Past and Future Trends

Computers in the Past (pre 1970)
- large
 - size of large rooms/cupboards/cabinets
- expensive
 - $1/2M onwards
- applied to scientific computations
 - ballistic computations
 - war-time cryptography
- technology
 - electro-mechanical relays
 - vacuum tube

Vacuum tubes

Transistors

1948 On June 21, the Manchester Mark I, or “baby” machine, becomes the first operational stored-program digital computer. It used vacuum tube, or valve, circuits.

1954 Texas Instruments introduces the silicon transistor, pointing the way to lower manufacturing costs.

1965 DEC debuts the first minicomputer, the PDP-8, which used transistor circuitry modules.
Integrated Circuits

Present Computers (1970-present)

- visible
 - boxes and note-pads
- cheaper
 - $6K to $500K in 1980
 - $1K to $50K in 2000
- applied to data-processing office/homes
 - payroll/billing, commercial applications
 - word-processing and personal computing
- technology
 - VLSI single-board circuits

Early Microcomputers

Very Large Scale Integration

1971 The team of Ted Hoff, S. Mazor, and F. Fagin develops the Intel 4004 microprocessor—a "computer on a chip."

1972 DEC's PDP 11/45 is introduced, its circuitry encased in chips.

1980 The Osborne 1 "portable" computer weighs 24 pounds and is the size of a small suitcase.

1984 Motorola introduces the MC68020 with 250,000 transistors.

1993 Intel's Pentium is introduced in March.
Moore's Law

Gordon Moore in 1965, then research director of electronics pioneer Fairchild Semiconductor, predicted that devices in chips would double each year (revised to 2 years in 1975)

- 1965: world's most complex chip had 64 transistors
- 1999: PIII has 28M

Moore's Law

Computing Power

- 1983
 CPU 8088
 4 MHz
 64 KB RAM
 5MB hard disk
 640x400 pixel
 Mono screen
 $8000

- 2000
 CPU PIII
 700 MHz
 128 MB RAM
 18 GB hard disk
 1400x1050
colour panel
 $3800

<table>
<thead>
<tr>
<th>Date</th>
<th>Intel Transistors</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU (x1000)</td>
<td></td>
</tr>
<tr>
<td>1971.50</td>
<td>4004</td>
<td>2.3</td>
</tr>
<tr>
<td>1978.75</td>
<td>8086</td>
<td>31</td>
</tr>
<tr>
<td>1982.75</td>
<td>80286</td>
<td>110</td>
</tr>
<tr>
<td>1985.25</td>
<td>80386</td>
<td>230</td>
</tr>
<tr>
<td>1989.75</td>
<td>80486</td>
<td>1200</td>
</tr>
<tr>
<td>1993.25</td>
<td>Pentium (P5)</td>
<td>3100 0.8 micron biCMOS</td>
</tr>
<tr>
<td>1995.25</td>
<td>Pentium Pro (P6)</td>
<td>5500 0.6 micron -- 0.25?</td>
</tr>
<tr>
<td>1998.5?</td>
<td>Merced (P7)</td>
<td>14000 0.18 micron?</td>
</tr>
</tbody>
</table>
What drives Moore’s Law?

- transistor
 - fast electronic switch
 - made of 3 slabs of silicon
- integrated circuits
 - interconnection of transistors
 - circuits printed on silicon slice
 - light with shorter wavelengths can create finer patterns to produce more complex chips

Limits to Moore’s Law?

- Challenges to hardware engineers
 - dopants (impurities in silicon to hold electric charge)
 - tunneling effect of electrons
 - chip gates smaller than 2nm do not block electrons

Alternative Technologies?

- Optical computing
 - micro lasers sources
 - on/off filters on silicon
- Quantum transistors
 - transistors the size of single electron
- DNA computing
 - DNA chains like TM tapes
 - operations are slow chemical reactions, though massively parallel

Future – Ubiquitous Computing

- invisible, integrated and embedded into appliances and environment
- high degree of connectivity
 - wireless
- cheap and miniturized
 - even disposable
 - As cheap as scrap paper
- applied to everything
 - scans and sensor
 - wearable computing
Possibilities at home

- control and surveillance systems
- e-kitchen
- e-medical
- network connectivity

Possibilities while driving

- GPS map
- head-up technology
- distance sensors with auto-braking
- alcohol sensor
- sleep sensor

Will we have a better lifestyle?

- what other technologies have brought vast impact?
 - electricity
 - paper