UIT2201: Computer Science and Information Technology Revolution
Spring 2000 – Final Exam (Solution Sketch)

(NOT TO BE GIVEN TO FUTURE UIT2201 STUDENTS)

Question 1: (20 marks)
(a) -- (j) T F T F T T F T T T

Fun Question: (1 bonus mark) _DIY_ (but don’t sweat it)

Question 2: (15 marks)
(a) (6 marks)
SELECT Course-ID, Student-ID
FROM CI, EN
WHERE (CI.Instructor = “H. T. Gersting”) AND
(CI.Course-ID = EN. Course-ID)

G1 ← e-select from CI where (Instructor = “H. T. Gersting”);
G2 ← e-join G1 and EN where (G1.Course-ID = EN. Course-ID);
Ans ← e-project Course-ID, Student-ID from G2;

(b) (2 marks)
List all details of the students from faculty “FOE” who are taking the
course with Course-ID “UIT2201”.

c) (2 marks) Prof S. Harp is unhappy because the code is very inefficient!
d) (5 marks) First e-select, e-select, then only e-join; DIY

Question 3: (15 marks)
(a) (3 marks) AND-gate: No OR-gate: Yes XOR-gate: Yes
(b) (4 marks) Truth Table: DIY Z = P*~Q {P*~Q + P * Q}#
(c) (2 marks) Read from a Memory Address, Write to a Memory Address;
(d) (3 marks) 21 bits address; Row Selector: 9 bits Col-Selector: 12 bits
(e) (3 marks) Can get * operator from + operators (de Morgan’s Law)
(P * Q) = ~ (~(P * Q)) = ~ (~P + ~Q)

Mistake found by KT (Kristen Tang) and DC (Davin Choo)

Question 4: (15 marks)
(a) (2 marks) B = {1, 2, 3} C = {4, 5, 9} sum-diff = 12
(b) (6 marks) Idea: B consists of all the smallest \(n/2 \) elements; A the rest.
Sort the array A in increasing order;
Then B=A[1 .. n/2] (small elements) and C = A[n/2+1 .. n] (big elements)
(c) (2 marks) \(O(n^2) \) if use Selection Sort; but can be \(O(n \lg n) \) with faster sorting alg
(d) (2 marks) B = {1, 2, 9} C = {3, 4, 5} sum-diff = 0
(e) (3 marks) Generate all subsets and find the one that give min sum-diff.
(Up to today, no efficient solution for this problem has been found!)

Question 5: (15 marks) Answer given in Tutorial.

~~~ THE END ~~~