
CS3230R

Community
Detection in graphs

A review paper by!
!
Santo Fortunato

Davin Choo

Outline

❖ Introduction and Definitions!

❖ Approaches!

❖ Traditional methods!

❖ Divisive algorithms

Introduction
❖ Random Graph (Erdos and Renyi)!

❖ Every pair of vertices have equal probability of having
an edge between them!

❖ “Disordered graph”!

❖ Graphs in real life!

❖ Clusters!

❖ “Follow power law” 
(Many low deg vertices, few high deg vertices)

Community!
Detection

Uses

❖ Analysing social media: Twitter, Facebook, G+ etc.!

❖ 911/Terrorism!

❖ Clustering web clients geographically to improve
performance!

❖ Identify correlated structures (e.g. PPI networks)!

❖ Classifying people  
(e.g. Group leaders, “Influencers”, “Mediators”, etc.)

Things to take note of
❖ Requirement: Graph is sparse !

❖ Undirected vs Directed!

❖ Overlapping/Cover vs. Partitioning!

❖ Multipartite graphs!

❖ Unweighted vs. Weighted!

❖ Many clustering algorithms/problems are NP-hard  
(i.e. no known polynomial time solutions)!

❖ Approximation algorithms

Defining “community”
❖ No fixed definition / Vague!

❖ Each algorithm usually optimize over a particular function/
property which they deem important!

❖ Examples!

❖ Intra-cluster density [ẟint(𝒞) = (# internal edges of 𝒞)/(total possible internal edges)]!

❖ Inter-cluster density [ẟext(𝒞) = (# inter-cluster edges of 𝒞)/(total possible inter-cluster edges)]!

❖ Average link density [(# edges in graph)/(total possible edges)]!

❖ Connectedness [∃path between nodes, using only paths in 𝒞]

Classes of “community” definition
❖ Local [Focus on subgraphs]!

❖ n-clique, n-clan, n-club, k-plex, k-core, etc!

❖ Global [Evaluate entire graph]!

❖ Null model [Uses idea that “random graph (Erdos/Renyi) has no structure”]!

❖ Quality functions [Covered later]!

❖ Vertex similarity [Idea: Group similar vertices]!

❖ Put graph into a metric space / “Walking”

Quality Functions

❖ Q : Partition ⟼Value!

❖ Used to rank different partitioning of graphs!

❖ Additivity property: Q(𝒫) = ∑𝒞∈𝒫 q(𝒞), for some function q!

❖ Performance  
[((Edges within partitions) + (Missing edges across partitions))/(Total possible edges)]!

❖ Coverage [(Intra-community edges)/(Total number of edges)]  
i.e. If clusters are disjoint, then coverage = 1

Modularity

❖ Frequently used Quality Function!

❖ Proposed by Newman and Girvan!

❖ Idea: Random graph not expected to have cluster
structure, so possible existence of clusters is revealed by
comparison between actual density of edges in a
subgraph and a random subgraph!

❖ Many choices for modularity formula and null models

Outline

❖ Introduction and Definitions!

❖ Approaches!

❖ Traditional methods!

❖ Divisive algorithms

Traditional Methods

❖ Graph partitioning!

❖ Hierarchical clustering!

❖ Partitional clustering!

❖ Spectral clustering

Graph partitioning

❖ Idea:!

❖ Fix #groups g!

❖ Fix size s!

❖ Find partition such that cut edges  
(inter-partition edges) are minimised

Why?!
(Trivial solution)

Kernighan-Lin algorithm
❖ Input: Graph!

❖ Output: 2 Partitions/Modules!

❖ Optimize over Q = “# edges inside partitions - # edges across partitions”!

❖ Randomly initialize 2 partitions with same number of vertices!

❖ Swap vertices between partitions that gives maximal increase
on Q repeatedly!

❖ Find out more on Wikipedia:  
http://en.wikipedia.org/wiki/Kernighan–Lin_algorithm

KL algorithm (Example)

A

B

C

D

E

F

Q = 2 - 3 = -1

What happens if we shift D to left partition?!
-1 for blue edge introduced across partitions  
+2 for red edges removed across partitions

Kernighan-Lin algorithm

❖ Weakness: Performance dependent on initialisation !

❖ Extensions!

❖ Weighted graph!

❖ Directed graph

❖ Index vector s!

❖ Mark vertices with “+1” or “-1” to indicate partition!

❖ Compute Laplacian matrix L!

❖ Cut size (minimize this)!

❖ Find eigenvector of L!

❖ Find out more:  
http://www.cs.ucdavis.edu/~bai/ECS231/Graphpartition.pdf (Pg 9-16)

Spectral Bisection

Spectral Bisection (Example)

A

B

C

D

E

F

A -1

B -1

C -1

D 1

E 1

F 1

s

A B C D E F

A 2 0 -1 -1 0 0

B 0 1 0 -1 0 0

C -1 0 2 0 -1 0

D -1 -1 0 3 -1 0

E 0 0 -1 -1 2 0

F 0 0 0 0 0 0

L

-1 +1

Max-flow Min-cut

❖ By Ford and Fulkerson!

❖ Input: Flow network (1 source, 1 sink, directed, weighted)!

❖ Output: Set of edges S to cut to disjoint source from sink!

❖ Condition: Sum of edge weights of S is minimized!

❖ Find out more on Wikipedia:  
http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

Max-flow Min-cut (Example)

A

B

C

D

E

F

SOURCE

SINK
Modifications to apply!

1) Add artificial source!
2) Add artificial sink!
3) Make undirected edges directed  

(Add directed edge in both directions)!
4) Make unweighted graph weighted 

(All edges weight 1)

Other Measures

❖ So far, “Reduce edge weights between partitions”!

❖ Numerator: Cut size of 𝒞 from 𝓰\C!

❖ Conductance  
Denominator: min(total deg in 𝒞, total deg in 𝓰\𝒞)!

❖ Ratio cut  
Denominator: (# vertices in 𝒞) * (# vertices in 𝓰\𝒞)!

❖ Normalized cut  
Denominator: Total degree of C

Other measures (Example)

A

B

C

D

E

F

Conductance = 3/min(4,4) = 0.75!
Ratio cut = 3/(3*3) = 3!

Normalized cut = 3/4 = 0.75

𝓰\𝒞 𝒞

Conductance = 3/min(6,4) = 0.75!
Ratio cut = 3/(3*3) = 3!

Normalized cut = 3/6 = 0.5

Weakness of Graph Partitioning

❖ Strong assumptions!

❖ Need to know # groups!

❖ May even need to know size of groups!

❖ Iterative bisectioning into ≥2 partitions not reliable

Hierarchical Clustering

❖ Agglomerative algorithms (Bottom-up)!

❖ Start with vertices, remove all edges!

❖ Iteratively merge vertices by adding edges!

❖ Divisive algorithms (Top-down)!

❖ Start with entire graph!

❖ Iteratively split into partitions by removing edges

Agglomerative algorithms
❖ Clusters merged based on similarity!

❖ Compute similarity measure between vertices,  
no matter if they are connected or not!

❖ For edge xij where i and j are in different clusters,!

❖ Single linkage clustering [Pick edge xij with min. weight]!

❖ Complete linkage clustering [Pick edge xij with max. weight]!

❖ Average linkage clustering [Pick edge xij with avg. weight]

Dendrogram

Divisive algorithms

❖ Covered in later section

Pros and Cons of Hierarchical Clustering

❖ Pros!

❖ Don’t need to assume number or size of clusters!

❖ Cons!

❖ No way to decide which partition best represents of
the community structure in the graph!

❖ Does not scale well  
(Cost to calculate pairwise similarity measure increases quickly with # vertices)

Partitional Clustering
❖ Fix # clusters K!

❖ Define distance function d on metric space (X,d)!

❖ Form K groups based on distance function!

❖ Examples!

❖ Minimum k-clustering [minimize {largest diameter, among clusters}]!

❖ k-clustering sum [minimize {avg dist between all pairs, among clusters}]!

❖ k-center [min. {max di of distances from points to reference point xi}]!

❖ k-median [Same as k-center. replace max with avg]!

❖ k-means clustering

k-means clustering
❖ Cost function!

❖ k = #clusters; Centroid ci ; Si = Points in ith cluster!

❖ According to paper: Solved using Lloyd’s algorithm  
“However, Lloyd's algorithm differs from k-means clustering in that its input is a continuous geometric region rather than a discrete
set of points.”  
[Source: http://en.wikipedia.org/wiki/Lloyd's_algorithm]!

❖ My first intuition: EM algorithm 
“The algorithm as just described monotonically approaches a local minimum of the cost function, and is commonly called hard EM.
The k-means algorithm is an example of this class of algorithms.”  
[Source: http://en.wikipedia.org/wiki/Expectation–maximization_algorithm]!

❖ Find out more on Wikipedia:  
http://en.wikipedia.org/wiki/K-means_clustering!

❖ Extensions: Fuzzy k-means

Weakness of Partitional Clustering

❖ Need to fix #clusters K!

❖ (Thought: What about binary search…?)!

❖ Embedding in metric space may not be natural for the
problem at hand

Spectral Clustering
❖ Didn’t really read in-depth!

❖ “Summary”!

❖ The bulk of Page 95 explains “Why Laplacian matrix is
suitable for spectral clustering”!

❖ Top half of Page 96 draws relation/similarities between
spectral clustering and other methods like “graph
partitioning” and “random walks”!

❖ The last paragraph before “5. Divisive algorithms” evaluates
the spectral methods

Outline

❖ Introduction and Definitions!

❖ Approaches!

❖ Traditional methods!

❖ Divisive algorithms

Divisive algorithms
❖ Agglomerative algorithms iteratively add edges;  

Divisive algorithms iteratively remove edges!

❖ Algorithm of Girvan and Newman!

❖ Historically important - “Marked beginning of a new
era in the field of community detection”!

❖ Based on “edge centrality”  
[Estimates importance of edges according to some
property/process running on the graph]

Girvan and Newman

❖ Algorithm (Pg 97)!

❖ Compute centrality of all edges!

❖ Removal edge with largest centrality (random if ties)!

❖ Repeat Step 1 on new graph

Girvan and Newman

❖ Property used to Girvan and Newman: “Betweenness”  
[Expresses frequency of participation of edges to a process]!

❖ 3 definitions!

❖ Geodesic edge betweenness!

❖ Random-walk edge betweenness!

❖ Current-flow edge betweenness

Geodesic edge betweenness

❖ Number of shortest paths between all vertex pairs that
run along the given edge!

❖ Intuition: “Intercommunity edges have large value of
edge betweenness”!

❖ Can be calculated in O(mn), or O(n2) on sparse graph,
with techniques based on BFS

Random-walk edge betweenness
❖ Idea: Information spreads randomly, not always via shortest path!

❖ Pick 2 pairs of vertices s and t!

❖ Walker moves from s to t, crossing edges with equal probability!

❖ Compute probability that each edge was crossed by walker!

❖ Might want to compute “net crossing probability”  
[To negate back/forth walking due to randomness which doesn’t say anything about centrality]!
❖ Fix direction→; Then use |→ - ⃪ |!

❖ Repeat whole process for K pairs of s and t, then average the
edge probabilities

Random-walk edge betweenness

❖ Wikipedia  
 
 
 
http://en.wikipedia.org/wiki/Random_walk_closeness_centrality  
 
 
 
 
 
 
 

Current-flow edge betweenness

❖ Idea: Consider graph as a resistor network, with edges
having unit resistance!

❖ Calculate current carried by each edge by applying a
voltage difference between all possible vertex pairs!

❖ Can be calculated by solving Kirchoff’s equations!

❖ Possible to show that this measure is equivalent to
random-walk betweenness

Evaluation

❖ Calculating Geodesic edge betweenness is much faster
than Random-walk and Current-flow edge betweenness!

❖ Numerical studies showed that recalculation of
centrality after removing an edge is essential for the
Girvan-Newman method 
[i.e. don’t just calculate once and keep using the same centrality values]

Modifications to the Girvan-Newman method

❖ Tyler et al.  
[Calculate contribution to edge betweenness only from a limited number of centers, chosen at random, deriving a sort of
Monte Carlo estimate]  
[Feature: Allows overlaps in communities]!

❖ Rattigan et al. 
[Quick approximation of edge betweenness values carried out by using a network structure index]!

❖ Chen and Yuan  
[Count only non-redundant paths]!

❖ Holme et al.  
[Remove vertices rather than edges]!

❖ Pinney and Westhead!

❖ Gregory  
[CONGA (Cluster Overlap Newman-Girvan Algorithm). Code available]

Allow overlapping!
communities

Speed-ups

Other divisive algorithms

❖ Idea 1: Inter-cluster edges are related to presence of
cycles!

❖ Edge clustering coefficient  
(#triangles, including vertex)/(#possible triangles that can be formed)!

❖ Remove edge with lowest coefficient. Recalculate.
Repeat.

Other divisive algorithms

❖ Idea 2: Efficiency of information travelling on graph!

❖ Information centrality!

❖ Idea 3: Neighbours of a vertex inside community are
“close” to each other!

❖ Loop coefficient

Questions?

❖ Slides will be made available for reference

