UIT2201: Computer Science and Information Technology Revolution (Spring Semester 2012) MID TERM TEST (1 hour)

INSTRUCTIONS:

1. This Mid-Term Test is CLOSED BOOK / CLOSED NOTES.
2. Answer ALL questions in this answer book.
3. Make sure you write down your NAME and MATRIC NUMBER

Name: \qquad
Matric Number: \qquad

QUESTION	POSSIBLE	SCORE
Q1	20	
Q2	15	
Q3	15	
Q4	10	
TOTAL	$60+1$	

Fun Question: (1 bonus point)
Name the Nobel Laurette who is associated with the famous "Piano Tuner Problem?
(Now, please relax and enjoy the Quiz, OK?)

Question 1: (20 points)

True-False (2 point each)

(z) (Sample) The course UIT2201 is taught by Prof. Leong Hon Wai \qquad
(a) An algorithm \mathbf{X} with running time $2012 n$ will be faster than another algorithm \mathbf{Y} with running time $0.2012 n^{2}$ for all values of n.
(b) In Scratch, we can define a variable that is capable of storing many data values, under one variable name (thus, reducing the need to "invent" many variable names).
(c) The binary search algorithm is very fast because it keeps reducing the problem size by a factor of two.
(d) The Find-Max (A, n) primitive that finds the maximum in an array \qquad
A [1..n], of n unsorted numbers has time complexity $\Theta(\lg n)$.
(e) Query processing (for example, answering SQL query) is no longer a complex research issue since we have very fast computers nowadays.
(f) Each column of a database table is called a schema.

Not True-False

(g) (4 points each) Rank the following time complexity in increasing rate of growth (from slowest to fastest).

$$
\Theta\left(n^{2}\right), \Theta(n), \Theta(n \lg n), \Theta\left(2^{n}\right)
$$

Answer: \qquad

Fill in the blanks: (2 points each)
(h) Give a common application of the Pattern-Match algorithm covered in class.

Answer: \qquad
(i) Name your favourite recurring principle covered in class.

Answer:

\qquad

Question 2: (15 points)

You are given two lists (arrays) of characters, $T[1 . . n]$ and $P[1 . . m]$ (where $n \gg m$). You can assume that T and P have already been filled with data (i.e. data has been read in).

You are given the following algorithm called U -Count (T, k, P, m) :

```
U-Count(T, k, P, m)
    (* Compute some unknown quantity from *)
(* array T[k..k+m-1] and array P[1..m] *)
begin
    s-count < 0;
    j < 1;
    repeat until (j > m);
        if (P[j] = T[k+j-1]) then
        s-count \leftarrow s-count + 1;
            endif
            j}\leqslantj+1
    endrepeat
    u-count \leftarrow m - s-count;
    print u-count;
end;
```

(a) (6 points) Suppose that $T[1 . .10]=[$ R E V O L U T I O N] and $P[1 . .4]=[$ V O L T]. If we run algorithm U -Count with different inputs, what is the output (of line 10), and what is the final value of the variable s-count (at the end of the algorithm)?

Output produced
 Value of s-count

U-Count(T, 1, P, 4)
U-Count(T, 3, P, 4)
U-Count(T, 8, P, 3)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (3 points) Describe in plain English, what U-Count actually counts?
(b) (2 points) What is a dominant operation for this algorithm U-Count?

Dominant Operation: \qquad
(b) (4 points) Give the worst-case time complexity (expressed in the Θ-notation) of the algorithm U-Count (T, k, P, m) for general T and P ?

Time Complexity: \qquad

Question 3: (15 points)

You use the binary search algorithm Bin-Search (SL, 9, aName) given in class to search for aName (a given name) in a sorted list SL of 9 names, given below.
$S L=$ (Alvin, Beth, Cathy, David, Eve, Faith, Gail, Hon, John)
(a) [5] Draw the search tree that is used to visualize this binary search algorithm applied to the sorted list SL of size 9. (Include the "square" nodes for unsuccessful searches).
(b) [4] How many name-comparisons are needed to search (successfully or unsuccessfully) for each of the names given in the table below:

aName:	Number of Name-Comparisons
Eve	-
Cathy	-
Bunny	-
John	

(c) [3] Assuming that each name is equally likely to be searched, what is the average number of name-comparisons used in a successful search?
(d) [3] Estimate the average number of name-comparisons used in an unsuccessful search. (You can assume that each "unsuccessful search node" is equally likely.)

Question 4: (10 points)

Given a database with the following 3 tables: \{SI, CI, EN \}. You should use these short table names to save space and writing. (Use the reverse blank pages, if necessary)

SI (STUDENT-INFO)						
Student-ID	Name	NRIC-No	Address	Tel-No	Faculty	Major
---	---	---	---	--	---	---

CI (COURSE-INFO)					
Course-ID	Name	Day	Hour	Venue	Instructor
---	---	--	---	--	--

EN (ENROLMENT)	
Student-ID	Course-ID
---	--

For (a) and (b) below, give the appropriate (i) SQL query, and (ii) a sequence of basic database primitives (using e-project, e-select, e-join):
(a) [4 pts] List the Course-ID, Day, Hour of all courses taught in the venue "USP-SR1".
(i) SQL Query:
(ii) Using Basic Primitives:
(b) [6 pts] List the Student-ID, Major of FASS students who have classes in "USP-SR1".
(i) SQL Query:
(ii) Using Basic Primitives:

