o∗xi , then h must be consistent
with some o 6= o∗xi , i.e., Zxi(h, o) = 1 for o ∈ Ωxi .
Then xi ∈ Xh by definition. In other words, xi
covers Xh if h is inconsistent with o∗xi at xi, and
X = {Xh | Zxi(h, o∗xi) = 0 for some xi in σ}.

Since p(Hσ) ≤ 1− ν, the total group-weight of X
must be least ν. This proves that σr is a feasible
group Steiner tour.

Now consider the subpath σ′ =
(r, x1, x2, . . . , xs−1). We have p(Hσ′) > 1 − ν,
as σ is the shortest path with p(Hσ) ≤ 1 − ν. To
bound the expected cost of the optimal policy π∗,

C(π∗) =
∑
h∈H

ρ(h)C(π∗, h) ≥
∑
h∈Hσ′

ρ(h)C(π∗, h).

Hσ′ can be interpreted as the set of hypotheses that
visit x1, . . . , xs but not necessarily receive o∗xs at
xs. Hence for any h ∈ Hσ′ , the path that leads to
h in the optimal policy tree π∗ must contain σ as a
subpath. Thus,

C(π∗) ≥
∑
h∈Hσ′

ρ(h)w(σr) ≥ (1−ν)w(σr) ≥ (1−ν)W ∗,

where w(σr) is the total edge-weight of the tour σr.
Rearranging the inequality above, we get

W ∗ ≤ 1

1− ν
· C(π∗) ≤ 2C(π∗).

�

Lemma 3. If RAId computes an optimal group
Steiner tour, then the robot travels a path with cost
at most 2C(π∗) in each recursive step of RAId.

Proof. In each recursive step of RAId, the robot
travels a path whose cost is bounded by the to-
tal edge-weight of the group Steiner tour com-
puted. The conclusion then follows directly from
Lemma 2. �

Before moving to our first theorem, we need to
connect a rooted IPP problem to its subproblems,
as RAId is recursive.

Lemma 4. Suppose that π∗ is an optimal pol-
icy for a rooted IPP problem I with hypothesis
set H and prior probability distribution ρ. Let
{H1, H2, . . . ,Hn} be a partition of H , and let π∗i
be an optimal policy for the subproblem Ii with hy-
pothesis set Hi and prior probability distribution

9

ρi, where ρi(h) = ρ(h)/ρ(Hi) for each h ∈ Hi.
Then we have

n∑
i=1

ρ(Hi)C(π∗i) ≤ C(π∗).

Proof. For each subproblem Ii, we can construct
a feasible policy πi for Ii from the optimal policy
π∗ for I. Consider the policy tree π∗. Every path
from the root of π∗ to a leaf uniquely identifies a
hypothesis h ∈ H . So we choose the policy tree
πi as the subtree of π∗ that consists of all the paths
leading to hypotheses in Hi. Clearly πi is feasible,
as it identifies all the relevant hypotheses. Then,

n∑
i=1

ρ(Hi)C(π∗i) ≤
n∑
i=1

ρ(Hi)C(πi)

≤
n∑
i=1

ρ(Hi)
∑
h∈Hi

ρ(h)

ρ(Hi)
· C(πi, h)

=
∑
h∈H

ρ(h)C(π∗, h) = C(π∗).

�

We are now ready to bound the performance of
RAId for rooted IPP, under an assumption which
we relax later.

Theorem 2. Let π denote the policy that RAId com-
putes for a rooted IPP problem. If RAId computes
an optimal group Steiner tour in each step, then

C(π) ≤ 2 (log (1/δ) + 1)C(π∗),

where C(π) is the expected cost of RAId and δ =
minh∈H ρ(h).

Proof. By Lemma 1, if a recursive step of RAId
does not terminate, it reduces the probability of
consistent hypotheses by a factor of 1/2. For any
h ∈ H , the number of recursive steps required is
then at most log(1/δ) + 1.

We now complete the proof by induction on the
number of recursive calls to RAId. For the base
case of k = 1 call, C(π) ≤ 2C(π∗) by Lemma 3.
Assume that C(π) ≤ 2(k − 1)C(π∗) when there
are at most k− 1 recursive calls. Now consider the

induction step of k calls. The first recursive call
partitions the hypothesis set H into a collection of
mutually exclusive subsets, H1, H2, . . . ,Hn. Let
Ii be the subproblem with hypothesis set Hi and
optimal policy π∗i , for i = 1, 2, . . . , n. After the
first recursive call, it takes at most k − 1 additional
calls for each Ii. In the first call, the robot incurs
a cost at most 2C(π∗) by Lemma 3. For each Ii,
the robot incurs a cost at most 2(k−1)C(π∗i) in the
remaining k− 1 calls, by the induction hypothesis.
Putting together this with Lemma 4, we conclude
that the robot incurs a total cost of at most 2kC(π∗)
when there are k calls. �

Finally, we use Theorem 2 to analyze the perfor-
mance of RAId on IPP rather than rooted IPP. To
start, we argue that a rooted IPP solution provides
a good approximate solution for IPP.

Lemma 5. An α-approximation algorithm for
rooted IPP is a 2α-approximation algorithm for
IPP.

Proof. Let C∗ and C∗r be the expected cost of
an optimal policy for an IPP problem I and for a
corresponding rooted IPP problem Ir, respectively.
Since any policy for I can be turned into a policy
for Ir by retracing the solution path back to the start
location, we have C∗r ≤ 2C∗. An α-approximation
algorithm for rooted IPP computes a policy π for Ir
with expected cost Cr(π) ≤ αC∗r . It then follows
that Cr(π) ≤ αC∗r ≤ 2αC∗ and this algorithm pro-
vides a 2α-approximation to the optimal solution
of I. �

To obtain our main result, we need to address
two remaining issues. First, Theorem 2 assumes
that RAId computes an optimal group Steiner
tour. This is, however, not achievable in poly-
nomial time under standard assumptions. RAId
uses a polynomial-time greedy algorithm (Cali-
nescu and Zelikovsky, 2005) that computes a group
Steiner tree T with a guaranteed approximation
factor. It then applies Christofides’ metric TSP al-
gorithm (Christofides, 1976) to the vertex set of T
and generates a tour, instead of traversing T di-
rectly, because Christofides algorithm provides a
guaranteed 3/2-approximation to the optimal TSP

10

tour. Second, the greedy group Steiner approxi-
mation algorithm assumes integer group-weights.
To apply this algorithm and obtain the approxima-
tion bound, we assume that the prior probabilities
are coded in non-negative integers. We remove
the renormalization step (Algorithm 1, line 8) and
make other minor changes accordingly. Normal-
ization of probabilities is not necessary for RAId.
It only simplifies presentation.

Theorem 3. Let I = (X, d,H, ρ,O,Z, r) be an
IPP problem. Assume that the prior probability dis-
tribution ρ is represented as non-negative integers
with

∑
h∈H ρ(h) = P . Let δ = minh∈H ρ(h)/P .

For any constant ε > 0, RAId computes a pol-
icy π for I in polynomial time such that C(π) ∈
O((log|X|)2+ε logP log(1/δ)C(π∗)).

Proof. In the group Steiner problem for I, the ver-
tex set is X . From Theorem 1, the greedy approx-
imation in RAId computes an α-approximation T
to the optimal group Steiner tree T ∗, with α ∈
O((log|X|)2+ε logP). The total edge-weight of
an optimal group Steiner tree, w(T ∗), must be less
than that of an optimal group Steiner tour, W ∗, as
we can remove any edge from a tour and turn it into
a tree. Thus, w(T) ≤ αw(T ∗) ≤ αW ∗. Applying
Christofides’ metric TSP to the vertices of T pro-
duces a tour τ , which has weight w(τ) ≤ 2w(T),
using an argument similar to that in (Christofides,
1976). It then follows that w(τ) ≤ 2αW ∗. In other
words, RAId obtains a 2α-approximation to the op-
timal group Steiner tour. Putting this together with
Theorem 2 and Lemma 5, we get the desired ap-
proximation bound. The algorithm clearly runs in
polynomial time. �

IPP is an NP-hard optimization problem. RAId
provides a polylogarithmic approximation algo-
rithm that runs in polynomial time. The compu-
tational bottleneck of RAId lies in the recursive
calls to GROUPSTEINERTOUR, which computes an
approximate solution to the group Steiner prob-
lem. The running time of GROUPSTEINERTOUR

is roughly linear in the number of hypotheses and
the number of locations.

5 Experiments in Simulation

5.1 Setup

For comparison, we implemented three types of al-
gorithms: greedy algorithms, finite-horizon looka-
head search, and submodular optimization. The ex-
periments focus on two main differentiating char-
acteristics of these algorithms: planning horizon
and adaptivity. See Table 1 for a summary and the
subsections below for detailed explanation.

Greedy Algorithms

We first describe two greedy algorithms, which are
simple and widely used in practice: information
gain (IG) and information gain with cost (IGC).
Let Q denote the random variable representing the
true hypothesis. Suppose that the robot is cur-
rently located at x. If it receives observation o
at the next location x′, the information gain is
H(Q) − H(Q|x′, o), where H denotes the Shan-
non entropy. Entropy measures the uncertainty in
a random variable. Reducing entropy is the same
as gaining information. IG always chooses the next
location x′ to maximize the expected information
gain

fIG(x′) =
∑
h∈H

∑
o∈O

(
H(Q)−H(Q | x′, o)

)
p(o|x′, h)p(h).

in a greedy manner. When there are only two ob-
servations, IG is equivalent to generalized binary
search (Nowak, 2008), as shown by Zheng et al.
(2005).

To account for robot movement cost, IGC maxi-
mizes information gain per unit movement cost

fIGC(x′) =
∑
h∈H

∑
o∈O

H(Q)−H(Q | x′, o)
d(x, x′)

p(o|x′, h)p(h),

again in a greedy manner.
Greedy algorithms are myopic: they do not rea-

son over the long term. They achieve limited adap-
tivity by replanning in each step.

11

Table 1: The main characteristics of algorithms under comparison.

RAId IG, IGC IGC-2 NAId-Replan

Nonmyopic yes no finite horizon yes
Adaptive yes replanning replanning replanning

Finite-Horizon Lookahead Search

To alleviate the weakness in greedy algorithms, one
idea is to search over a finite horizon k for a depth-
k policy tree (Fig. 1) with the best expected heuris-
tic value (Hollinger et al., 2009). We use IGC as
the heuristic and call the resulting algorithm IGC-
k. The original greedy IGC algorithm corresponds
to IGC-1. IGC-k replans in each step. It per-
forms a lookahead search for the best policy tree,
and the robot executes the first step of the cho-
sen policy. The process then repeats. Since each
policy tree node chooses among |X| sensing loca-
tions and branches on |O| observations, there are
O(|X|k|O|k−1) policy trees of depth k. Clearly,
with large |X| and |O|, k must be kept small for the
finite-horizon search to be practical. Some of the
tasks in our experiments can have up to 170 sens-
ing locations and 22 observations at each location.
We had to set k = 2 to keep the total running time
reasonable.

The planning horizon IGC-k is longer than that
of its greedy counterpart, but is bounded by the fi-
nite constant k a priori. IGC-k achieves limited
adaptivity through replanning, just as the greedy al-
gorithms.

Submodular Optimization

Submodular optimization is another interesting
idea for IPP, e.g., the NAIVE algorithm (Sec-
tion 2.1). NAIVE requires a submodular function
with the locality property for guaranteed perfor-
mance. It is unclear how to construct such func-
tions for the tasks in our experiments. Instead, we
use an expected version space reduction function to

search for a near-optimal path σ:

fVSR(σ) = 1−
∑
h∈H

(
p(Hσ,h)− p(h)

)
p(h),

where Hσ,h denotes the set of hypotheses with the
same observation as h at every location on σ. Intu-
itively, maximizing fVSR results in a path that max-
imally reduces the set of confounding hypotheses.
If a path σ always eliminates all confounding hy-
potheses, then p(Hσ,h) = p(h) for all h ∈ H , and
fVSR(σ) = 1. The function fVSR is submodular,
but may not satisfy the locality property required
by NAIVE.

Finding a minimum-cost path σ such that
fvsr(σ) = 1 is a minimum-cost submodular cov-
erage problem. To solve it, we use the greedy
polymatroid Steiner algorithm (Calinescu and Ze-
likovsky, 2005). Although both submodular opti-
mization and RAId make use of the polymatroid
Steiner algorithm (group Steiner algorithm is a spe-
cial case), they differ in their objectives. Submod-
ular optimization searches for an open-loop plan,
i.e., a path that maximizes fVSR. It does not con-
sider future observations during planning and is
nonadaptive.

There are two ways to execute the computed
path. One is to have the robot traverse every lo-
cation on the path until the end. Alternatively,
NAIVE replans in every step. It plans a path, but
the robot visits only the first location on the path.
The process then repeats. We follow NAIVE’s ap-
proach: it is more adaptive, but has a higher compu-
tational cost. We call the resulting algorithm non-
adaptive hypothesis identification with replanning
(NAId-Replan).

An alternative way of solving the minimum-
cost submodular coverage problem is the recursive
greedy algorithm (Chekuri and Pal, 2005) used in

12

(Singh et al., 2009b). We implemented this algo-
rithm, but found it too slow to be practical for our
tasks.

In summary, NAId-Replan is nonmyopic. It
shares the same basic idea as RAId, but performs
nonadaptive planning. It achieves limited adaptiv-
ity through replanning. NAId-Replan is also related
to NAIVE. It performs submodular optimization,
but the submodular function used does not possess
the locality property required by NAIVE for theo-
retical performance guarantee.

We implemented all algorithms in the Clojure
language and compared their performance on a set
of tasks in simulation. For each task, we ran the al-
gorithms on every hypothesis in H and calculated
the average policy cost weighted by the prior proba-
bilities. The running times were obtained on a com-
puter server with an Intel Xeon 2.4GHz processor.

5.2 Results

Overall, RAId obtains the best or nearly the best
policies in all tasks in our experiments, according
to their average policy costs (Table 2). The other
algorithms may perform well in some tasks, but
very poorly in others. While RAId has performance
guarantees, it will be not surprising for greedy al-
gorithm to outperform RAId on some problems due
to the approximation factors in the performance
bound. In general, it is difficult to tell the effective-
ness of an algorithm in advance. As IGC is easy to
implement, one could try it as a first approach for
the problem of interest.

While the average policy cost is our main perfor-
mance measure, we also report the total planning
time for completeness (Table 3). RAId is slower
that the greedy algorithms. This is expected, as
greedy algorithms perform only short-term plan-
ning. RAId are much faster than IGC-2 and NAId-
Replan, which both perform longer-term planning.

Although our implementation is not optimized as
a result of the implementation language, the run-
ning times, which are on the order of seconds for
these moderate-scale tasks, are useful for a range
of online robot planning tasks.

bn s2n

b0

b1
b2b3

b4

b5

b6 . . .
bn−1

1

s0

s1
s2 s3

s4

s5

s6s2n−1
. . .

1
d

Figure 4: The 2-star graph.

2-Star Graph

We start with a simple example to gain some un-
derstanding of the key issues. There are a total of
2n possible hypotheses H = {0, 1, 2, . . . , 2n − 1},
with equal probability of occurring. Each hypothe-
sis h ∈ H is coded in its binary representation.

To identify the true hypothesis, the robot visits
the nodes in a graph consisting of two connected
stars (Fig. 4). One star has center bn and n periph-
eral nodes b0, b2, . . . , bn−1. The other star has cen-
ter s2n and 2n peripheral nodes s0, s1, . . . , s2n−1.
There is an edge connecting the two centers nodes,
with edge-weight d. The weight of an edge be-
tween a center and a connected peripheral node is
1. The setX contains only the peripheral nodes and
not the two centers, bn and s2n , which serve only
the purpose of connecting the peripheral nodes.
The robot is initially located at s2n .

At each node bi in X , the robot receives obser-
vation 1 if the ith bit of the true hypothesis h is 1,
and receives 0 otherwise. At each node si inX , the
robot receives observation 1 if h = i, and receives 0
otherwise. Clearly the b-nodes provide much more
informative observations than the s-nodes. Visiting
b-nodes is similar to binary search, while visiting
s-nodes is similar to linear search. Since the robot
starts at s2n , the main issue is to decide whether to
pay the high cost of traversing the inter-star edge in
order to benefit from the more informative obser-
vations at the b-nodes. Unfortunately, even in this
very simple example, the issue cannot be resolved
locally in a greedy manner.

In this experiment, the two nonmyopic algo-
rithms, RAId and NAId-Replan, consistently ob-

13

Table 2: Average cost of a computed policy over all hypotheses.

Cost
RAId IG IGC IGC-2 NAId-Replan

2-Star (d=10, n=5) 19.0 25.3 32.9 33.9 19.0
2-Star (d=10, n=6) 21.0 27.9 22.3 52.5 21.0
2-Star (d=53, n=6) 65.0 102.1 62.0 68.9 78.8
2-Star (d=53, n=7) 66.0 102.4 127.4 118.5 66.0
2-Star (d=53, n=8) 68.0 100.9 257.7 258.7 68.0
Adaptive 2-Star 73.0 84.3 127.8 132.2 136.2
Grasping 562.8 2822.9 839.9 775.1 597.3
UAV Search 83.6 97.2 142.7 133.6 151.4

Table 3: Average total planning time, excluding the time for plan execution.

Time (seconds)
RAId IG IGC IGC-2 NAId-Replan

2-Star (d=10, n=5) 0.5 0.0 0.0 1.6 7.8
2-Star (d=10, n=6) 1.4 0.1 0.1 15.3 68.6
2-Star (d=53, n=6) 1.3 0.1 0.8 16.9 1045.4
2-Star (d=53, n=7) 5.2 0.4 5.6 3.3 684.2
2-Star (d=53, n=8) 22.6 1.4 3.4 4305.5 8415.7
Adaptive 2-Star 3.3 0.2 3.4 417.5 10290.6
Grasping 22.9 2.4 4.1 88.7 4523.5
UAV Search 25.5 0.5 2.5 157.4 16753.5

x1 x2 x3

x4

x5x6x7

Figure 5: Grasp the cup with a handle. The figure shows the side view (left) and the top view (right) of the
same robot configuration with the robot hand on the right side of the table.

14

tain good policies (Table 2).
The greedy algorithms do not perform as well.

Curiously IG sometimes outperforms IGC. This is,
however, coincidence. By completely ignoring the
movement cost, IG naturally moves to the more in-
formative b-nodes. IGC reasons about cost, but it
is unable to decide optimally whether to jump to
b-nodes or stay on s-nodes. In the two instances
with d = 10, the optimal policy stays with the s-
nodes when n = 5; it jumps to the b-nodes when
n = 6. IGC always moves to the b-nodes, simply
because the movement cost is low. Hence, IGC un-
derperforms when n = 5. In the instances with
d = 53, IGC is again misled by the greedy lo-
cal analysis and decides to stay at the s-nodes, be-
cause it is cheaper to reach them. This is optimal
when n = 6, but the performance degrades quickly
when n = 7 or 8. In fact, IGC’s regret, measured
against the optimal policy, increases exponentially,
as n grows.

Compared with the greedy algorithms, IGC-2
has longer planning horizon. Although it takes
more computational time, IGC-2 fails to obtain bet-
ter policies. It seems that a horizon of 2 is still in-
sufficient for the tasks here.

It is somewhat surprising that the optimal poli-
cies for our 2-star graph instances are in fact non-
adaptive. Intuitively the optimal policy would ei-
ther (i) always stay on the s-nodes or (ii) jump
to the b-nodes and stay there, depending on the d
and n values, until the true hypothesis is identified.
The traversal does not depend on the observations
received, and adaptivity is not required. This is
confirmed by examining the results computed by
RAId. The nonadaptive optimal policies explain
why RAId and NAId-Replan achieve comparable
performance.

Adaptive 2-Star Graph

To better understand the issue of adaptivity, let us
now modify the 2-star graph so that the optimal
policy is adaptive. For i = 0, 1, . . . , n − 1, re-
place each peripheral node bi in the 2-star graph
by m copies, bi,0, bi,1, . . . bi,m−1, each connected
to the center bn by an edge of weight 1. For each i,

only one of them copies is informative. A function
g(h, i) specifies the index of the informative node
for every h ∈ H and i ∈ [0, n− 1]. At an informa-
tive node bi,j , the observation provides two values:
the binary value of the ith bit of h and the index
of the informative node for the next bit, g(h, i+ 1).
At an uninformative node, the observation provides
no information. With this modification, an optimal
policy must locate the informative b-nodes based
on the observation received.

With suitable d and n values, an optimal policy
visits b0,0, b0,1, b0,2, . . . until reaching the first in-
formative node. It then uses the information from
the received observation to move to the next infor-
mative node and so on. This is clearly an adap-
tive policy. A nonadaptive policy cannot change its
behavior based on the observation received and is
suboptimal.

This example is constructed, but not necessarily
artificial. The basic idea is that each informative
node contains a “map” that points to the next loca-
tion of interest.

In the experiment, d = 53, n = 7, and m =
5. The function g is randomly generated, but re-
mains fixed for all runs. RAId significantly outper-
forms all of IGC, IGC-2, and NAId-Replan. Al-
though NAId-Replan achieves some level of adap-
tivity through replanning, it is inadequate.

Grasping a Cup

There are two cups on the table, one with a handle
and one without. A robot arm needs to lift the cup
with a handle by grasping on the handle (Fig. 5).
Using an external camera placed on the left side of
the table, the robot can accurately sense the posi-
tions of the two cups. However, due to occlusion, it
is uncertain which cup has a handle and where the
handle is.

Each hypothesis (κ, θ) has two parameters: κ is a
binary value that indicates which cup has a handle,
and θ is the cup’s orientation, which determines the
handle location. The handle faces away from the
external camera. So those hypotheses have higher
prior probabilities.

The robot arm has a single-beam laser range

15

finder mounted at its the wrist. The range finder
reports the (discretized) distance to the nearest ob-
ject in the direction that the range finder is facing.

We sample seven wrist positions x1, x2, . . . , x7
around the cups (Fig. 5). At each position, the robot
can pan the range finder in the plane parallel to the
tabletop. Panning by a fixed amount incurs a cost
of 4. Moving the wrist from one position to another
incurs a higher cost: the distance between the cur-
rent position and the target position, scaled up by a
factor of 15. The robot arm starts at wrist position
x1 on the left side of the table.

RAId achieves the lowest cost in this experi-
ments. Under RAId, the robot moves progressively
from x1 to x7 and pans the range finder at each po-
sition to take observations. This is a good strategy,
because it avoids excessive robot arm movement,
which incurs high cost.

IG performs very poorly, because it completely
ignores the difference in action costs and moves the
robot arm excessively between the various wrist po-
sitions in order to seek sometimes minor additional
information gain. IGC does not perform well ei-
ther. Under IGC, the robot moves to x6 in the first
step, because it expects to see the handle from there
with high probability according to the prior. How-
ever, with small probability, the cup is oriented so
that the handle is not visible from x6. In this case,
the robot must pay a high cost to travel back to
the other positions. On the average, the aggressive
move to x6 does not pay off. This example clearly
shows the weakness of greedy strategies, which do
not plan multiple steps ahead.

IGC-2 achieves lower cost than IGC, because of
its slightly longer planning horizon, but it is sub-
stantially worse than RAId.

NAId-Replan achieves comparable, but slightly
worse result than RAId. NAId-Replan is nonmy-
opic. It is also adaptive, to a limited extent. We
suspect that similar to the 2-star graph, adaptivity
has limited benefit for this task, but there is no easy
way to verify this.

UAV Search

This is the example described in Section 3. One
may think that the optimal strategy is for the UAV
to rise to the high altitude, search and locate the
target in a 3 × 3 area, and finally descend to the
low altitude in order to localize the target precisely.
RAId, however, does not always do this, because
the cost of descending is high. Fig. 2 shows a sam-
ple run of RAId. After identifying the 3 × 3 area,
the UAV stays at the high altitude. It moves around
in the neighborhood and fuses the observations re-
ceived to localize the target precisely without de-
scending.

IGC does not perform well, again because it does
not plan multiple steps ahead. It fails to recog-
nize that although the cost of climbing to the high
altitude seems high in one step, the cost can be
amortized over many future high-altitude observa-
tions, which are more informative. Under IGC,
the UAV always stays on the low altitude and does
not climb up. The result does not improve much
even with 2-step lookahead in IGC-2. Under IGC-
2, the UAV climbs up only occasionally in some
instances. NAId-Replan does not perform well, ei-
ther. Replanning does not provide sufficent adap-
tivity for this task.

6 Noisy Observations

Although RAId is designed for noiseless observa-
tions, we now describe a simple extension, Noisy
RAId, to handle noisy observations. Our strategy
is first to create a noiseless IPP problem I ′ =
(X, d,H ′, ρ′, O,Z ′, r) from the original noisy one
I = (X, d,H, ρ,O,Z, r), by associating a hypoth-
esis with observations. For noiseless observations,
each hypothesis h has a unique observation vec-
tor (o1, o2, . . . , o|X|), where Zxi(h, oxi) = 1 for
each location xi ∈ X . This one-to-one relation-
ship allows us to represent a hypothesis by its as-
sociated observation vector. The hypothesis space
H is then simply a set of points in O|X|. For noisy
observations, the one-to-one relationship no longer
holds, but the intuition of associating hypotheses

16

with their observation vectors remains valid.
Formally we set H ′ = O|X|. For a hypothe-

sis h′ = (o1, o2, . . . , o|X|) in H ′, the prior prob-
ability of h′ is the probability of observing h′

if the robot visits all locations in X: ρ′(h′) =∑
h∈H ρ(h)

∏|X|
i=1 Zxi(h, oi). Finally, the observa-

tion function Z ′xi(h
′, o) = 1 if o = oi.

Noisy RAId applies RAId to I ′ with three
changes:

• For computational efficiency, we sample a set
of n hypotheses fromH ′ in each recursive step
of RAId and use it an approximate representa-
tion of H ′.

• Although I is transformed into I ′, our goal
is still to acquire information on the original
hypothesis space H . We maintain a probabil-
ity distribution over H . Initially, b = ρ. Be-
cause of noise, we cannot use an observation
to eliminate a hypothesis h ∈ H , but we can
update their probabilities using the Bayes rule.
Suppose that the robot receives a new observa-
tion o at location x. We replace Algorithm 1,
line 15 with

b(h)← η Zx(h, o)b(h) for every h ∈ H,

where η is a normalization constant.

• Finally, we terminate RAId if the most likely
hypothesis h∗ = arg maxh∈H b(h) has proba-
bility greater than or equal to a given constant
γ ∈ (0, 1]).

Under the assumption of noiseless observations,
Noisy RAId reverts back RAId. To see this, note
that in the first change, we may exhaustively sam-
ple every hypothesis in H and make H ′ = H .
In the second change, Zx(h, o) is either 1 or 0.
Bayesian update is then equivalent to hypothesis
elimination. In the third change, we set γ = 1.

We performed preliminary experiments to evalu-
ate this idea on the UAV Search task (Section 5.2)
with two different noise levels for the high-altitude
sensor. The termination condition γ was set to 0.99.

Table 4: The performance of Noisy RAId on UAV
Search with noisy observations. Noise level σ
means that the high-altitude sensor reports a false
observation with probability σ, and n is the num-
ber of samples.

Noise Cost
n = 128 n = 192 n = 320

0.01 88.5 94.3 112.3
0.05 133.8 133.2 143.7

Table 5: The average total planning time of Noisy
RAId on UAV Search with noisy observations.

Noise Time (seconds)
n = 128 n = 192 n = 320

0.01 20.8 28.8 40.7
0.05 44.1 52.1 55.7

We evaluated multiple settings with different num-
bers of samples. For each setting, we run 200 trials
and averaged performance statistics. The results,
reported in Tables 4 and 5, are promising. Al-
though the size of H ′ is 2128, the algorithm iden-
tifies the true hypothesis correctly for every trial
with only a few hundred samples in all settings.
In other words, it always identifies the correct hy-
pothesis according to the ground truth. In general,
the robot’s travel cost increases with noisy obser-
vations, as expected. With more samples, we ex-
pect the algorithm to compute a better policy with
lower cost. However, the trend in the data is not
definitive. Either a small number of samples is suf-
ficient in this case to produce a near-optimal pol-
icy or a much larger number of samples is needed
for significant improvement. Further investigation
is required. The average total planning time scales
roughly linearly with the number samples taken.

7 Conclusion

RAId is a new algorithm for the NP-hard informa-
tive path planning problem. We show that it com-
putes a polylogarithmic approximation to the op-
timal solution in polynomial time, when the robot

17

travels in a metric space. Furthermore, our exper-
iments demonstrate that RAId is effective in prac-
tice and provides good approximate solutions for
several distinct robot planning tasks. Although
RAId is designed primarily for noiseless observa-
tions, a simple extension allows it to handle some
tasks with noisy observations. However, the the-
oretical guarantee for RAId no longer holds when
the observations are noisy.

To expand the use of RAId, there are two main
challenges. One is to develop a principled and
practical treatment of noisy observations with per-
formance guarantee, possibly by borrowing ideas
from Bayesian active learning (Golovin et al.,
2010). The other is scalability. Currently, RAId
uses a “flat” representation, which explicitly enu-
merates every possible hypothesis. Hierarchical or
factored representations will be needed in order to
scale up to very large hypothesis spaces.

Acknowledgments. This work is supported in part
by A*STAR grant R-252-506-001-305, MoE AcRF
grant 2010-T2-2-071, National Research Foundation
Singapore through the SMART IRG research program
(Subaward Agreement No. 41), and the US Air Force
Research Laboratory under agreement number FA2386-
12-1-4031.

We thank the anonymous reviewers whose comments
helped considerably in improving the presentation of
this work.

References
G. Calinescu and A. Zelikovsky. The polymatroid

Steiner problems. J. Combinatorial Optimization, 9
(3):281–294, 2005.

V.T. Chakaravarthy, V. Pandit, S. Roy, P. Awasthi, and
M. Mohania. Decision trees for entity identification:
approximation algorithms and hardness results. In
Proc. ACM Symp. on Principles of Database Systems,
pages 53–62, 2007.

C. Chekuri and M. Pal. A recursive greedy algorithm
for walks in directed graphs. In Proc. IEEE Symp. on
Foundations of Computer Science, pages 245–253,
2005.

N. Christofides. Worst-case analysis of a new heuristic
for the travelling salesman problem. Technical Re-
port 388, Graduate School of Industrial Administra-
tion, Carnegie Mellon University, 1976.

B.C. Dean, M.X. Goemans, and J. Vondrdk. Approxi-
mating the stochastic knapsack problem: The benefit
of adaptivity. In Proc. IEEE Symp. on Foundations of
Computer Science, pages 208–217, 2004.

H.J.S. Feder, J.J Leonard, and C.M. Smith. Adaptive
mobile robot navigation and mapping. Int. J. Robotics
Research, 18(7):650–668, 1999.

D. Fox, W. Burgard, and S. Thrun. Active Markov lo-
calization for mobile robots. Robotics & Autonomous
Systems, 25(3):195–207, 1998.

D. Golovin and A. Krause. Adaptive submodular-
ity: Theory and applications in active learning and
stochastic optimization. J. Artificial Intelligence Re-
search, 42(1):427–486, 2011.

D. Golovin, A. Krause, and D. Ray. Near-optimal
bayesian active learning with noisy observations. In
Advances in Neural Information Processing Systems
(NIPS), pages 766–774. 2010.

A. Gupta, V. Nagarajan, and R Ravi. Approximation
algorithms for optimal decision trees and adaptive
TSP problems. In Proc. Int. Conf. on Automata,
Languages & Programming, volume 6198 of LNCS,
pages 690–701. Springer, 2010.

G. Hollinger and G. Sukhatme. Sampling-based motion
planning for robotic information gathering. In Proc.
Robotics: Science and Systems, 2013.

G. Hollinger, S. Singh, J. Djugash, and A. Kehagias.
Efficient multi-robot search for a moving target. Int.
J. Robotics Research, 28(2):201–219, 2009.

G. Hollinger, U. Mitra, and G. Sukhatme. Active clas-
sification: Theory and application to underwater in-
spection. In Proc. Int. Symp. on Robotics Research.
Springer, 2011.

G. Hollinger, B. Englot, F.S. Hover, U. Mitra, and G.S.
Sukhatme. Active planning for underwater inspec-
tion and the benefit of adaptivity. Int. J. Robotics Re-
search, 32(1):3–18, 2013.

S. Javdani, M. Klingensmith, J.A. Bagnell, N. Pollard,
and S.S. Srinivasa. Efficient touch based localization
through submodularity. In Proc. IEEE Int. Conf. on
Robotics & Automation, 2013.

18

S. Javdani, Y. Chen, A. Karbasi, A. Krause, J.A. Bag-
nell, and S. Srinivasa. Near Optimal Bayesian Active
Learning for Decision Making. In Proc. of Int. Conf.
on Artificial Intelligence & Statistics, 2014.

L.P. Kaelbling, M.L. Littman, and A.R. Cassandra.
Planning and acting in partially observable stochas-
tic domains. Artificial Intelligence, 101(1–2):99–134,
1998.

A. Krause and C. Guestrin. Optimal value of informa-
tion in graphical models. J. Artificial Intelligence Re-
search, 35(1):557–591, 2009.

H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP:
Efficient point-based POMDP planning by approxi-
mating optimally reachable belief spaces. In Proc.
Robotics: Science and Systems, 2008.

R. Nowak. Generalized binary search. In Communi-
cation, Control, and Computing, 2008 46th Annual
Allerton Conference on, pages 568–574, 2008.

J. Pineau, G. Gordon, and S. Thrun. Point-based value
iteration: An anytime algorithm for POMDPs. In
Proc. Int. Jnt. Conf. on Artificial Intelligence, pages
477–484, 2003.

R. Platt Jr, L.P. Kaelbling, T. Lozano-Perez, and
R. Tedrake. Simultaneous localization and grasping
as a belief space control problem. In Proc. Int. Symp.
on Robotics Research, 2011.

A. Singh, A. Krause, C. Guestrin, and W.J. Kaiser. Effi-
cient informative sensing using multiple robots. J. Ar-
tificial Intelligence Research, 34(2):707–755, 2009a.

A. Singh, A. Krause, and W.J. Kaiser. Nonmyopic adap-
tive informative path planning for multiple robots. In
Proc. Int. Jnt. Conf. on Artificial Intelligence, 2009b.

T. Smith and R. Simmons. Point-based POMDP algo-
rithms: Improved analysis and implementation. In
Proc. Uncertainty in Artificial Intelligence, 2005.

A. X. Zheng, I. Rish, and A. Beygelzimer. Efficient Test
Selection in Active Diagnosis via Entropy Approxi-
mation. Proc. Uncertainty in Artificial Intelligence,
2005.

19

