UIT2201: Computer Science and Information Technology Revolution Spring 2012 - Final Exam (Solution Sketch)

(NOT TO BE GIVEN TO FUTURE UIT2201 STUDENTS)

Question 1: (20 marks)

(a) -- (j)
T T F F F F F T T F

Fun Question: (1 bonus mark) _(10) $)_{2}=(2)_{10}$

Question 2: (15 marks)

(a) (3 marks)

SELECT Student-ID, Name, Tel-No
FROM SI, EN
WHERE (SI.Major = "Origami") AND
(EN.Course-ID ="UIT2201") AND
(SI.Student-ID = EN.Student-ID)
(b) (3 marks)

It is computationally very expensive to do the e-join operations
And in this case, there is no need to involve the CI table at all.
(c) (3 marks)

H1 \leftarrow e-select from SI where (Major="Origami");
$\mathrm{H} 2 \leftarrow \mathrm{e}$-select from EN where (Course-ID="UIT2201");
H3 \leftarrow e-join H1 and H2 where (H1.Student-ID = H2.Student-ID);
Ans \leftarrow e-project Student-ID, Name, Tel-No
(d) (2 marks)

The same information appearing in many records (duplicated).
For example, fields such as \{NRIC-No, Address, Tel-No, Faculty, Major\} appearing in all records of a particular student;
(e) (4 marks)

The deletion problem:
When some info about a student is deleted, the student also "disappear" from the database.

Or any other such examples will also do.

Question 3: (15 marks)

(a) (3 marks) AND-gate: Yes OR-gate: No XOR-gate: Yes Ne
(b) (4 marks) Truth Table: DIY $\quad \mathrm{Z}=\sim^{*} \sim \mathrm{Q}+\mathrm{P}^{*} \mathrm{Q}$
(c) (2 marks) Size of Memory Unit: $2^{32}=4$ Gigabytes
(d) (2 marks) Row Selector: 16 bits Column Selector: 16 bits
(e) (4 marks) Binary Search (recursive halving)

Decoder Circuit \# of output doubles with each address line
And any other correct examples...
\# Mistake found by KT (Kristen Tang) and DC (Davin Choo)

Question 4: (15 marks)

(a) (2 marks)

Easy to implement -- reuse the code from MeSM and MeBG. The two different search procedures have already been tested in their respective companies.
(b) (4 marks) Worst Case: _1000_ Average Case: _(1001)/2=500.5_
(c) (3 marks) Worst Case: _1000+20__
(d) (4 marks)

One-time pre-processing: Sort the combined list.
(Time taken: $\mathrm{O}(n \log n)$ or $\mathrm{O}\left(n^{2}\right)$ if using Selection Sort.)
Then, can use Binary Search on combined list (length $=1,001,000$)
(e) (2 marks)

Worst Case: \qquad

Question 5: (15 marks)

(a) (3 marks) "road network" -- DIY
(b) (5 marks)

```
?ROAD (B,C) Answer: YES
?ROAD (X,D) X = A, X=B, X=E_
?PATH (A,B) Answer: _ YES (ROAD (A,B))_
?PATH(A,E) Answer: _ROAD (A,B), ROAD (B,D), ROAD (D,E)_
    _ROAD (A,D), ROAD (D,E)
```

(c) (2 points)

The maximum sum is obtained when the two numbers are the largest possible.

1. Use the algorithm for Largest and $2^{\text {nd }}$ Largest.
2. Add sum of these two numbers.
(d) (5 points)

Idea: First sort array $A[1 . . n]$;
Then, if we include $A[k]$, then use binary search to find $X-A[k]$;
Algorithm:
$\mathrm{k} \leftarrow 1$;
While ($\mathrm{k}<=\mathrm{n}$) do
$\mathrm{T} \leftarrow \mathrm{X}-\mathrm{A}[\mathrm{k}] ;$
$\mathrm{m} \leftarrow$ Binary-Search (A, 1, n, T) (* binary-search for T in $A[1 . . n]$ *)
if (found) then $\{$ Print $\mathrm{A}[\mathrm{k}]$ and $\mathrm{A}[\mathrm{m}]$ and Exit while-loop; \}
$\mathrm{k} \leftarrow \mathrm{k}+1$;
endwhile

