UIT2201: Computer Science and Information Technology Revolution Spring 2010 – Final Exam (Solution Sketch)

(NOT TO BE GIVEN TO FUTURE UIT2201 STUDENTS)

Question 1: (20 marks)

(a) -- (j) T F T F T T F T T T T **Fun Question:** (1 bonus mark) _DIY_ (but don't sweat it)

Question 2: (15 marks)

(a)	(6	marks)
-----	----	--------

in in iteration					
SELECT	Course-ID, Student-ID				
FROM	CI, EN				
WHERE	(CI.Instructor = "H. T. Gersting") AND				
	(CI.Course-ID = EN. Course -ID)				

G1 ← e-select from CI where (Instructor = "H. T. Gersting"); G2 ← e-join G1 and EN where (G1.Course-ID = EN. Course -ID); Ans ← e-project Course-ID, Student-ID from G2;

(b) (2 marks)

List all details of the students from faculty "FOE" who are taking the course with Course-ID "UIT2201".

(c) (2 marks)	Prof S. Harp is unhappy because the code is very inefficient!
(d) (5 marks)	First e-select, e-select, then only e-join; DIY

Question 3: (15 marks)

\sim	(- 1)						
(a)	(3 marks)	AND-gate: <u>No</u>	OR-gate: <u>Yes</u>	XOR-gate: <u>Yes</u>			
(b)	(4 marks)	Truth Table: DIY	$Z = P^* \sim Q$	[P*~Q + P * Q]#			
(c)	(2 marks)	Read from a Memory Address, Write to a Memory Address;					
(d)	(3 marks)	21 bits address; Row Selector: 9 bits Col-Selector: 12 bits					
(e)	(3 marks)	Can get * operator from + operators (de Morgan's Law)					
		$(P * Q) = \sim (\sim (P)$	(* Q)) = ~(~ P + ~(Q)			
	# Mistake four	nd by KT (Kristen Tang	g) and DC (Davin Ch	100)			

Question 4: (15 marks)

(a) (2 marks) $B = \{1, 2, 3\}$ $C = \{4, 5, 9\}$ sum-diff = 12 (b) (6 marks) Idea: B consists of all the smallest n/2 elements; A the rest. Sort the array A in increasing order;

Then B=A[1 ... n/2] (small elements) and C = A[n/2+1 ... n] (big elements)

(c) (2 marks) $O(n^2)$ if use Selection Sort; but can be $O(n \lg n)$ with faster sorting alg (d) (2 marks) $B = \{1, 2, 9\}$ $C = \{3, 4, 5\}$ sum-diff = 0

(d) (2 marks) $B = \{1, 2, 9\}$ $C = \{3, 4, 5\}$ sum-diff = 0 (e) (3 marks) Generate all subsets and find the one that give min sum-diff.

(Up to today, no efficient solution for this problem has been found!)

Question 5: (15 marks) Answer given in Tutorial.

~~~ THE END ~~~