UIT2201: Computer Science and Information Technology Revolution Spring 2010 - Final Exam (Solution Sketch)

(NOT TO BE GIVEN TO FUTURE UIT2201 STUDENTS)

Question 1: (20 marks)

(a) -- (j) \quad T F T F T T F T T T

Fun Question: (1 bonus mark) _DIY_ (but don't sweat it)

Question 2: (15 marks)

(a) (6 marks)

SELECT Course-ID, Student-ID
FROM CI, EN
WHERE (CI.Instructor $=$ " $\mathrm{H} . \mathrm{T}$. Gersting") AND
(CI.Course-ID = EN. Course -ID)
$\mathrm{G} 1 \leftarrow \mathrm{e}$-select from CI where (Instructor $=$ " $\mathrm{H} . \mathrm{T}$. Gersting");
G2 \leftarrow e-join G1 and EN where (G1.Course-ID = EN. Course -ID); Ans \leftarrow e-project Course-ID, Student-ID from G2;
(b) (2 marks)

List all details of the students from faculty "FOE" who are taking the course with Course-ID "UIT2201".
(c) (2 marks) Prof S. Harp is unhappy because the code is very inefficient!
(d) (5 marks) First e-select, e-select, then only e-join; DIY

Question 3: (15 marks)
(a) (3 marks) AND-gate: No OR-gate: Yes XOR-gate: Yes
(b) (4 marks) Truth Table: DIY
$Z=P^{*} \sim Q \quad\left[P^{*}-Q+P^{*} Q\right] \#$
(c) (2 marks) Read from a Memory Address, Write to a Memory Address;
(d) (3 marks) 21 bits address; Row Selector: 9 bits Col-Selector: 12 bits
(e) (3 marks) Can get * operator from + operators (de Morgan's Law)

$$
\left(\mathrm{P}^{*} \mathrm{Q}\right)=\sim\left(\sim\left(\mathrm{P}^{*} \mathrm{Q}\right)\right)=\sim(\sim \mathrm{P}+\sim \mathrm{Q})
$$

\# Mistake found by KT (Kristen Tang) and DC (Davin Choo)

Question 4: (15 marks)

(a) (2 marks) $\quad \mathrm{B}=\{1,2,3\} \quad \mathrm{C}=\{4,5,9\} \quad$ sum-diff $=12$
(b) (6 marks) Idea: B consists of all the smallest $n / 2$ elements; A the rest.

Sort the array A in increasing order;
Then $\mathrm{B}=\mathrm{A}[1 . . n / 2]$ (small elements) and $\mathrm{C}=\mathrm{A}[n / 2+1 . . n]$ (big elements)
(c) (2 marks) $\mathrm{O}\left(n^{2}\right)$ if use Selection Sort; but can be $\mathrm{O}(n \lg n)$ with faster sorting alg
(d) (2 marks) $\quad \mathrm{B}=\{1,2,9\} \quad \mathrm{C}=\{3,4,5\} \quad$ sum-diff $=0$
(e) (3 marks) Generate all subsets and find the one that give min sum-diff. (Up to today, no efficient solution for this problem has been found!)

Question 5: (15 marks) Answer given in Tutorial.

