CS3230R

Community Detection in graphs

A review paper by

Santo Fortunato

Davin Choo

Outline

- * 15. Testing (Pg 145 ~ 154 in review paper)
 - * 15.1 Benchmarks
 - * 15.2 Comparing partitions: Measures
 - * 15.3 Comparing algorithms

Just some analysis and comparisons of algorithms discussed in paper

Overview Remark

- * No standardised testing method agreed upon
 - Why? Because no standardised definition of "community" to begin with
- Usually use popular methods
- * Consequence:

No standardised benchmark → Any algorithm is good "in some sense" / benchmark of their own

Popular benchmarks

- Planted L-partition model
 (supposed to be small lettered l, but L for readability)
- LFR benchmark (more realistic model of real world graphs)

Planted L-partition model

- * Computer-generated
 - * Partition graph into L groups with g vertices each
 - * Intra-group, add edge with probability pin
 - * Inter-group, add edge with probability **p**out
- * Properties
 - * Each group (as a subgraph) is a Erdos-Renyi graph with connection probability p_{in}
 - * Average degree of a vertex $\langle k \rangle = p_{in}(g-1) + p_{out}g(L-1)$

Planted L-partition model

- * Common to use (Gained status of "standard benchmarks"):
 - * Girvan and Newman set L = 4, g = 32, <k> = 16
 - * Note: **p**_{in} and **p**_{out} are hence dependent on each other
 - Let <k> = z_{in} + z_{out}
 [indicates expected internal/external degree of a vertex]
 - * $z_{in} = p_{in}(g-1) = 31p_{in}$
 - * $z_{out} = p_{out}g(L-1) = 96p_{out}$
 - * Able to detected the planted partition up until $z_{out} \approx 12$ (i.e. $z_{in} \approx 16 - 12 = 4$, $p_{in} = p_{out} = 1/8$; We get a truly random graph)

Planted L-partition model

- * Usage
 - * Build a few graphs for a fixed zout
 - * Compute average similarity (refer to 15.2) between solution of method and built-in/planted solution
 - * Iterate on different values of zout
 - Plot graph (X-axis = z_{out}, Y-axis = similarity)
- * Usually, perform well on low z_{out} and start to fail when z_{out} approaches 8

Modifications to Planted L-partition model

- * Fan et al. [Keep pin and pout independent]
- * Brandes et al. [Gaussian random partition generator]
- * Lancichinetti et al. [LFR benchmark]

LFR benchmark

- * Assume distributions of degree and community size are power laws, with exponents τ_1 and τ_2 , respectively
- * $\forall v, v \text{ shares } (1 \mu) \text{ edges with } v' \text{ in same community}$
 - * Mixing parameter $\mu : 0 \le \mu \le 1$

LFR benchmark

- Building steps
 - 1. Pick a sequence of community size using τ_2
 - ∀v_i, generate k_i (degree of v_i) using τ₁
 Set internal degree of v_i to (1 μ)k_i
 Set external degree of v_i to μk_i
 - 3. Randomly connect vertices within communities until all internal edges are filled up
 - 4. Randomly connect vertices across communities until all external edges are filled up

LFR benchmark

- Numerical tests show that building is O(m),
 where m = #edges in graph
- A. Lancichinetti, S. Fortunato
 [Extend LFR benchmark to directed and weighted graphs with overlapping communities]
- Free download link for software to create LFR benchmark graphs: <u>http://santo.fortunato.googlepages.com/inthepress2</u>

Other benchmarks (inspired by Planted L-partition model)

- * Bagrow [Graphs with power law degree distribution]
- * D.J. Watts [Relaxed Caveman graphs]
 - Originally used to explain clustering properties of social networks
- * Arenas et al. [Embedded hierarchical structure]
- * Guimera et al. [Bipartite graphs]
- Sawardecker et al.
 [General model, accounts for possibility of cluster overlap]

Outline

- * 15. Testing (Pg 145 ~ 154 in review paper)
 - * 15.1 Benchmarks
 - * 15.2 Comparing partitions: Measures
 - * 15.3 Comparing algorithms

Popular measures

- Girvan and Newman
 - * Fraction of correctly classified vertices
- * Others can be divided into 1 of 3 categories:
 - * Pair counting
 - Cluster matching
 - Information theory

Popular measures

- Girvan and Newman
 - * Fraction of correctly classified vertices
- * Others can be divided into 1 of 3 categories:
 - * Pair counting
 - Cluster matching
 - Information theory

Some measures

- * Let \mathcal{X} and \mathcal{Y} be 2 partitions of graph G
 - * Wallace's 2 indices W_I and W_{II} (87)
 - * Rand index $\mathbf{R}(\mathcal{X}, \mathcal{Y})$ (88)
 - * Mirkin metric $M(\mathcal{X}, \mathcal{Y})$ (89)
 - * Jaccard index $J(X, \mathcal{Y})$ (90)
 - * Classification error $H(\mathcal{X}, \mathcal{Y})$ (91)
 - * normalized Van Dongen metric $D(X, \mathcal{Y})$ (92)
 - * normalized mutual information $I_{norm}(\mathcal{X}, \mathcal{Y})$ (93)
 - * Variation of information $V(\mathcal{X}, \mathcal{Y})$ (94)
 - * meet *M* (95)
 - * Relative overlap \mathbf{s}_{ij} (97)

(__) is equation number in the paper

Questions?

* Slides will be made available for reference