CS3230R

Community Detection in graphs

A review paper by

Santo Fortunato

Davin Choo

Outline

- * Introduction and Definitions
- * Approaches
 - Traditional methods
 - Divisive algorithms

Introduction

- * Random Graph (Erdos and Renyi)
 - Every pair of vertices have equal probability of having an edge between them

Community

- * "Disordered graph"
- * Graphs in real life
 - * Clusters

"Follow power law"
(Many low deg vertices, few high deg vertices)

Uses

- * Analysing social media: Twitter, Facebook, G+ etc.
- * 911/Terrorism
- * Clustering web clients geographically to improve performance
- * Identify correlated structures (e.g. PPI networks)
- Classifying people
 (e.g. Group leaders, "Influencers", "Mediators", etc.)

Things to take note of

- * <u>Requirement</u>: Graph is sparse
- Undirected vs Directed
- * Overlapping/Cover vs. Partitioning
- * Multipartite graphs
- * Unweighted vs. Weighted
- Many clustering algorithms / problems are NP-hard (i.e. no known polynomial time solutions)
 - Approximation algorithms

Defining "community"

- * No fixed definition / Vague
- Each algorithm usually optimize over a particular function/ property which they deem important
- * Examples
 - * Intra-cluster density $\left[\delta_{int}(C) = (\# \text{ internal edges of } C)/(\text{total possible internal edges})\right]$
 - * Inter-cluster density $\left[\delta_{ext}(C) = (\# \text{ inter-cluster edges of } C)/(\text{total possible inter-cluster edges})\right]$
 - Average link density [(# edges in graph)/(total possible edges)]
 - Connectedness [∃path between nodes, using only paths in c]

Classes of "community" definition

- * Local [Focus on subgraphs]
 - * n-clique, n-clan, n-club, k-plex, k-core, etc
- * Global [Evaluate entire graph]
 - * Null model [Uses idea that "random graph (Erdos/Renyi) has no structure"]
 - * Quality functions [Covered later]
- * Vertex similarity [Idea: Group similar vertices]
 - * Put graph into a metric space / "Walking"

Quality Functions

- * Q : Partition \mapsto Value
- * Used to rank different partitioning of graphs
- * Additivity property: $Q(\mathcal{P}) = \sum_{\mathcal{C} \in \mathcal{P}} q(\mathcal{C})$, for some function q
- Performance

((Edges within partitions) + (Missing edges across partitions))/(Total possible edges)

* Coverage [(Intra-community edges)/(Total number of edges)]
i.e. If clusters are disjoint, then coverage = 1

Modularity

- * Frequently used Quality Function
- * Proposed by Newman and Girvan
- Idea: Random graph not expected to have cluster structure, so possible existence of clusters is revealed by comparison between actual density of edges in a subgraph and a random subgraph
- * Many choices for modularity formula and null models

Outline

- Introduction and Definitions
- * Approaches
 - Traditional methods
 - Divisive algorithms

Traditional Methods

- * Graph partitioning
- * Hierarchical clustering
- Partitional clustering
- * Spectral clustering

Graph partitioning

* Idea:

- * Fix #groups g
- * Fix size s

Why? (Trivial solution)

 Find partition such that cut edges (inter-partition edges) are minimised

Kernighan-Lin algorithm

- * Input: Graph
- Output: 2 Partitions / Modules
- Optimize over Q = "# edges inside partitions # edges across partitions"
- * Randomly initialize 2 partitions with same number of vertices
- Swap vertices between partitions that gives maximal increase on Q repeatedly
- Find out more on Wikipedia: <u>http://en.wikipedia.org/wiki/Kernighan–Lin_algorithm</u>

KL algorithm (Example)

Q = 2 - 3 = -1

What happens if we shift D to left partition?
-1 for blue edge introduced across partitions
+2 for red edges removed across partitions

Kernighan-Lin algorithm

- * Weakness: Performance dependent on initialisation
- Extensions
 - Weighted graph
 - * Directed graph

Spectral Bisection

- * Index vector **s**
 - * Mark vertices with "+1" or "-1" to indicate partition
- * Compute Laplacian matrix L
- * Cut size $R = \frac{1}{4}s^T Ls$ (minimize this)
 - * Find eigenvector of L
- Find out more: <u>http://www.cs.ucdavis.edu/~bai/ECS231/Graphpartition.pdf</u> (Pg 9-16)

Spectral Bisection (Example)

Max-flow Min-cut

- * By Ford and Fulkerson
- * Input: Flow network (1 source, 1 sink, directed, weighted)
- * Output: Set of edges **S** to cut to disjoint source from sink
- * Condition: Sum of edge weights of **S** is minimized
- * Find out more on Wikipedia: http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

Max-flow Min-cut (Example)

Other Measures

- * So far, "Reduce edge weights between partitions"
- * Numerator: Cut size of C from $g \setminus C$
- * Conductance $\Phi(\mathcal{C}) = \frac{c(\mathcal{C}, \mathcal{G} \setminus \mathcal{C})}{\min(k_{\mathcal{C}}, k_{\mathcal{G} \setminus \mathcal{C}})}$ Denominator: min(total deg in \mathcal{C} , total deg in $\mathcal{G} \setminus \mathcal{C}$)
- * Ratio cut $\Phi_{C}(\mathcal{C}) = \frac{c(\mathcal{C}, \mathcal{G} \setminus \mathcal{C})}{n_{\mathcal{C}}n_{\mathcal{G} \setminus \mathcal{C}}}$ Denominator: (# vertices in \mathcal{C}) * (# vertices in $\mathcal{G} \setminus \mathcal{C}$)

* Normalized cut $\Phi_N(\mathcal{C}) = \frac{c(\mathcal{C}, \mathcal{G} \setminus \mathcal{C})}{k_{\mathcal{C}}}$

Denominator: Total degree of C

Other measures (Example)

Conductance = $3/\min(4,4) = 0.75$ Ratio cut = 3/(3*3) = 3Normalized cut = 3/4 = 0.75

 $\Phi(\mathcal{C}) = \frac{c(\mathcal{C}, \mathcal{G} \setminus \mathcal{C})}{\min(k_{\mathcal{C}}, k_{\mathcal{G} \setminus \mathcal{C}})}$

Conductance = $3/\min(6,4) = 0.75$ Ratio cut = 3/(3*3) = 3Normalized cut = 3/6 = 0.5

	$\Phi_{C}(\mathcal{C}) =$	$\underline{c(\mathcal{C}, \mathcal{G} \setminus \mathcal{C})}$
		$n_{\mathcal{C}}n_{\mathcal{G}\setminus\mathcal{C}}$

$$\Phi_N(\mathcal{C}) = \frac{c(\mathcal{C}, \mathcal{G} \setminus \mathcal{C})}{k_{\mathcal{C}}}$$

Weakness of Graph Partitioning

- Strong assumptions
 - Need to know # groups
 - * May even need to know size of groups
- * Iterative bisectioning into ≥ 2 partitions not reliable

Hierarchical Clustering

- Agglomerative algorithms (Bottom-up)
 - * Start with vertices, remove all edges
 - * Iteratively merge vertices by adding edges
- Divisive algorithms (Top-down)
 - * Start with entire graph
 - * Iteratively split into partitions by removing edges

Agglomerative algorithms

- * Clusters merged based on similarity
- Compute <u>similarity measure</u> between vertices, no matter if they are connected or not
- * For edge x_{ij} where i and j are in different clusters,
 - * Single linkage clustering [Pick edge x_{ij} with min. weight]
 - * Complete linkage clustering [Pick edge x_{ij} with max. weight]
 - * Average linkage clustering [Pick edge x_{ij} with avg. weight]

Dendrogram

Fig. 8. A dendrogram, or hierarchical tree. Horizontal cuts correspond to partitions of the graph in communities. Reprinted figure with permission from Ref. [54].

© 2004, by the American Physical Society.

Divisive algorithms

* Covered in later section

Pros and Cons of Hierarchical Clustering

- * Pros
 - Don't need to assume number or size of clusters
- * Cons
 - No way to decide which partition best represents of the community structure in the graph
 - Does not scale well

(Cost to calculate pairwise similarity measure increases quickly with # vertices)

Partitional Clustering

- * Fix # clusters **K**
- Define distance function d on metric space (X,d)
- * Form K groups based on distance function
- Examples
 - Minimum k-clustering [minimize {largest diameter, among clusters}]
 - * k-clustering sum [minimize {avg dist between all pairs, among clusters}]
 - * k-center [min. {max d_i of distances from points to reference point x_i}]
 - * k-median [Same as k-center. replace max with avg]
 - * k-means clustering

k-means clustering

- * Cost function $\sum_{i=1}^{\kappa} \sum_{\mathbf{x}_j \in S_i} \|\mathbf{x}_j \mathbf{c}_i\|^2$
- * k =# clusters; Centroid c_i ; $S_i =$ Points in i^{th} cluster
- * According to paper: Solved using Lloyd's algorithm

"However, Lloyd's algorithm differs from *k*-means clustering in that its input is a continuous geometric region rather than a discrete set of points."

[Source: http://en.wikipedia.org/wiki/Lloyd's_algorithm]

* My first intuition: EM algorithm

"The algorithm as just described monotonically approaches a local minimum of the cost function, and is commonly called *hard EM*. The *k*-means algorithm is an example of this class of algorithms." [Source: <u>http://en.wikipedia.org/wiki/Expectation-maximization_algorithm</u>]

- * Find out more on Wikipedia: <u>http://en.wikipedia.org/wiki/K-means_clustering</u>
- * Extensions: Fuzzy k-means

Weakness of Partitional Clustering

- Need to fix #clusters K
 - * (Thought: What about binary search...?)
- Embedding in metric space may not be natural for the problem at hand

Spectral Clustering

- * Didn't really read in-depth
- * "Summary"
 - The bulk of Page 95 explains "Why Laplacian matrix is suitable for spectral clustering"
 - Top half of Page 96 draws relation/similarities between spectral clustering and other methods like "graph partitioning" and "random walks"
 - The last paragraph before "5. Divisive algorithms" evaluates the spectral methods

Outline

- Introduction and Definitions
- * Approaches
 - Traditional methods
 - Divisive algorithms

Divisive algorithms

- Agglomerative algorithms iteratively add edges;
 Divisive algorithms iteratively remove edges
- * Algorithm of Girvan and Newman
 - Historically important "Marked beginning of a new era in the field of community detection"
 - Based on "edge centrality"
 [Estimates importance of edges according to some property/process running on the graph]

Girvan and Newman

- * Algorithm (Pg 97)
 - * Compute centrality of all edges
 - * Removal edge with largest centrality (random if ties)
 - * Repeat Step 1 on new graph

Girvan and Newman

- Property used to Girvan and Newman: "Betweenness" [Expresses frequency of participation of edges to a process]
- * 3 definitions
 - Geodesic edge betweenness
 - Random-walk edge betweenness
 - Current-flow edge betweenness

Geodesic edge betweenness

- Number of shortest paths between all vertex pairs that run along the given edge
- Intuition: "Intercommunity edges have large value of edge betweenness"
- Can be calculated in O(mn), or O(n²) on sparse graph, with techniques based on BFS

Random-walk edge betweenness

- * Idea: Information spreads randomly, not always via shortest path
 - Pick 2 pairs of vertices s and t
 - * Walker moves from s to t, crossing edges with equal probability
 - Compute probability that each edge was crossed by walker
 - * Might want to compute "net crossing probability" [To negate back/forth walking due to randomness which doesn't say anything about centrality]
 - * Fix direction \rightarrow ; Then use $| \rightarrow \leftarrow |$
 - Repeat whole process for K pairs of s and t, then average the edge probabilities

Random-walk edge betweenness

* Wikipedia

Formally, the random walk betweenness centrality of a node is

 $C_i^{RWB} = \sum_{j \neq i \neq k} r_{jk}$

where the r_{jk} element of matrix R contains the probability of a random walk starting at node j with absorbing node k, passing through node i. Calculating random walk betweenness in large networks is computationally very intensive.^[5]

http://en.wikipedia.org/wiki/Random_walk_closeness_centrality

Current-flow edge betweenness

- Idea: Consider graph as a resistor network, with edges having unit resistance
 - * Calculate current carried by each edge by applying a voltage difference between all possible vertex pairs
 - * Can be calculated by solving Kirchoff's equations
 - Possible to show that this measure is equivalent to random-walk betweenness

Evaluation

- Calculating Geodesic edge betweenness is much faster than Random-walk and Current-flow edge betweenness
- Numerical studies showed that recalculation of centrality after removing an edge is essential for the Girvan-Newman method

[i.e. don't just calculate once and keep using the same centrality values]

Modifications to the Girvan-Newman method

* Tyler et al.

[Calculate contribution to edge betweenness only from a limited number of centers, chosen at random, deriving a sort of Monte Carlo estimate] [Feature: Allows overlaps in communities]

* Rattigan et al.

[Quick approximation of edge betweenness values carried out by using a network structure index]

* Chen and Yuan

[Count only non-redundant paths]

* Holme et al.

[Remove vertices rather than edges]

- * Pinney and Westhead
- * Gregory

[CONGA (Cluster Overlap Newman-Girvan Algorithm). Code available]

Allow overlapping communities

Speed-ups

Other divisive algorithms

- Idea 1: Inter-cluster edges are related to presence of cycles
 - Edge clustering coefficient

(#triangles, including vertex)/(#possible triangles that can be formed)

Remove edge with lowest coefficient. Recalculate.
 Repeat.

Other divisive algorithms

- * Idea 2: Efficiency of information travelling on graph
 - Information centrality
- Idea 3: Neighbours of a vertex inside community are "close" to each other
 - Loop coefficient

Questions?

* Slides will be made available for reference