ACTIVE SHAPE MODELS

Yogesh Singh Rawat SOC NUS September 19, 2012

Active Shape Models

T.F.Cootes, C.J.Taylor, D.H.Cooper, J.Graham, "Active Shape Models: Their Training and Application." Computer Vision and Image Understanding, V16, N1, January, pp. 38-59, 1995.

What we will talk about?

Modeling of objects which can change shape.

Image Source - Google Images

Problem

□ Not a new problem, has been solved before.

New method to solve the problem.

Better then earlier methods.

Possible Shapes of Human Body

Model - YES

Real Life - NO

Motivation for this work

Existing Models

- "Hand Crafted" Models
- Articulated Models
- Active Contour Models "Snakes"
- Fourier Series Shape Models
- Statistical Models of Shape
- Finite Element Models

Problem with Existing Models

Nonspecific class deformation

An object should transform only as per the characteristics of the class.

Problem with Existing Models

If two shape parameters are correlated over a set of shapes then their variation does not restrict shapes to any set of class.

Problem with Existing Models

No restriction on deformation Not a robust model

Goals

- Deform to characteristics of the class represented
- □ "Learn" specific patterns of variability from a training set
- Specific to ranges of variation
- Searches images for represented structures
- Classify shapes
- Robust (noisy, cluttered, and occluded image)

Point Distribution Model

- Captures variability of training set by calculating mean shape and main modes of variation
- Each mode changes the shape by moving landmarks along straight lines through mean positions
- New shapes created by modifying mean shape with weighted sums of modes

PDM Construction

Manual Labeling

Alignment

Statistical Analysis

Labeling the Training Set

- Represent shapes by **points**
- Useful points are marked called "landmark points"

Manual Process

Aligning the Training Set

- □ \mathbf{x}_i is a vector of n points describing the the ith shape in the set: $\mathbf{x}_i = (x_{i0}, y_{i0}, x_{i1}, y_{i1}, \dots, x_{ik}, y_{ik}, \dots, x_{in-1}, y_{in-1})^T$
- □ Minimize:

"weighted sum of squares of distances between equivalent points"

Aligning the Training Set

□ Minimize:

$$E_j = (\mathbf{x}_i - M(s_j, \theta_j)[\mathbf{x}_k] - \mathbf{t}_j)^T \mathbf{W}(\mathbf{x}_i - M(s_j, \theta_j)[\mathbf{x}_k] - \mathbf{t}_j)$$

□ Weight matrix used:

$$w_k = \left(\sum_{l=0}^{n-1} V_{R_{kl}}\right)^{-1}$$

More significance is given to those points which are stable over the set.

Alignment Algorithm

Align each shape to first shape by rotation, scaling, and translation

Repeat

- Calculate the mean shape
- Normalize the orientation, scale, and origin of the current mean to suitable defaults
- Realign every shape with the current mean
- □ Until the process converges

Mean Normalization

- Guarantees convergence
- Not formally proved
- Independent of initial shape aligned to

Aligned Shape Statistics

- PDM models "cloud" variation in 2n space
- Assumptions:
 - Points lie within "Allowable Shape Domain"
 - Cloud is ellipsoid (2n-D)

Statistics

□ Center of ellipsoid is mean shape $\overline{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$ □ Axes are found using PCA

- Each axis yields a mode of variation
- \square Defined as P_{k} , the eigenvectors of covariance matrix

$$\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} d\mathbf{x}_{i} d\mathbf{x}_{i}^{T} , \text{ such that} \\ \mathbf{S} \mathbf{p}_{k} = \lambda_{k} \mathbf{p}_{k} , \text{ where } \lambda_{k} \text{ is the kth eigenvalue of S}$$

Approximation

- Most variation described by t-modes
- Choose t such that a small number of modes accounts for most of the total variance
- □ If total variance = $\lambda_T = \sum_{k=1}^{2n} \lambda_k$ and the approximated variance = $\lambda_A = \sum_{i=1}^{t} \lambda_i$, then

$$\lambda_A\cong\lambda_T$$

Generating New Example Shapes

Shapes of training set approximated by:

$\mathbf{x} = \overline{\mathbf{x}} + \mathbf{P}\mathbf{b}$

Generating New Example Shapes

Shapes of training set approximated by:

$\mathbf{x} = \overline{\mathbf{x}} + \mathbf{P}\mathbf{b}$

where $\mathbf{P} = (\mathbf{p}_1 \mathbf{p}_2 \dots \mathbf{p}_t)$ is the matrix of the first *t* eigenvectors and $\mathbf{b} = (b_1 b_2 \dots b_t)^T$ is a vector of weights \Box Vary b_k within suitable **limits** for similar shapes

$$-3\sqrt{\lambda_k} \le b_k \le 3\sqrt{\lambda_k}$$

Experiments

□ Applied to:

- Resistors
- "Heart"
- Hand
- "Worm" model

Resistor Example

Training Set

Resistor Example

Eigenvalues of the Covari-

3%

3%

32 points	ance Matrix Derived from a Set of Resistor Shapes	
	Eigenvalue	$\frac{\lambda_i}{\lambda_{\rm T}} imes 100\%$
3 parameters capture variability	λ_1 λ_2 λ_3	66% 8% 5%
	λ_	4%

 λ_5

λ6

"Heart" Example

- 66 examples
- □ 96 points
 - Left ventricle
 - Right ventricle
 - Left atrium
- Traced by cardiologists

"Heart" Example

"Heart" Example (cont.'d)

Eigenvalues of the Covariance Matrix Derived from a Set of Heart Ventricle Shapes

Eigenvalue	$\frac{\lambda_i}{\lambda_{\rm T}} \times 100\%$	
λι	37%	
λ_2	17%	
λ3	13%	
λ_4	7%	
λ ₅	6%	
λ_6	4%	

"Heart" Example (cont.'d)

Varies Septum

Hand Example

18 shapes

□ 72 points

12 landmarks at fingertips and joints

Hand Example (cont.'d)

96% of variability due to first 6 modes

First 3 modes

Vary finger movements

"Worm" Example

84 shapes

- Fixed width
- Varying curvature and length

"Worm" Example (cont.'d)

Represented by 12 point

Breakdown of PDM

"Worm" Example (cont.'d)

Curved cloud

Mean shape:
 Varying width

Improper length

"Worm" Example (cont.'d)

"Worm" Example

- Effects of varying first 3 parameters:
- 1st mode is linear approximation
 to curvature
- 2nd mode is correction to poor linear approximation
- 3rd approximates 2nd order
 bending

PDM Improvements

- Automated labeling
- □ 3D PDMs
- Multi-layered PDMs
- Chord Length Distribution Model

PDMs to Search an Image - ASMs

- Estimate initial position of model
- Displace points of model to "better fit" data
- Adjust model parameters
- Apply global constraints to keep model "legal"

Adjusting Model Points

 Along normal to model boundary proportional to edge strength

Adjusting Model Points

• Vector of adjustments:

 $d\mathbf{X} = (dX_0, dY_0, ..., dX_{n-1}, dY_{n-1})^T$

Calculating Changes in Parameters

- \square Initial position: $\mathbf{X} = M(s, \theta)[\mathbf{x}] + \mathbf{X}_c$
- \square Move **X** as close to new position (**X** + d**X**)
- $\Box Calculate dx to move X by dX$

 $M(s(1+ds), (\theta, d\theta)[\mathbf{x} + d\mathbf{x}] + (\mathbf{X}_c + d\mathbf{X}_c) = (\mathbf{X} + d\mathbf{x})$

 $d\mathbf{x} = M((s(1+ds))^{-1}, -(\theta, d\theta))[\mathbf{y}] - \mathbf{x}, \text{ where } \mathbf{y} = M(s, \theta)[\mathbf{x}] + d\mathbf{X} - d\mathbf{X}_{c}$

- Update parameters to better fit image
- Not usually consistent with model constraints
- Residual adjustments made by deformation

Model Parameter Space

- Transforms dx to parameter space giving allowable changes in parameters, db
- $\Box \text{ Recall: } \mathbf{x} = \overline{\mathbf{x}} + \mathbf{P}\mathbf{b}$

The Find db such that $\mathbf{x} + d\mathbf{x} \approx \overline{\mathbf{x}} + \mathbf{P}(\mathbf{b} + d\mathbf{b})$

$$\overline{\mathbf{x}} + \mathbf{P}\mathbf{b} = (\overline{\mathbf{x}} + \mathbf{P}(\mathbf{b} + d\mathbf{b}) - d\mathbf{x}) \text{ yields}$$
$$d\mathbf{b} = \mathbf{P}^T d\mathbf{x}$$

Update model parameters within limits

ASM Application to Hand

- 72 points
- Clutter and occlusions
- 8 degrees of freedom
- Adjustments made finding strongest edge
- 100, 200, 350 iterations

ASM Application to Hand

ASM Application to Hand

Applications

- Medical
- Industrial
- Surveillance
- Biometrics

Conclusions

- Object identification and location is robust.
- Constraint to be similar to shapes of the training sets.

Extension

Active Appearance Model

- T.F.Cootes, G.J. Edwards and C.J.Taylor. "Active Appearance Models", in Proc. European Conference on Computer Vision 1998 (H.Burkhardt & B. Neumann Ed.s). Vol. 2, pp. 484-498, Springer, 1998
- 2. T.F.Cootes, G.J. Edwards and C.J.Taylor. "Active Appearance Models", IEEE PAMI, Vol.23, No.6, pp.681-685, 2001

Active Appearance Model

Active Appearance Model

THANK YOU

References

- Cootes, Taylor, Cooper, Graham, "Active Shape Models: Their Training and Application." Computer Vision and Image Understanding, V16, N1, January, pp. 38-59, 1995.
- T.F.Cootes, G.J. Edwards and C.J.Taylor. "Active Appearance Models", in Proc. European Conference on Computer Vision 1998 (H.Burkhardt & B. Neumann Ed.s). Vol. 2, pp. 484-498, Springer, 1998
- 3. T.F.Cootes, G.J. Edwards and C.J.Taylor. "Active Appearance Models", IEEE PAMI, Vol.23, No.6, pp.681-685, 2001