
Journal of Machine Learning Research 15 (2014) 981-1009 Submitted 10/12; Revised 9/13; Published 3/14

Conditional Random Field with High-order Dependencies for
Sequence Labeling and Segmentation

Nguyen Viet Cuong nvcuong@comp.nus.edu.sg
Nan Ye yenan@comp.nus.edu.sg
Wee Sun Lee leews@comp.nus.edu.sg
Department of Computer Science
National University of Singapore
13 Computing Drive
Singapore 117417

Hai Leong Chieu chaileon@dso.org.sg

DSO National Laboratories

20 Science Park Drive

Singapore 118230

Editor: Kevin Murphy

Abstract

Dependencies among neighboring labels in a sequence are important sources of informa-
tion for sequence labeling and segmentation. However, only first-order dependencies, which
are dependencies between adjacent labels or segments, are commonly exploited in practice
because of the high computational complexity of typical inference algorithms when longer
distance dependencies are taken into account. In this paper, we give efficient inference
algorithms to handle high-order dependencies between labels or segments in conditional
random fields, under the assumption that the number of distinct label patterns used in the
features is small. This leads to efficient learning algorithms for these conditional random
fields. We show experimentally that exploiting high-order dependencies can lead to sub-
stantial performance improvements for some problems, and we discuss conditions under
which high-order features can be effective.

Keywords: conditional random field, semi-Markov conditional random field, high-order
feature, sequence labeling, segmentation, label sparsity

1. Introduction

Many problems can be cast as the problem of labeling or segmenting a sequence of observa-
tions. Examples include natural language processing tasks, such as part-of-speech tagging
(Lafferty et al., 2001), phrase chunking (Sha and Pereira, 2003), named entity recognition
(McCallum and Li, 2003), and tasks in bioinformatics such as gene prediction (Culotta
et al., 2005) and RNA secondary structure prediction (Durbin, 1998).

Conditional random field (CRF) (Lafferty et al., 2001) is a discriminative, undirected
Markov model which represents a conditional probability distribution of a structured out-
put variable y given an observation x. Conditional random fields have been successfully
applied in sequence labeling and segmentation. Compared to generative models such as
hidden Markov models (Rabiner, 1989), CRFs model only the conditional distribution of y

c©2014 Nguyen Viet Cuong, Nan Ye, Wee Sun Lee and Hai Leong Chieu.

Cuong, Ye, Lee and Chieu

Type of CRF Feature example

First-order (Lafferty et al., 2001) author year
Semi-CRF (Sarawagi and Cohen, 2004) author+ year+
High-order (Ye et al., 2009, this paper) author year title title
High-order semi-CRF (this paper) author+ year+ title+

Table 1: Examples of the information that can be captured by different types of CRFs for
the bibliography extraction task. The x+ symbol represents a segment of “1 or
more” labels of class x.

given x, and do not model the observations x. Hence, CRFs can be used to encode complex
dependencies of y on x without significantly increasing the inference and learning costs.
However, inference for CRFs is NP-hard in general (Istrail, 2000), and most CRFs have
been restricted to consider very local dependencies. Examples include the linear-chain CRF
which considers dependencies between at most two adjacent labels (Lafferty et al., 2001)
and the first-order semi-Markov CRF (semi-CRF) which considers dependencies between at
most two adjacent segments (Sarawagi and Cohen, 2004), where a segment is a contiguous
sequence of identical labels. In linear-chain CRF and semi-CRF, a kth-order feature is a
feature that encodes the dependency between x and (k+ 1) consecutive labels or segments.
Existing inference algorithms for CRFs such as the Viterbi and the forward-backward algo-
rithms can only handle up to first-order features, and inference algorithms for semi-CRFs
(Sarawagi and Cohen, 2004) can only handle up to first-order features between segments.
These algorithms can be easily generalized to handle high-order features, but will require
time exponential in k. In addition, a general inference algorithm such as the clique tree al-
gorithm (Huang and Darwiche, 1996) also requires time exponential in k to handle kth-order
features (k > 1).

In this paper, we exploit a form of sparsity that is often observed in real data to design
efficient algorithms for inference and learning with high-order label or segment dependencies.
Our algorithms are presented for high-order semi-CRFs in its most general form. Algorithms
for high-order CRFs are obtained by restricting the segment lengths to 1, and algorithms
for linear-chain CRFs and first-order semi-CRFs are obtained by restricting the maximum
order to 1.

We use a bibliography extraction task in Table 1 to show examples of features that can
be used with different classes of CRFs. In this task, different fields are often arranged in
a fixed order, hence using high-order features can be advantageous. The sparsity property
that we exploit is the following label pattern sparsity: the number of observed sequences
of k consecutive segment labels (e.g., “author+ year+ title+” is one such sequence where
k = 3) is much smaller than nk, where n is the number of distinct labels. This assumption
often holds in real problems. Under this assumption, we give algorithms for computing
marginals, partition functions, and Viterbi parses for high-order semi-CRFs. The partition
function and the marginals can be used to efficiently compute the log-likelihood and its gra-
dient. In turn, the log-likelihood and its gradient can be used with quasi-Newton methods
to efficiently find the maximum likelihood parameters (Sha and Pereira, 2003). The algo-

982

CRF with High-order Dependencies for Sequence Labeling and Segmentation

rithm for Viterbi parsing can also be used with cutting plane methods to train max-margin
solutions for sequence labeling problems in polynomial time (Tsochantaridis et al., 2004).
Our inference and learning algorithms run in time polynomial in the maximum segment
length as well as the number and length of the label patterns that the features depend on.

We demonstrate that modeling high-order dependencies can lead to significant perfor-
mance improvements in various problems. In our first set of experiments, we focus on
high-order CRFs and demonstrate that using high-order features can improve performance
in sequence labeling problems. We show that in handwriting recognition, using even sim-
ple high-order indicator features improves performance over using linear-chain CRFs, and
significant performance improvement is observed when the maximum order of the indica-
tor features is increased. We also use a synthetic data set to discuss the conditions under
which high-order features can be helpful. In our second set of experiments, we demonstrate
that using high-order semi-Markov features can be helpful in some applications. More
specifically, we show that high-order semi-CRFs outperform high-order CRFs and first-
order semi-CRFs on three segmentation tasks: relation argument detection, punctuation
prediction, and bibliography extraction.1

2. Algorithms for High-order Dependencies

Our algorithms are presented for high-order semi-CRFs in its most general form. These al-
gorithms generalize the algorithms for linear-chain CRFs and first-order semi-CRFs, which
are special cases of our algorithms when the maximum order is set to 1. They also generalize
the algorithms for high-order CRFs (Ye et al., 2009), which are special cases of our algo-
rithms when the segment lengths are set to 1. Thus, only the general algorithms described
in this section need to be implemented to handle all these different cases.2

2.1 High-order Semi-CRFs

Let Y = {1, 2, . . . , n} denote the set of distinct labels, x = (x1, . . . , x|x|) denote an input
sequence of length |x|, and xa:b denote the sub-sequence (xa, . . . , xb). A segment of x is de-
fined as a triplet (u, v, y), where y is the common label of the segment xu:v. A segmentation
for xa:b is a segment sequence s = (s1, . . . , sp), with sj = (uj , vj , yj) such that uj+1 = vj + 1
for all j, u1 = a and vp = b. A segmentation for xa:b is a partial segmentation for x.

A semi-CRF defines a conditional distribution over all possible segmentations s of an
input sequence x such that

P (s|x) =
1

Zx
exp(

m∑
i=1

|s|∑
t=1

λifi(x, s, t))

1. This paper is an extended version of a previous paper (Ye et al., 2009) published in NIPS 2009. Some
of the additional material presented here has also been presented as an abstract (Nguyen et al., 2011)
at the ICML Workshop on Structured Sparsity: Learning and Inference, 2011. The source code for our
algorithms is available at https://github.com/nvcuong/HOSemiCRF.

2. In an earlier paper (Ye et al., 2009), we give algorithms for high-order CRFs which are similar to those
presented here. The main difference lies in the backward algorithm. The version presented here is
a conditional version which uses properties of labels before the suffix labels being considered, making
extension to the high-order semi-Markov features simpler.

983

https://github.com/nvcuong/HOSemiCRF

Cuong, Ye, Lee and Chieu

where Zx =
∑

s exp(
∑

i

∑
t λifi(x, s, t)) is the partition function with the summation over

all segmentations of x, and {fi(x, s, t)}1≤i≤m is the set of semi-Markov features, each of
which has a corresponding weight λi.

We shall work with features of the following form

fi(x, s, t) =

{
gi(x, ut, vt) if yt−|zi|+1 . . . yt = zi

0 otherwise
(1)

where zi ∈ Y |zi| is a segment label pattern associated with fi, and s is a segmentation or a
partial segmentation for x. The function fi(x, s, t) depends on the t-th segment as well as
the label pattern zi and is said to be of order |zi| − 1. The order of the resulting semi-CRF
is the maximal order of the features.

We will give exact inference algorithms for high-order semi-CRFs in the following sec-
tions. As in exact inference algorithms for linear-chain CRFs and semi-CRFs, our algorithms
perform forward and backward passes to obtain the necessary information for inference.

2.2 Notations

Without loss of generality, let Z = {z1, . . . , zM} be the segment label pattern set, that is,
the set of distinct segment label patterns of the m features (M ≤ m). For our forward
algorithm, the forward-state set P = {p1, . . . ,p|P|} consists of distinct elements in the set
of all the labels and proper prefixes (including the empty sequence ε) of the segment label
patterns. Thus, P = Y ∪ {zj1:k}0≤k<|zj |,1≤j≤M . For the backward algorithm, the backward-

state set S = {s1, . . . , s|S|} consists of distinct elements in PY, that is, the set consisting of
elements in P concatenated with a label in Y.

Transitions between states in our algorithm are defined using the suffix relationships
between them. We use z1 ≤s z2 to denote that z1 is a suffix of z2. The longest suffix
relation on a set A is denoted by z1 ≤sA z2. This relation holds true if and only if z1, among
all the elements of A, is the longest suffix of z2. More formally, z1 ≤sA z2 if and only if
z1 ∈ A and z1 ≤s z2 and ∀z ∈ A, z ≤s z2 ⇒ z ≤s z1.

2.3 Training

Given a training set T , we estimate the model parameters ~λ = (λ1, . . . , λm) by maximizing
the regularized log-likelihood function

LT (~λ) =
∑

(x,s)∈T logP (s|x)−
∑m

i=1
λ2i

2σ2
reg

where σreg is a regularization parameter. This function is convex, and thus can be maximized
using any convex optimization algorithm. In our implementation, we use the L-BFGS
method (Liu and Nocedal, 1989). The method requires computation of the value of LT (~λ)
and its partial derivatives

∂LT
∂λi

= Ẽ(fi)− E(fi)−
λi
σ2reg

where Ẽ(fi) =
∑

(x,s)∈T
∑

t fi(x, s, t) is the empirical feature sum of the feature fi, and

E(fi) =
∑

(x,s)∈T
∑

s′ P (s′|x)
∑

t fi(x, s
′, t) is the expected feature sum of fi. To compute

984

CRF with High-order Dependencies for Sequence Labeling and Segmentation

LT (~λ) and its partial derivatives, we need to efficiently compute the partition function Zx

and the expected feature sum of fi’s.

2.3.1 Partition Function

For any pi ∈ P, let pj,pi be the set of all segmentations for x1:j whose segment label
sequences contain pi as the longest suffix among all elements in P. We define the forward
variables αx(j,pi) as follows

αx(j,pi) =
∑

s∈pj,pi

exp(
∑
k

∑
t

λkfk(x, s, t)).

The above definition of the forward variable αx is the same as the usual definition of for-
ward variable for first-order semi-CRFs when only zeroth-order and first-order semi-Markov
features are used. The forward variables can be computed by dynamic programming:

αx(j,pi) =

L−1∑
d=0

∑
(pk,y):pi≤s

Pp
ky

Ψx(j − d, j,pky)αx(j − d− 1,pk)

where L is the longest possible length of a segment,
∑

i:Pred(i) denotes summation over
all i’s satisfying the predicate Pred(i), and Ψx(u, v,p) counts the contribution of features
activated when there is a segment label sequence p with its last segment having boundary
(u, v). The factor Ψx(u, v,p) is defined as

Ψx(u, v,p) = exp(
∑

i:zi≤sp

λigi(x, u, v)).

The correctness of the above recurrence is shown in Appendix A. The partition function
can be computed from the forward variables by

Zx =
∑
i

αx(|x|,pi).

2.3.2 Expected Feature Sum

Let sj be the set of all partial segmentations for xj:|x|. For s ∈ sj and sk ∈ S, we define for

each feature fi a conditional feature function fi(x, s, t|sk), which takes the value of fi(x, s, t)
when sk is the longest suffix (in S) of the segment label sequence for x1:j−1. Otherwise, its
value is 0. For example, if s = (s1, . . . , sp) ∈ sj and s1 = (u1, v1, y1), then

fi(x, s, 1|sk) =

{
gi(x, u1, v1) if zi ≤s sky1
0 otherwise

.

For each si ∈ S, we define the backward variables βx(j, si) as follows

βx(j, si) =
∑
s∈sj

exp(
∑
k

∑
t

λkfk(x, s, t|si)).

985

Cuong, Ye, Lee and Chieu

.

j j+1 j-1 1 2 |x| |x|-1 |x|-2

*si s sj

x

y

Figure 1: An illustration of the backward variable βx(j, si). Each rectangular box corre-
sponds to a segment. The regular expression ∗si means that si is the suffix of the
segment label sequence for x1:j−1. In fact, si is the longest suffix of the segment
label sequence for x1:j−1. The summation in the definition of βx(j, si) is over all
the partial segmentations s of xj:|x|.

Figure 1 gives an illustration of the backward variable βx(j, si). Note that our definition
of βx uses the conditional feature function and does not generalize the usual definitions of
the backward variables in first-order semi-CRFs (Sarawagi and Cohen, 2004) or high-order
CRFs (Ye et al., 2009).

Similar to the case of forward variables, we can compute βx(j, si) by dynamic program-
ming:

βx(j, si) =

L−1∑
d=0

∑
(sk,y):sk≤s

Ss
iy

Ψx(j, j + d, siy)βx(j + d+ 1, sk).

In Appendix A, we show the correctness proof for the recurrence. We can now compute
the marginals P (u, v, z|x) for each z ∈ Z and u ≤ v, where P (u, v, z|x) denotes the proba-
bility that a segmentation of x contains label pattern z and has (u, v) as z’s last segment
boundaries. These marginals can be computed by

P (u, v, z|x) =
1

Zx

∑
(pi,y):z≤spiy

αx(u− 1,pi)Ψx(u, v,piy)βx(v + 1,piy).

We compute the expected feature sum for fi by

E(fi) =
∑

(x,s)∈T

∑
u≤v

P (u, v, zi|x)gi(x, u, v).

In Appendix B, we give an example to illustrate our algorithms for the second-order CRF
model.

Using the conditional feature function to define the backward variables βx can help to
simplify the computation of the marginals for high-order semi-CRF models. If we directly
generalized the usual definition of the backward variables (Ye et al., 2009) to high-order
semi-CRFs (which can be done easily), computing the marginals using these backward vari-
ables would be complicated. The main reason is that the semi-Markov features in Equation

986

CRF with High-order Dependencies for Sequence Labeling and Segmentation

(1) only know the correct position (ut, vt) of the last segment. In other words, although
they know the label sequence of the previous segments, the features do not know the actual
boundaries of these segments. So, to compute the marginal P (u, v, z|x) using the usual
extension of the backward variables, we need to sum over all possible segmentations near
(u, v) that contain (u, v) as a segment. This may result in an algorithm that is exponential
in the order of the semi-CRFs. Note that this problem does not occur for high-order CRFs
(Ye et al., 2009) since in these models, the segment length is 1 and thus we can always
determine the boundaries of the segments.

2.4 Decoding

We compute the most likely segmentation for high-order semi-CRF by a Viterbi-like decod-
ing algorithm. It is the same as the forward algorithm with the sum operator replaced by
the max operator. Define

δx(j,pi) = max
s∈pj,pi

exp(
∑
k

∑
t

λkfk(x, s, t)).

These variables can be computed by

δx(j,pi) = max
(d,pk,y):pi≤s

Pp
ky

Ψx(j − d, j,pky)δx(j − d− 1,pk).

Note that the value of d is inclusively between 0 and L−1 in the above equation. The most
likely segmentation can be obtained using backtracking from maxi δx(|x|,pi).

2.5 Time Complexity

We now give rough time bounds for the above algorithm. It is important to note that the
bounds given in this part are pessimistic, and the computation can be done more quickly in
practice. For simplicity, we assume that the features gi(·, ·, ·) can be computed in O(1) time
for all i ∈ {1, 2, . . . ,m} and the algorithm would pre-compute all the values of Ψx before
doing the forward and backward passes. This assumption often holds for features used in
practice, although one can define gi’s which are arbitrarily difficult to compute.

Since the total number of different patterns of the last argument of Ψx is O(|S||Y|) =
O(|P||Y|2), the time complexity to pre-compute all the values of Ψx in the worst case is
O(mT 2|P||Y|2) = O(mn2T 2|P|), where T is the maximum length of an input sequence.
After pre-computing the values of Ψx, we can compute all the values of αx in O(T 2|Y||P|)
time. Similarly, the time complexity to compute all the values of βx is O(T 2|Y||S|). Then,
with these values, we can compute all the marginal probabilities in O(T 2|Z||P|). Finally,
the time complexity for decoding is O(T 2|Y||P|).

3. Experiments

In this section, we describe experiments comparing CRFs, semi-CRFs, high-order CRFs,
and high-order semi-CRFs. The experiments in Section 3.1 show the advantages of the
high-order CRFs, while those in Section 3.2 show the advantages of the high-order semi-
CRFs.

987

Cuong, Ye, Lee and Chieu

3.1 Experiments with High-order CRFs

The practical feasibility of making use of high-order features based on our algorithm lies
in the observation that the label pattern sparsity assumption often holds. Our algorithm
can be applied to take those high-order features into consideration: high-order features now
form a component that one can play with in feature engineering.

Now, the question is whether high-order features are practically significant. We first use
a synthetic data set to explore conditions under which high-order features can be expected
to help. We then use a handwritten character recognition problem to demonstrate that even
incorporating simple high-order features can lead to impressive performance improvement
on a naturally occurring data set.3

3.1.1 Synthetic Data Generated Using kth-order Markov Model

We randomly generate an order k Markov model with n states s1, . . . , sn as follows. To
increase pattern sparsity, we allow at most r randomly chosen possible next states given the
previous k states. This limits the number of possible label sequences in each length (k+ 1)
segment from nk+1 to nkr. The conditional probabilities of these r next states are generated
by randomly selecting a vector from the uniform distribution over [0, 1]r and normalizing
them. Each state si generates an observation (a1, . . . , am) such that aj follows a Gaussian
distribution with mean µij and standard deviation σ. Each µi,j is independently randomly
generated from the uniform distribution over [0, 1]. In the experiments, we use values of
n = 5, r = 2 and m = 3.

The standard deviation σ controls how much information the observations reveal about
the states. If σ is very small as compared to most µij ’s, then using the observations alone
as features is likely to be good enough to obtain a good classifier of the states; the label
correlations become less important for classification. However, if σ is large, then it is
difficult to distinguish the states based on the observations alone and the label correlations,
particularly those captured by higher order features are likely to be helpful.

We use the current, previous, and next observations, rather than just the current obser-
vation as features, exploiting the conditional probability modeling strength of CRFs. For
higher order features, we simply use all indicator features that appeared in the training
data up to a maximum order. We considered the case k = 2 and k = 3, and varied σ and
the maximum order. We run the experiment with training sets that contain 300, 400, and
500 sequences, and evaluate the models on a test set that contains 500 sequences. All the
sequences are of length 20; each sequence was initialized with a random sequence of length
k and generated using the randomly generated order k Markov model. Training was done
by maximizing the regularized log-likelihood with regularization parameter σreg = 1 in all
experiments in this paper. The experimental results are shown in Figures 2.

Figure 2 shows that the high-order indicator features are useful in all cases. In particular,
we can see that it is beneficial to increase the order of the high-order features when the
underlying model has longer distance correlations. As expected, increasing the order of the
features beyond the order of the underlying model is not helpful. The results also suggest

3. The results given in the earlier version of this work (Ye et al., 2009) are significantly lower than the
results presented here due to a bug in the decoding algorithm. We have fixed the bug and reported the
corrected results in this paper.

988

CRF with High-order Dependencies for Sequence Labeling and Segmentation

86

88

90

92

94

96

98

100

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 2nd-Order Markov Model

Training set size = 300

Sigma=0.01

Sigma=0.05

Sigma=0.10

83

85

87

89

91

93

95

97

99

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 3rd-Order Markov Model

Training set size = 300

Sigma=0.01

Sigma=0.05

Sigma=0.10

86

88

90

92

94

96

98

100

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 2nd-Order Markov Model

Training set size = 400

Sigma=0.01

Sigma=0.05

Sigma=0.10

83

85

87

89

91

93

95

97

99

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 3rd-Order Markov Model

Training set size = 400

Sigma=0.01

Sigma=0.05

Sigma=0.10

86

88

90

92

94

96

98

100

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 2nd-Order Markov Model

Training set size = 500

Sigma=0.01

Sigma=0.05

Sigma=0.10

83

85

87

89

91

93

95

97

99

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 3rd-Order Markov Model

Training set size = 500

Sigma=0.01

Sigma=0.05

Sigma=0.10

Figure 2: Accuracy of high-order CRFs as a function of maximum order on synthetic data
sets.

that in general, if the observations are closely coupled with the states (in the sense that
different states correspond to very different observations), then feature engineering on the
observations is generally enough to perform well, and it is less important to use high-order
features to capture label correlations. On the other hand, when such coupling is not clear, it
becomes important to capture the label correlations, and high-order features can be useful.

We also study the effects of spurious, rare high-order patterns, and show that such
patterns in the training or test set do not significantly impair performance of high-order
CRFs in our experiments. For this purpose, we tabulate the proportion of fourth-order
patterns (i.e., length 5 patterns) exclusive to the training or test sets in Table 2. The
statistics show that around 10% of the patterns are exclusive to the training or test data.
On the other hand, the results in Figure 2 show that when these patterns are used in the
fourth-order model, the performance only drops slightly. Even if we increase the number of
spurious, rare high-order patterns (by reducing the training data size), there is no significant
drop in accuracies for high-order CRFs.

989

Cuong, Ye, Lee and Chieu

Size 300 400 500

Order Train Test Train Test Train Test

2 16/173 13/170 17/175 12/170 17/177 10/170
3 34/393 58/417 37/406 48/417 42/424 35/417

Table 2: Proportions of length 5 patterns exclusive to training and test data where the data
sets are generated by 2nd-order and 3rd-order Markov models. For each proportion,
the denominator shows the number of patterns in the data set, and the numerator
shows the number of patterns exclusive to it. Nearly all of these patterns occur for
less than 5 times (mostly once or twice). Note that the labels are first generated
independently of σ in our data sets, thus the statistics are the same for all σ values.

In practical problems, regularization may work well as a means for avoiding overfitting
spurious high-order features. But this depends on how heavily the training process is
regularized, and some tuning may be needed. For example, for a regularizer like Gaussian

regularizer
∑

i
λ2i

2σ2
reg

, the parameter σreg is often determined using a validation data set or

cross-validation on the training data.

3.1.2 Handwriting Recognition

We used the handwriting recognition data set (Taskar et al., 2004), consisting of around 6100
handwritten words with an average length of around 8 characters. The data was originally
collected by Kassel (1995) from around 150 human subjects. The words were segmented
into characters, and each character was converted into an image of 16 by 8 binary pixels.
In this labeling problem, each xi is the image of a character, and each yi is a lower-case
letter. The experimental setup is the same as that used by Taskar et al. (2004): the data
set was divided into 10 folds with each fold having approximately 600 training and 5500
test examples and the zero-th order features for a character are the pixel values.

For high-order features, we again used all indicator features that appeared in the training
data up to a maximum order. The average accuracies over the 10 folds are shown in Figure 3,
where strong improvements are observed as the maximum order increases. Figure 3 also
shows the number of label patterns, the total training time, and the running time per
iteration of the L-BFGS algorithm (which requires computation of the gradient and value
of the function at each iteration). Both the number of patterns and the running time appear
to grow no more than linearly with the maximum order of the features for this data set.

3.2 Experiments with High-order Semi-CRFs

We now show that high-order semi-CRFs are also practically useful by evaluating their per-
formance on three different sequence labeling tasks: relation argument detection, punctua-
tion prediction in movie transcripts, and bibliography extraction. We compare high-order
semi-CRFs with CRFs of different orders on the same tasks. In our tables, Ck and SCk

990

CRF with High-order Dependencies for Sequence Labeling and Segmentation

76

78

80

82

84

86

88

90

92

94

96

98

1 2 3 4 5
A

cc
u

ra
cy

Maximum Order of Features

Handwritten Character Recognition

0

200

400

600

800

1000

1200

2 3 4 5

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

 Maximum Order of Features

 Number of Patterns for

Character Recognition

0

500

1000

1500

2000

2500

3000

3500

0

10

20

30

40

50

60

70

80

90

2 3 4 5

T
im

e
 (

s)

T
im

e
 (

s)

Maximum Order of Features

Runtimes for Character Recognition Training

Per Iteration Time (Left Axis)

Total Time (Right axis)

Figure 3: Accuracy (top), number of label patterns (bottom left), and running time (bottom
right) as a function of maximum order for the handwriting recognition data set.

refer to kth-order CRF and semi-CRF respectively. We also give the number of segment
label patterns and the running time of high-order semi-CRFs on the tasks.

To test if the results obtained by high-order semi-CRFs are significantly better than
lower order ones in terms of F1-measure, we perform the randomization tests described
by Noreen (1989) and Yeh (2000). In such tests, we shuffle the responses by randomly
reassigning the outputs of two systems we are comparing, and see how likely such a shuffle
produces a difference in the metric of interest (in our case, the F1-measure). An exact
randomization test will iterate through all possible shuffles, but due to the large data sizes,
we use an approximate randomization test where for each comparison, we perform 10000
random shuffles, and we repeat this for 999 times. It can be shown (Noreen, 1989; Yeh, 2000)
that the significance level p is at most p′ = (nc+1)/(nt+1), where nc is the number of trials
in which the difference between the F1-measures is greater than the original difference, and
nt is the total number of iterations (in our case, 999). In Table 4, 7, and 9, we summarize
the p′ obtained in the significance tests. We will comment on these results for each of the
three data sets in the following sections.

991

Cuong, Ye, Lee and Chieu

3.2.1 Relation Argument Detection

In this experiment, we consider the problem of relation argument detection, which identifies
and labels arguments of relations in English sentences. More specifically, we construct the
label sequence for each sentence as follows: If a word in a sentence is the first argument of
a relation, we label it as Arg1. If it is the second argument, we label it as Arg2. If the word
is the first argument of a relation and it is also the second argument of another relation
of the same type, we label it as Arg1Arg2. Otherwise, we label it as O, which means the
word is not part of any relation. For example, in the labeled sentence “Peter/Arg1 is/O
working/O for/O IBM/Arg2 ./O”, Peter and IBM are arguments of a relation.

It is important to note that if a sentence contains many Arg1 ’s and Arg2 ’s, we do
not know which pairs of Arg1 and Arg2 would be the actual arguments of a relation.
Furthermore, the matching of Arg1 ’s and Arg2 ’s is not one-to-one either, since a word
may participate in many different relations of the same type. Thus, to actually extract the
relations in a sentence, we would need a separate classifier to determine which pairs of Arg1
and Arg2 are the true mentions of a relation. In this experiment, however, we only focus
and report on the sentence labeling task.

The relation argument detection problem can be thought of as part of the relation
extraction task, which requires extracting some prespecified relationships between named
entity mentions. For example, if a person works for an organization, then the person and
the organization form an organization-affiliation relation. Previous works on the relation
extraction problem usually involve building a classifier to decide whether two named entity
mentions are the actual arguments of the relation (GuoDong et al., 2005; Zhang et al.,
2006). It may also be beneficial for the classifiers if they can make use of the information
obtained from relation argument detection.

We compared the models on the English portion of the Automatic Content Extraction
(ACE) 2005 corpus (Walker et al., 2006). The corpus contains articles from six source
domains and we group the labeled relations into six types. For the experiment, we trained
a separate tagger for each type of relations. The training set contains 70% of the sentences
from each source domain. The remaining 30% of the sentences are used for testing. Most
sentences do not contain a relation and they make the trained tagger less likely to predict an
argument. Hence, we randomly sampled from these negative examples so that the numbers
of positive and negative examples are the same. We also assumed the manually annotated
named entity mentions are known.

For linear-chain CRF, the zeroth-order features are: surrounding words before and after
the current word and their capitalization patterns; letter n-grams in words; surrounding
named entity mentions, part-of-speeches before and after the current word and their com-
binations. The first-order features are: transitions without any observation, transitions
with the current or previous words or combinations of their capitalization patterns. The
high-order CRFs and semi-CRFs include additional high-order Markov and high-order semi-
Markov transition features.

From the results in Table 3, SC2 gives an improvement of 5.52% on F1 score when
compared to SC1 on average. SC3 further improves the performance of SC2 by 0.75%
F1 score. High-order CRFs show significant improvement on all except for PHYS, which
has arguments located further apart compared to other relations. In Table 4, we see that

992

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Type C1 C2 C3 SC1 SC2 SC3

Part-Whole 38.68 41.41 46.52 38.57 42.56 44.30
Phys 33.24 33.60 35.20 33.35 42.04 42.46

Org-Aff 60.56 63.28 64.93 60.77 63.72 64.86
Gen-Aff 31.00 35.84 40.16 31.19 35.85 38.09
Per-Soc 53.67 58.62 58.31 53.46 57.66 57.07

Art 40.30 43.80 46.35 40.61 49.21 48.78

Average 42.91 46.09 48.58 42.99 48.51 49.26

Table 3: F1 scores of different CRF taggers for relation argument detection on six types of
relations.

C2 C3 SC1 SC2 SC3

C1 0.001< 0.001< 0.226< 0.001< 0.001<
C2 – 0.001< 0.001> 0.001< 0.001<
C3 – – 0.001> 0.441> 0.074<

SC1 – – – 0.001< 0.001<
SC2 – – – – 0.017<

Table 4: The values of p′ obtained in the statistical significance tests comparing CRFs and
semi-CRFs of different orders in the relation argument detection task, where the
p-value of the significance test is smaller than p′. Figures in bold are where the
difference is statistically significant at the 1% confidence level. The symbol <
(respectively >) at position (i, j) means that the system on row i performs worse
(respectively better) than the system on column j.

for this task, first-order semi-CRF does not perform significantly better than simple linear-
chain CRF. We also observe that SC3 outperforms C1, C2, and SC1 significantly, while it
outperforms C3 and SC2 with p-values at most 7.4% and 1.7% respectively. Figure 4 shows
the average number of segment label patterns and the average running time of high-order
semi-CRFs as a function of the maximum order.

The CRFs in Table 3 do not use begin-inside-outside (BIO) encoding of the labels. In
the labeling protocol described above for this problem, although the label O indicates the
outside of any argument, we do not differentiate between the beginning and the insides of
an argument. In Table 5, we report the F1 scores of C1, C2, and C3 using BIO encoding
(C1-BIO, C2-BIO, and C3-BIO respectively). We use Arg1-B, Arg2-B, and Arg1Arg2-B to
indicate the beginning of an argument and use Arg1-I, Arg2-I, and Arg1Arg2-I to indicate
the insides of an argument. The scores are computed after removing the B and I suffixes
in the labels. From the results in Table 5, BIO encoding does not help C1-BIO and C2-
BIO much, but it helps to improve C3-BIO substantially. Overall, C3-BIO achieves the
best average F1 score (51.11%) for the relation argument detection problem. Comparing
C3-BIO and SC3 on each individual relation, we note that SC3 is useful for PHYS where

993

Cuong, Ye, Lee and Chieu

0

20

40

60

80

100

120

140

160

2 3 4 5

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

Maximum Order of Features

Average Number of Patterns for

Relation Argument Detection

0

20000

40000

60000

80000

100000

120000

140000

160000

0

500

1000

1500

2000

2500

3000

2 3 4 5

T
im

e
 (

s)

T
im

e
 (

s)

Maximum Order of Features

Average Runtimes for Relation

Argument Detection

Per Iteration Time (Left axis)

Total Time (Right axis)

Figure 4: Average number of segment label patterns (left) and average running time (right)
of high-order semi-CRFs as a function of maximum order for relation argument
detection.

Type C1 C2 C3 SC3 C1-BIO C2-BIO C3-BIO

Part-Whole 38.68 41.41 46.52 44.30 38.66 41.23 50.30
Phys 33.24 33.60 35.20 42.46 33.81 34.77 36.88

Org-Aff 60.56 63.28 64.93 64.86 61.33 64.33 67.50
Gen-Aff 31.00 35.84 40.16 38.09 30.38 35.03 43.37
Per-Soc 53.67 58.62 58.31 57.07 55.07 58.50 59.37

Art 40.30 43.80 46.35 48.78 40.62 43.01 49.25

Average 42.91 46.09 48.58 49.26 43.31 46.15 51.11

Table 5: F1 scores of different (non-semi) CRF taggers for relation argument detection using
BIO encoding of the labels (C1-BIO, C2-BIO, and C3-BIO). The scores of C1, C2,
C3, and SC3 are copied from Table 3 for comparison.

the arguments are located further apart. C3-BIO, on the other hand, is useful for other
relations where the arguments are located near to each other.

3.2.2 Punctuation Prediction

In this experiment, we evaluated the performance of high-order semi-CRFs on the punc-
tuation prediction task. This task is usually used as a post-processing step for automatic
speech recognition systems to add punctuations to the transcribed conversational speech
texts (Liu et al., 2005; Lu and Ng, 2010). Previous evaluations on the IWSLT corpus (Paul,
2009) have shown that capturing long-range dependencies is useful for the task (Lu and Ng,
2010). In the experiment, we used high-order CRFs and high-order semi-CRFs to capture
long-range dependencies in the labels and showed that they outperform linear-chain CRF
and first-order semi-CRF on movie transcripts data, which contains 5450 conversational
speech texts with annotated punctuations from various movie transcripts online. We used

994

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Tag C1 C2 C3 SC1 SC2 SC3

Comma 59.29 59.70 59.90 61.13 60.89 60.35
Period 75.37 75.37 75.46 75.03 78.97 78.82
QMark 58.18 59.54 60.57 57.61 74.05 73.56

All 66.21 66.53 66.85 66.73 70.85 70.47

Table 6: F1 scores for punctuation prediction task. The last row contains the micro-
averaged scores.

C2 C3 SC1 SC2 SC3

C1 0.155< 0.048< 0.043< 0.001< 0.001<
C2 – 0.153< 0.289< 0.001< 0.001<
C3 – – 0.378> 0.001< 0.001<

SC1 – – – 0.001< 0.001<
SC2 – – – – 0.044>

Table 7: The values of p′ obtained in the statistical significance tests comparing CRFs and
semi-CRFs of different orders in the punctuation prediction task, where the p-value
of the significance test is smaller than p′. Figures in bold are where the difference
is statistically significant at the 1% confidence level. The symbol < (respectively
>) at position (i, j) means that the system on row i performs worse (respectively
better) than the system on column j.

60% of the texts for training and the remaining 40% for testing. The punctuation and case
information are removed, and the words are tagged with different labels.

Originally, there are 4 labels: None, Comma, Period, and QMark, which respectively
indicate that no punctuation, a comma, a period, or a question mark comes immediately
after the current word. To help capture the long-range dependencies, we added 6 more
labels: None-Comma, None-Period, None-QMark, Comma-Comma, QMark-QMark, and
Period-Period. The left parts of these labels serve the same purpose as the original four
labels. The right parts of the labels indicate that the current word is the beginning of a text
segment which ends in comma, period, or question mark. This part is used to capture useful
information at the beginning of the segment. For example, the sentence “no, she is working.”
would be labeled as “no/Comma-Comma she/None-Period is/None working/Period”. In
this case, she is working is a text segment (with length 3) that ends with a period. This
information is marked in the label of the word working and the right part of the label of
the word she. The text segment no (with length 1) is also labeled in a similar way.

We reported the F1 scores of the models in Table 6. We used the combinations of words
and their positions relatively to the current position as zeroth-order features. For first-order
features, we used transitions without any observation, and transitions with the current or
previous words, as well as their combinations. Ck uses kth-order Markov features, while

995

Cuong, Ye, Lee and Chieu

0

200

400

600

800

1000

1200

1400

1600

2 3 4 5

N
u

m
b

e
r
 o

f
P

a
t
t
e

r
n

s

Maximum Order of Features

Number of Patterns for

Punctuation Prediction

0

20000

40000

60000

80000

100000

120000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 3 4 5

T
im

e
 (

s)

T
im

e
 (

s)

Maximum Order of Features

 Runtimes for Punctuation Prediction

Per Iteration Time (Left axis)

Total Time (Right axis)

Figure 5: Number of segment label patterns (left) and running time (right) of high-order
semi-CRFs as a function of maximum order for the punctuation prediction data
set.

SCk uses kth-order semi-Markov transition features with the observed words in the last
segment.

The scores reported in Table 6 are lower than those of the IWSLT corpus (Lu and Ng,
2010) because online movie transcripts are usually annotated by different people, and they
tend to put the punctuations slightly differently. Besides, in movies, people sometimes use
declarative sentences as questions. Hence, the punctuations are harder to predict. Never-
theless, the results have clearly shown that high-order semi-CRFs can capture long-range
dependencies with the help of additional labels and can achieve more than 3.6% improve-
ment in F1 score compared to the CRFs and first-order semi-CRF. SCk also outperforms
Ck for all k. For this task, using third-order semi-Markov features decrease the performance
of SC3 slightly compared to SC2. From Table 7, we see that the p-value of the statistical
significance test comparing SC2 and SC3 is at most 4.4%, while both SC2 and SC3 signif-
icantly outperform the other models. Figure 5 shows the number of segment label patterns
and the running time of high-order semi-CRFs as a function of the maximum order.

3.2.3 Bibliography Extraction

In this experiment, we consider the problem of bibliography extraction in scientific papers.
For this problem, we need to divide a reference, such as those appearing in the References
section of this paper, into the following 13 types of segments: Author, Booktitle, Date,
Editor, Institution, Journal, Location, Note, Pages, Publisher, Tech, Title, or Volume. The
problem can be naturally considered as a sequence labeling problem with the above labels.
We evaluated the performance of high-order semi-CRFs and CRFs on the bibliography
extraction problem with the Cora Information Extraction data set.4 In the data set, there
are 500 instances of references. We used 300 instances for training and the remaining 200
instances for testing.

We reported in Table 8 the F1 scores of the models. In C1, zeroth-order features include
the surrounding words at each position and letter n-grams, and first-order features include

4. The data set is available at http://people.cs.umass.edu/~mccallum/data.html.

996

http://people.cs.umass.edu/~mccallum/data.html

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Tag C1 C2 C3 SC1 SC2 SC3

Author 94.21 91.65 93.67 93.97 94.74 94.00
Booktitle 73.05 75.00 72.39 75.74 78.11 76.47

Date 95.67 96.68 94.36 95.19 95.43 95.70
Editor 68.57 72.73 66.67 57.14 58.82 54.55

Institution 68.57 64.71 64.71 70.27 70.27 64.86
Journal 78.08 78.32 78.32 77.55 77.55 75.68
Location 70.33 69.66 68.13 68.13 67.39 65.22

Note 66.67 57.14 57.14 57.14 66.67 66.67
Pages 84.82 87.83 85.34 85.96 86.96 87.18

Publisher 84.62 84.62 83.54 84.62 86.08 86.08
Tech 77.78 80.00 80.00 77.78 77.78 77.78
Title 89.62 85.42 86.73 90.18 92.23 90.95

Volume 66.23 75.68 72.60 71.90 72.37 75.00

All 85.34 85.47 84.77 85.67 86.67 86.07

Table 8: F1 scores for bibliography extraction task. The last row contains the micro-
averaged scores.

C2 C3 SC1 SC2 SC3

C1 0.393< 0.174> 0.198< 0.004< 0.095<
C2 – 0.073> 0.351< 0.019< 0.161<
C3 – – 0.095< 0.002< 0.030<

SC1 – – – 0.003< 0.200<
SC2 – – – – 0.025>

Table 9: The values of p′ obtained in the statistical significance tests comparing CRFs and
semi-CRFs of different orders in the bibliography extraction task, where the p-
value of the significance test is smaller than p′. Figures in bold are where the
difference is statistically significant at the 1% confidence level. The symbol <
(respectively >) at position (i, j) means that the system on row i performs worse
(respectively better) than the system on column j.

transitions with words at the current or previous positions. Ck and SCk (1 ≤ k ≤ 3) use
additional kth-order Markov and semi-Markov transition features.

From Table 8, high-order semi-CRFs perform generally better than high-order CRFs
and first-order semi-CRF. SC2 achieves the best overall performance with 86.67% F1 score.
From Table 9, SC2 outperforms C2 and SC3 with a p-value at most 1.9% and 2.5% re-
spectively, while it outperforms other models significantly. Figure 6 shows the number of
segment label patterns and the running time of high-order semi-CRFs as a function of the
maximum order.

997

Cuong, Ye, Lee and Chieu

0

100

200

300

400

500

600

700

2 3 4 5

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

Maximum Order of Features

Number of Patterns for

 Bibliography Extraction

0

22000

44000

66000

88000

110000

132000

154000

176000

198000

220000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

2 3 4 5

T
im

e
 (

s)

T
im

e
 (

s)

Maximum Order of Features

 Runtimes for Bibliography Extraction

Per Iteration Time (Left axis)

Total Time (Right axis)

Figure 6: Number of segment label patterns (left) and running time (right) of high-order
semi-CRFs as a function of maximum order for the bibliography extraction data
set.

3.3 Discussions

From Figures 4, 5, and 6, the number of segment label patterns of high-order features
grows about linearly in the maximum order of features. The running time of high-order
semi-CRFs on the bibliography extraction task is also nearly linear in the maximum order
of the features, while the running times on the relation argument detection task and the
punctuation prediction task grow more than linearly in the maximum order of features. We
also note that from the time complexity discussions in Section 2.5 and the setup for these
experiments, the time complexity of our algorithm is O(|Z|2), where |Z| is the number of
segment label patterns.

From Tables 6 and 8, there is a drop in F1 scores for the punctuation prediction task
and the bibliography extraction task when we increase the order of the semi-CRFs from
2 to 3. For the punctuation task, the drop is not very significant and the third-order
semi-CRF still performs significantly better than the CRFs or the first-order semi-CRFs.
For the bibliography extraction task, there is a big drop in the F1 scores for some of the
labels and the third-order semi-CRF does not significantly outperform the other models.
However, it does not indicate that the third-order semi-CRF is not useful for this task since
we fixed the regularization parameter σreg = 1 for all the models in this experiment. If we
set σreg = 10 for the third-order semi-CRF, it can achieve 87.45% F1 score and outperform
all the other models. In practice, if we have enough data, we can choose a suitable σreg for
each individual model using a validation data set or cross-validation on the training data.
We can also allow different regularizers for features of different orders5 and use a validation
set to determine the most suitable combination of regularizers.

An important question in practice is which features (or equivalently, label patterns)
should be included in the model. In our experiments, we used all the label patterns that
appear in the training data. This simple approach is usually reasonable with a suitable
value of the regularization parameter σreg. For applications where the pattern sparsity
assumption is not satisfied, but certain patterns do not appear frequently enough and are

5. This would require a slight change to our regularized log-likelihood function.

998

CRF with High-order Dependencies for Sequence Labeling and Segmentation

not really important, then it is useful to see how we can select a subset of features with few
distinct label patterns automatically. One possible approach would be to use boosting type
methods (Dietterich et al., 2004) to sequentially select useful features.

For high-order CRFs, it should be possible to use kernels within the approach here. On
the handwritten character problem, Taskar et al. (2004) reported substantial improvement
in performance with the use of kernels. Use of kernels together with high-order features
may lead to further improvements. However, we note that the advantage of the higher
order features may become less substantial as the observations become more powerful in
distinguishing the classes. Whether the use of higher order features together with kernels
brings substantial improvement in performance is likely to be problem dependent.

4. Related Work

A commonly used inference algorithm for CRFs is the clique tree algorithm (Huang and
Darwiche, 1996). Defining a feature depending on k (not necessarily consecutive) labels
will require forming a clique of size k, resulting in a clique-tree with tree-width greater or
equal to k. Inference on such a clique tree will be exponential in k. For sequence models, a
feature of order k can be incorporated into a kth-order Markov chain, but the complexity
of inference is again exponential in k. Under the label pattern sparsity assumption, our
algorithm achieves efficiency by maintaining only information related to a few occurred
patterns, while previous algorithms maintain information about all (exponentially many)
possible patterns.

Long distance dependencies can also be captured using hierarchical models such as
Hierarchical Hidden Markov Model (HHMM) (Fine et al., 1998) or Probabilistic Context
Free Grammar (PCFG) (Heemskerk, 1993). The time complexity of inference in an HHMM
is O(min{nl3, n2l}) (Fine et al., 1998; Murphy and Paskin, 2002), where n is the number of
states and l is the length of the sequence. Discriminative versions such as hierarchical semi-
CRF have also been studied (Truyen et al., 2008). Inference in PCFG and its discriminative
version can also be efficiently done in O(ml3) where m is the number of productions in
the grammar (Jelinek et al., 1992). These methods are able to capture dependencies of
arbitrary lengths, unlike kth-order Markov chains. However, to do efficient learning with
these methods, the hierarchical structure of the examples needs to be provided. For example,
if we use PCFG to do character sequence labeling, we need to provide the parse trees for
efficient learning; providing the labels for each character is not sufficient. Hence, a training
set that has not been labeled with hierarchical labels will need to be relabeled before it
can be trained efficiently. Alternatively, methods that employ hidden variables can be used
(e.g., to infer the hidden parse tree) but the optimization problem is no longer convex
and local optima can sometimes be a problem. The high-order semi-CRF presented in
this paper allows us to capture a different class of dependencies that does not depend
on hierarchical structures in the data, while keeping the high-order semi-CRF objective a
convex optimization problem.

Another work on using high-order features for CRFs was independently done by Qian
et al. (2009). Their work applies to a larger class of CRFs, including those requiring
exponential time for inference, and they did not identify subclasses for which inference is
guaranteed to be efficient. For sequence labeling with high-order features, Qian and Liu

999

Cuong, Ye, Lee and Chieu

(2012) developed an efficient decoding algorithm under the assumption that all the high-
order features have non-negative weights. Their decoding algorithm requires quadratic
running time on the number of high-order features in the worst case.

There are other models similar to the high-order CRF with pattern sparsity assumption
(Ye et al., 2009), a special case of the high-order semi-CRF presented in this paper. They
include the CRFs that use the sparse higher-order potentials (Rother et al., 2009) or the
pattern-based potentials (Komodakis and Paragios, 2009). Rother et al. (2009) proposed a
method for minimization of sparse higher order energy functions by first transforming them
into a quadratic functions and then employing efficient inference algorithms to minimize
these resulting functions. For the pattern-based potentials, Komodakis and Paragios (2009)
derived an efficient message-passing algorithm for inference. The algorithm is based on the
master-slave framework where the original high-order optimization problem is decomposed
into smaller subproblems that can be solved easily. Other tractable inference algorithms
with high-order potentials include the α-expansion and αβ-swap algorithms for the Pn
Potts model (Kohli et al., 2007) and the MAP message passing algorithm for cardinality
and order potentials (Tarlow et al., 2010). A special case of the order potentials, the
before-after potential (Tarlow et al., 2010), can also be used to capture some semi-Markov
structures in the data labelings.

5. Conclusion

The label pattern sparsity assumption often holds in real applications, and we give efficient
inference algorithms for CRFs using high-order dependencies between labels or segments
when the pattern sparsity assumption is satisfied. This allows high-order features to be
explored in feature engineering for real applications. We studied the conditions that are
favorable for using high-order features in CRFs with a synthetic data set, and demonstrated
that using simple high-order features can lead to performance improvement on a handwriting
recognition problem. We also demonstrated that high-order semi-CRFs outperform high-
order CRFs and first-order semi-CRF in segmentation problems like relation argument
detection, punctuation prediction, and bibliography extraction.

Acknowledgments

This material is based on research sponsored by DSO under grant DSOCL11102 and by
the Air Force Research Laboratory, under agreement number FA2386-09-1-4123. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the U.S. Government. The authors also would like to thank Sumit Bhag-
wani for his help with the HOSemiCRF package and the anonymous reviewers for their
constructive comments.

1000

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Appendix A. Correctness of the Forward and Backward Algorithms

In this appendix, we will prove the correctness of the forward and backward algorithms
described in Section 2. We shall prove two lemmas and then provide the proofs for the
correctness of the forward and backward algorithms as well as the marginal computation.

Lemma 1 below gives the key properties that can be used in an inductive proof. Lemma
1(a) shows that we can partition the segmentations using the forward states. Lemma 1(b-
c) show that considering all (pk, y) : pi ≤sP pky is sufficient for obtaining the sum over
all sequences pi ≤sP zy, while Lemma 1(d) is used to show that the features are counted
correctly.

Lemma 1 Let s be a segmentation for a prefix of x. Let ω(s, t) = exp(
∑m

k=1 λkfk(x, s, t))

and ω(s) = exp(
∑m

k=1

∑|s|
t=1 λkfk(x, s, t)) =

∏|s|
t=1 ω(s, t).

(a) For any segment label sequence z, there exists a unique pi ∈ P such that pi ≤sP z.
(b) For any segment label sequence z and y ∈ Y, if pk ≤sP z and pi ≤sP pky, then pi ≤sP zy.
(c) For any za ∈ Z, y ∈ Y, and any segment label sequence z, if za ≤s zy, and pk ≤sP z,
then za ≤s pky.
(d) Let s = ((u1, v1, y1), . . . , (u|s|, v|s|, y|s|)) and let pkt ≤sP y1y2 . . . yt for t = 1, . . . , |s|. Then

ω(s) =
∏|s|
t=1 Ψx(ut, vt,p

kt−1yt) = ω(s1:|s|−1)Ψx(u|s|, v|s|,p
k|s|−1y|s|).

A.1 Proof of Lemma 1

(a) The intersection of P and the set of prefixes of z contains at least one element ε, and
is finite.

(b) We have pi ≤s pky ≤s zy. Furthermore, if pj ≤s zy, then we have pj
1:|pj |−1 ≤

s z. Thus,

pj
1:|pj |−1 ≤

s pk since pk ≤sP z. Hence, pj = pj
1:|pj |−1y ≤

s pky. Since pi ≤sP pky, we

have pj ≤s pi. Therefore, pi ≤sP zy.

(c) Since za1:|za|−1 ≤
s z and pk ≤sP z, we have za1:|za|−1 ≤

s pk. Thus, za ≤s pky.

(d) Straightforward from part (c) and definition of Ψx.

Lemma 2 below serves the same purpose as Lemma 1 for showing correctness.

Lemma 2 Let s be a segmentation for a suffix of x. Let ω(s, t|si) = exp(
∑m

k=1 λkfk(x, s, t|si))
and ω(s|si) = exp(

∑m
k=1

∑|s|
t=1 λkfk(x, s, t|si)) =

∏|s|
t=1 ω(s, t|si).

(a) For all si ∈ S and y ∈ Y, there exists a unique sk ∈ S such that sk ≤sS siy.
(b) For any za ∈ Z and any segment label sequences z1, z2, if za ≤s z1z2, and si ≤sS z1,
then za ≤s siz2.
(c) If sk ≤sS siy, and (u, v, y) · s is a segmentation for xu:|x|, then ω((u, v, y) · s|si) =

Ψx(u, v, siy)ω(s|sk).

A.2 Proof of Lemma 2

(a) Note that y ∈ S and y ≤s siy and the number of suffixes of siy is finite.

1001

Cuong, Ye, Lee and Chieu

(b) This is clearly true if za is not longer than z2. If za is longer than z2, let p be the
prefix of za obtained by stripping off the suffix z2. Then p is a suffix of z1 and p ∈ S.
Since si is the longest suffix of z1 in S, p is a suffix of si, thus za = pz2 is a suffix of
siz2.

(c) From part (b), we have ω(s|siy) = ω(s|sk). Thus, ω((u, v, y)·s|si) = Ψx(u, v, siy)ω(s|siy) =
Ψx(u, v, siy)ω(s|sk).

A.3 Correctness of the Forward Algorithm

Given the forward variables αx(j,pi) as defined in Section 2

αx(j,pi) =
∑

s∈pj,pi

exp(

m∑
k=1

|s|∑
t=1

λkfk(x, s, t)) =
∑

s∈pj,pi

ω(s),

we prove that the following recurrence can be used to compute αx(j,pi)’s by induction on
j,

αx(j,pi) =
L−1∑
d=0

∑
(pk,y):pi≤s

Pp
ky

Ψx(j − d, j,pky)αx(j − d− 1,pk). (2)

Base case: If j = 1, for any pi ∈ P, we can initialize the values of αx(1,pi) such that

αx(1,pi) =
∑

s∈p1,pi

exp(
m∑
k=1

|s|∑
t=1

λkfk(x, s, t)) =
∑

s∈p1,pi

ω(s).

Inductive step: Assume that for all j′ < j and pi ∈ P, we have

αx(j′,pi) =
∑

s∈pj′,pi

exp(
m∑
k=1

|s|∑
t=1

λkfk(x, s, t)) =
∑

s∈pj′,pi

ω(s).

Then, using Lemma 1,

αx(j,pi) =
∑

s∈pj,pi
ω(s)

=
∑L−1

d=0

∑
(pk,y):pi≤s

Pp
ky

∑
s∈p

j−d−1,pk
ω(s · (j − d, j, y))

=
∑L−1

d=0

∑
(pk,y):pi≤s

Pp
ky

∑
s∈p

j−d−1,pk
[Ψx(j − d, j,pky)

∏|s|
t=1 ω(s, t)]

=
∑L−1

d=0

∑
(pk,y):pi≤s

Pp
ky Ψx(j − d, j,pky)

∑
s∈p

j−d−1,pk

∏|s|
t=1 ω(s, t)

=
∑L−1

d=0

∑
(pk,y):pi≤s

Pp
ky Ψx(j − d, j,pky)αx(j − d− 1,pk).

Hence, by induction, Recurrence (2) correctly computes the forward variables αx(j,pi)’s.

1002

CRF with High-order Dependencies for Sequence Labeling and Segmentation

A.4 Correctness of the Backward Algorithm

Given the backward variables βx(j, si) as defined in Section 2

βx(j, si) =
∑
s∈sj

exp(
m∑
k=1

|s|∑
t=1

λkfk(x, s, t|si)) =
∑
s∈sj

ω(s|si),

we prove that the following recurrence can be used to compute βx(j, si)’s by induction on
j,

βx(j, si) =
L−1∑
d=0

∑
(sk,y):sk≤s

Ss
iy

Ψx(j, j + d, siy)βx(j + d+ 1, sk). (3)

Base case: If j = |x|, for any si ∈ S, we can initialize the values of βx(|x|, si) such that

βx(|x|, si) =
∑
s∈s|x|

exp(
m∑
k=1

|s|∑
t=1

λkfk(x, s, t|si)) =
∑
s∈s|x|

ω(s|si).

Inductive step: Assume that for all j′ > j and si ∈ S, we have

βx(j′, si) =
∑
s∈sj′

exp(

m∑
k=1

|s|∑
t=1

λkfk(x, s, t|si)) =
∑
s∈sj′

ω(s|si).

Then, using Lemma 2,

βx(j, si) =
∑

s∈sj ω(s|si)
=

∑L−1
d=0

∑
(sk,y):sk≤s

Ss
iy

∑
s∈sj+d+1

ω((j, j + d, y) · s|si)
=

∑L−1
d=0

∑
(sk,y):sk≤s

Ss
iy

∑
s∈sj+d+1

Ψx(j, j + d, siy)ω(s|sk)
=

∑L−1
d=0

∑
(sk,y):sk≤s

Ss
iy Ψx(j, j + d, siy)βx(j + d+ 1, sk).

Hence, by induction, Recurrence (3) correctly computes the backward variables βx(j, si)’s.

A.5 Correctness of the Marginal Computation

Consider a segmentation s such that the segment label sequence of s contains z as a sub-
sequence with the last segment of z having boundaries (u, v). Suppose s = s1 · (u, v, y) · s2
and let y1 be the segment label sequence of s1. If pi ≤sP y1, then we have piy ≤sS y1y. In
this case, it can be verified that ω(s) = ω(s1)Ψ(u, v,piy)ω(s2|piy). The marginal formula
thus follows easily.

Appendix B. An Example for the Algorithms

In this appendix, we give an example to illustrate our algorithms. For simplicity, we use the
second-order CRF as our model. Extensions to higher-order CRFs or semi-CRFs should
be straightforward by respectively expanding the set of segment label patterns or summing
over all the possible lengths d of the segments.

1003

Cuong, Ye, Lee and Chieu

i fi(x, s, t)

1 xt = Peter ∧ st = P
2 xt = goes ∧ st = O
3 xt = to ∧ st = O
4 xt = Britain ∧ st = L
5 xt = and ∧ st = O
6 xt = France ∧ st = L
7 xt = annually ∧ st = O
8 xt = . ∧ st = O
9 st−2st−1st = LOL

Table 10: List of features for the example in Appendix B.

t\z P O L LOL

1 1 0 0 0
2 0 1 0 0
3 0 1 0 0
4 0 0 1 0
5 0 1 0 0
6 0 0 1 1
7 0 1 0 0
8 0 1 0 0

Table 11: The values of
∑

i:zi=z λigi(x, ut, vt) =
∑

i:zi=z λigi(x, t, t).

In this example, let x be the sentence “Peter goes to Britain and France annually.”.
Assume there are 9 binary features defined by Boolean predicates as in Table 10, and each
λi = 1. The label set is {P,O,L} where P represents Person, L represents Location and
O represents Others. Note that for second-order CRFs, the length of all the segments is 1
and thus st = yt for all t.

The segment label pattern set is Z = {P,O,L, LOL}. Table 11 shows the sum of the
weights for features with the same segment label pattern at each position. We have P =
{ε, P,O, L, LO} and S = {P,O,L, PP, PO, PL,OP,OO,OL,LP,LO,LL,LOP,LOO,LOL}.
The tables for lnαx and lnβx are shown in Table 12 and Table 13 respectively.

In Figure 7, we give a diagram to show the messages passed from step j − 1 to step j
to compute the forward variables αx. We also give a diagram in Figure 8 to show some
messages passed from step j + 1 to step j to compute the backward variables βx.

We illustrate the computation of αx with αx(6, L). The condition (pk, y) : pi ≤sP pky
with pi = L gives us the following 5 pairs as (pk, y): {(ε, L), (P,L), (O,L), (L,L), (LO,L)}.
Thus,

αx(6, L) = αx(5, ε)Ψx(6, 6, L) + αx(5, P)Ψx(6, 6, PL) + αx(5, O)Ψx(6, 6, OL) +

αx(5, L)Ψx(6, 6, LL) + αx(5, LO)Ψx(6, 6, LOL)

= 0Ψx(6, 6, L) + αx(5, P)e+ αx(5, O)e+ αx(5, L)e+ αx(5, LO)e2.

1004

CRF with High-order Dependencies for Sequence Labeling and Segmentation

),1(x Oj),1(x Pj),1(x j),1(x Lj),1(x LOj

),(x Oj),(x Pj),(x j),(x Lj),(x LOj

Figure 7: Messages passed from step j − 1 to step j in order to compute the forward
variables. For example, αx(j,O) is computed from αx(j − 1, ε), αx(j − 1, P),
αx(j − 1, O), and αx(j − 1, LO).

),(x OLj),(x LLj),(x LOLj. . .),(x PLj),(x Lj

),1(x LPj),1(x LOj),1(x LLj

.

.

Figure 8: Some messages passed from step j + 1 to step j in order to compute the back-
ward variables. In this example, all the variables βx(j, L), βx(j, PL), βx(j,OL),
βx(j, LL), and βx(j, LOL) are computed from βx(j + 1, LP), βx(j + 1, LO), and
βx(j + 1, LL).

j\pi ε P O L LO

1 -∞ 1.00 0.00 0.00 -∞
2 -∞ 1.55 2.31 1.55 1.00
3 -∞ 3.10 3.87 3.12 2.55
4 -∞ 4.65 4.42 5.65 3.10
5 -∞ 6.21 6.35 6.21 6.65
6 -∞ 7.76 7.52 9.21 6.21
7 -∞ 9.60 9.45 9.59 10.21
8 -∞ 11.14 11.91 11.14 10.59

Table 12: The values of lnαx(j,pi).

We also have Zx = αx(8, ε) + αx(8, P) + αx(8, O) + αx(8, L) + αx(8, LO) = e12.696.

We now illustrate the computation of βx with βx(5, OL). The condition (sk, y) : sk ≤sS siy
with si = OL gives us the following 3 pairs as (sk, y): {(LP,P), (LO,O), (LL,L)}. Thus,

βx(5, OL) = βx(6, LP)Ψx(5, 5, OLP) + βx(6, LO)Ψx(5, 5, OLO) +

βx(6, LL)Ψx(5, 5, OLL)

= βx(6, LP)e0 + βx(6, LO)e+ βx(6, LL)e0.

The values of the marginals P (j, j, z|x) are shown in Table 14. We illustrate the
computation of P (6, 6, LOL|x) from the forward and backward variables. The condition

1005

Cuong, Ye, Lee and Chieu

j\si P O L PP PO PL OP OO OL LP LO LL LOP LOO LOL

1 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70
2 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14
3 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59
4 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04
5 6.21 6.21 6.66 6.21 6.21 6.66 6.21 6.21 6.66 6.21 6.21 6.66 6.21 6.21 6.66
6 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.65 5.34 4.65 4.65 4.65 4.65
7 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10
8 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55

Table 13: The values of lnβx(j, si).

(pi, y) : z ≤s piy with z = LOL gives us the only pair (LO,L) as (pi, y). Hence,

P (6, 6, LOL|x) =
αx(5, LO)βx(7, LOL)Ψx(6, 6, LOL)

Zx

=
αx(5, LO)βx(7, LOL)e2

Zx
.

j\z P O L LOL

1 0.58 0.21 0.21 0.00
2 0.21 0.58 0.21 0.00
3 0.21 0.58 0.21 0.03
4 0.16 0.16 0.68 0.08
5 0.16 0.68 0.16 0.01
6 0.16 0.16 0.68 0.39
7 0.21 0.58 0.21 0.01
8 0.21 0.58 0.21 0.08

Table 14: The marginals P (j, j, z|x).

References

Aron Culotta, David Kulp, and Andrew McCallum. Gene prediction with conditional
random fields. Technical Report UM-CS-2005-028, University of Massachusetts, Amherst,
2005.

Thomas G. Dietterich, Adam Ashenfelter, and Yaroslav Bulatov. Training conditional ran-
dom fields via gradient tree boosting. In Proceedings of the 21st International Conference
on Machine Learning, 2004.

Richard Durbin. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge University Press, 1998.

Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchical hidden Markov model:
analysis and applications. Machine Learning, 32(1):41–62, 1998.

1006

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min. Exploring various knowledge in
relation extraction. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics, pages 427–434, 2005.

Josée S. Heemskerk. A probabilistic context-free grammar for disambiguation in morpho-
logical parsing. In Proceedings of the 6th Conference of the European Chapter of the
Association for Computational Linguistics, pages 183–192, 1993.

Cecil Huang and Adnan Darwiche. Inference in belief networks: a procedural guide. Inter-
national Journal of Approximate Reasoning, 15(3):225–263, 1996.

Sorin Istrail. Statistical mechanics, three-dimensionality and NP-completeness: I. Univer-
sality of intractability for the partition function of the Ising model across non-planar
lattices. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
pages 87–96, 2000.

Frederick Jelinek, John D. Lafferty, and Robert L. Mercer. Basic methods of probabilis-
tic context free grammars. In Speech Recognition and Understanding. Recent Advances,
Trends, and Applications. Springer, 1992.

Robert H. Kassel. A Comparison of Approaches to On-line Handwritten Character Recog-
nition. PhD thesis, Massachusetts Institute of Technology, 1995.

Pushmeet Kohli, M. Pawan Kumar, and Philip H. S. Torr. P3 & beyond: solving ener-
gies with higher order cliques. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8, 2007.

Nikos Komodakis and Nikos Paragios. Beyond pairwise energies: efficient optimization for
higher-order MRFs. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 2985–2992, 2009.

John Lafferty, Andrew McCallum, and Fernando C.N. Pereira. Conditional random fields:
probabilistic models for segmenting and labeling sequence data. In Proceedings of the
18th International Conference on Machine Learning, 2001.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(3):503–528, 1989.

Yang Liu, Andreas Stolcke, Elizabeth Shriberg, and Mary Harper. Using conditional random
fields for sentence boundary detection in speech. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics, pages 451–458, 2005.

Wei Lu and Hwee Tou Ng. Better punctuation prediction with dynamic conditional ran-
dom fields. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 177–186, 2010.

Andrew McCallum and Wei Li. Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In Proceedings of the 7th
Conference on Computational Natural Language Learning, pages 188–191, 2003.

1007

Cuong, Ye, Lee and Chieu

Kevin P. Murphy and Mark A. Paskin. Linear-time inference in hierarchical HMMs. In
Advances in Neural Information Processing Systems, pages 833–840, 2002.

Viet Cuong Nguyen, Nan Ye, Wee Sun Lee, and Hai Leong Chieu. Semi-Markov condi-
tional random field with high-order features. In ICML Workshop on Structured Sparsity:
Learning and Inference, 2011.

Eric W. Noreen. Computer Intensive Methods for Testing Hypotheses: An Introduction.
Wiley, 1989.

Michael Paul. Overview of the IWSLT 2009 evaluation campaign. In Proceedings of the
International Workshop on Spoken Language Translation, pages 3–27, 2009.

Xian Qian and Yang Liu. Sequence labeling with non-negative weighted higher order fea-
tures. In Proceedings of the 26th Conference on Artificial Intelligence, 2012.

Xian Qian, Xiaoqian Jiang, Qi Zhang, Xuanjing Huang, and Lide Wu. Sparse higher order
conditional random fields for improved sequence labeling. In Proceedings of the 26th
International Conference on Machine Learning, pages 849–856, 2009.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Carsten Rother, Pushmeet Kohli, Wei Feng, and Jiaya Jia. Minimizing sparse higher order
energy functions of discrete variables. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1382–1389, 2009.

Sunita Sarawagi and William W. Cohen. Semi-Markov conditional random fields for infor-
mation extraction. In Advances in Neural Information Processing Systems, pages 1185–
1192, 2004.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proceed-
ings of the Human Language Technology Conference of the North American Chapter of
the Association for Computational Linguistics, pages 134–141, 2003.

Daniel Tarlow, Inmar E. Givoni, and Richard S. Zemel. HOP-MAP: efficient message
passing with high order potentials. In International Conference on Artificial Intelligence
and Statistics, pages 812–819, 2010.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. In Ad-
vances in Neural Information Processing Systems, 2004.

Tran T. Truyen, Dinh Q. Phung, Hung H. Bui, and Svetha Venkatesh. Hierarchical semi-
Markov conditional random fields for recursive sequential data. In Advances in Neural
Information Processing Systems, pages 1657–1664, 2008.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In Proceedings
of the 21st International Conference on Machine Learning, 2004.

1008

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. ACE 2005
multilingual training corpus. Linguistic Data Consortium, Philadelphia, 2006.

Nan Ye, Wee Sun Lee, Hai Leong Chieu, and Dan Wu. Conditional random fields with
high-order features for sequence labeling. In Advances in Neural Information Processing
Systems, pages 2196–2204, 2009.

Alexander Yeh. More accurate tests for the statistical significance of result differences. In
Proceedings of the 18th International Conference on Computational Linguistics, pages
947–953, 2000.

Min Zhang, Jie Zhang, and Jian Su. Exploring syntactic features for relation extraction
using a convolution tree kernel. In Proceedings of the Human Language Technology Con-
ference of the North American Chapter of the Association for Computational Linguistics,
pages 288–295, 2006.

1009

	Introduction
	Algorithms for High-order Dependencies
	High-order Semi-CRFs
	Notations
	Training
	Partition Function
	Expected Feature Sum

	Decoding
	Time Complexity

	Experiments
	Experiments with High-order CRFs
	Synthetic Data Generated Using kth-order Markov Model
	Handwriting Recognition

	Experiments with High-order Semi-CRFs
	Relation Argument Detection
	Punctuation Prediction
	Bibliography Extraction

	Discussions

	Related Work
	Conclusion
	Correctness of the Forward and Backward Algorithms
	Proof of Lemma 1
	Proof of Lemma 2
	Correctness of the Forward Algorithm
	Correctness of the Backward Algorithm
	Correctness of the Marginal Computation

	An Example for the Algorithms

