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Abstract

Fast Fourier Transform based algorithms are the mainstream of rigid body protein docking
procedures. In this report, a study on the original grid based FFT docking approach proposed
by Kaltchalski-Katzir is carried out. During study, a two stage docking algorithm based on
shape complementarity is developed with the intention to overcome the drawback of the
original docking approach. A refinement stage performing coarse-to-fine search in the
neighbouring rotational space of specific orientation is employed in this algorithm to improve
the docking quality. However, applying two existing protein models designed for grid-based
docking to this algorithm yields unsatisfactory results. Therefore, a new double layered
protein model is proposed after studying the existing models. This new model is designed to
allow close contact between van der Waal surfaces of proteins while it persist a relatively
large angular tolerance which enable reasonably fast execution of the algorithm without
missing the correct solutions. Experiments showed that this new model performs much better
than the existing ones for this algorithm on sixteen bound docking cases. An experiment on
six CAPRI unbound docking was also conducted with reasonable result obtained according to
the CAPRI evaluation protocol.
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Chapter 1

Introduction

Biomolecular interactions are the core of all regulatory and metabolic processes that
constitute of the process of life. Intermolecular interactions, especially those between proteins,
have become a central focus in the post-genomic biology (Mendez, Leplae, Maria and Wodak,
2003). In last few decades, a large number of possible protein interactions have been
uncovered from genetic, biochemical and proteomics studies forming millions of putative
protein-protein complexes. However, only a very small fraction of these complexes are
available for analysis. In the meantime, although the development of structural biology has
considerably accelerated the experimental determination of three dimensional protein
structures, experimental determination of protein-protein complex structure remains difficult
(Chen and Weng, 2002). For these two reasons, algorithms for computational prediction of
protein-protein interactions are becoming increasingly important in recent years. These
algorithms could not only serve as valuable tools for the industry, such as drug companies, but
also potential utilities to give insight into the process of protein-protein reaction for scientific

research.

1.1. Problem definition and background

Prediction of protein-protein interactions in a computational way is commonly addressed as
the Protein docking problem. Docking is the term used for computational schemes that
attempt to find the ‘best’ matching between two molecules. It essentially simulates the
interaction of the protein surface. Therefore, docking usually involves the geometry of the
molecular surfaces, as well as chemical and energy considerations. Protein docking problem
can be formally defined as follows: Given the three-dimensional atomic coordinates of two
protein molecules, find their ‘correct’ bound association (the relative orientation and position
after interaction) between such two proteins. In the most general form, no additional data are

provided (Halperin, Ma, Wolfson, and Nussinov, 2002).



Docking involves two separate proteins. By convention, the larger protein involved is
referred to as the receptor, while the smaller one is known as the ligand. Depending on how
the coordinates of a receptor and respective ligand are obtained, the docking problem can be
divided into two categories, bounded docking and unbounded docking. Bounded docking is a
simpler version of the problem. Both the receptor and the ligand are extracted from the
structure of one protein complex, typically the product of interaction between the receptor and
the ligand. And the goal is to reconstruct the complex. On the contrary, the unbound docking
is designed for ‘real’ situations. The unbound structures of receptor and ligand are used as
inputs for docking, and the goal is to predict how receptor and ligand could be bound to each
other after interaction. As defined by Halperin et al (2002), an unbounded structure may be a
native structure and a pseudo-native structure. A native structure is the structure when a
protein is free in the solution, in its uncomplexed state. A pseudo-native structure is the
structure of a protein complexed to a molecule which is different from the one involved in

docking.

Investigation of the three-dimensional structures of most protein complexes deposited in the
fast growing Protein Data Bank reveals a close geometric matching between the respective
surfaces of the receptor and the ligand (Connolly, 1986). Physically, the van der Waals (VDM)
surfaces of atoms cannot overlap in space and protein-protein interfaces between ligands and
respective receptors generally do not contain large empty or water-filled holes (Hubbard and
Argos, 1994) (See Figure 1.1, 1.2). Indeed, geometric complementarity between proteins
plays a very important role in the process of docking. As Connolly stated, for docking,
“Geometry is not everything, but it is the most fundamental thing.” (Connolly, 1983).
Although biologist may argue that physical and chemical properties play a more prominent
role, shape complementarity between proteins surfaces was quickly used by people as a
foundation for docking algorithms, which may also include chemical consideration as helpful

complements.



Figure 1.1: Shape Complementarity at alpha Figure 1.2: Shape Complementarity at alpha
(red) -beta(blue) subunits interface of horse thrombin (blue) and hirulog 3 (red) interface of

hemoglobin Hydrolase.

Docking is a difficult problem to address computationally especially for unbound cases.
That is because unbound proteins could undergo conformational changes upon interaction.
Such conformational changes will introduce additional difficulties to the problem. Algorithms
that allow conformation changes by considering proteins as flexible shapes have already been
proposed (Totrov and Abagyan, 1994; Halperin et al 2002). However, such algorithms are
not computational affordable for large proteins at current stage, therefore they are not widely
used. The more reasonable way is to consider proteins as rigid bodies. The conformation
change is tolerated by allowing certain degree of penetration between input proteins. This
so-called ‘soft docking’ approach reduces drastically the complexity of docking problem.

Therefore, it is adopted for majority of the algorithms.

1.2. Objective and Contribution

Since 2002, nearly 20 docking teams, which represent the mass majority of docking
community, have taken part in the CAPRI' experiment which aims at assessing the
performance of docking procedures by blind trials. Among these docking procedures, a
sizable fraction of them uses a cubic grid representation of the rigid body protein surface and
Fast Fourier Transform (FFT) search algorithms, following the earlier work by

Katchalsi-Katzir and his colleague (1992) (See Appendix A; Mendez et al 2003). It can also

! Critical Assessment of PRedicted Interactions. Hosted by European Bioinformatics Institute.



be noticed that this family of algorithms performed quite well in the first two rounds of
CAPRI (See Appendix B). These facts triggered the original motivation of this project: to
provide a foundation for further research on protein docking problem by studying

Katchalsi-Katzir’s grid-based FFT docking approach.

Katchalsi-Katzir’s FFT docking approach is based on the shape complementarity which is
measured using Fourier correlation. It’s a ‘soft docking’ approach: the ligand and the receptor
are considered as rigid bodies, and the conformation changes are accounted by allowing
certain degree of inter protein penetration. This method is designed for docking problem in

the most general form: the only input information is atomic coordinates of proteins.

During algorithm study, it has been found that the original Katchalsi-katzir’s two-stage
docking algorithm could not satisfy the current standard for docking due to the low accuracy
of the results it produced. Therefore, a new two-stage algorithm based on Katchalsi-Katzir’s
FFT docking approach was proposed and implemented in C++. Same as Katchalsi-katzir’s

docking algorithm, this new algorithm is also based on shape complementarity only.

Through several experiments on the algorithm, a new double layered protein model was
also proposed for this algorithm. Experiments on sixteen bound cases showed that this new
model outperformed the model used by Katchalsi-Katzir et al (1992) and the model suggested
by Gabb, Jackson, and Sternberg (1997) with much more accurate results produced. To further
assess the new algorithm and the new model, an experiment with six CAPRI unbound

testcases were also conducted with reasonable results obtained.

The rest of the thesis is structured as follows: Chapter 2 gives a literature review of rigid
body docking algorithms. Chapter 3 presents the evaluation system used for performance
study of the new algorithm and different protein models. Chapter 4 introduces the new
algorithm and experimental results on existing protein models. Chapter 5 describes the new
protein model, how it was derived and its performance on the docking problem. Chapter 6

concludes the whole project.



Chapter 2

Related Works

The first attempt toward the docking problem was made by Crick in early 1950s (Crick,
1953). However, due to the limitation of processing power of computer and lack of
experimentally determined protein structures, the computational study of docking didn’t begin
to flourish until middle of 1980s. The first practical method for docking was proposed by
Connolly M.L. in 1983. His docking algorithm matches surface knobs with the surface
depressions by describing protein surface using mathematical function. Docking is one of the
most creative fields in computational biology. It is hard to enumerate all the algorithms that
have been proposed. In this chapter, the focus will be mainly kept on shape
complentarity-based docking procedures, while algorithms based on energy minimization will

not be illustrated since the project scope is limited to geometry-based algorithms.

Docking consists of three key aspects: 1) Conformation space search, i.e. how conformation
changes between bound and unbound structures of a protein are accounted 2) Representation
of the proteins, i.e. how to represent the protein surface since docking simulates the
interaction between protein surfaces; 3) Searching Algorithms and scoring schemes, i.e. how
to find and rank the candidate solutions. Obviously, these aspects are closely related. The
choice of representation will affect how search will be conducted. In the following
subsections, an overview of Conformation space search and a justification for rigid body
assumption will be given, followed a brief review on protein representations, and this chapter

will be closed by a discussion on searching algorithms and scoring functions.

2.1. Conformation Space Search: Rigid vs. Flexible.

Docking is computationally difficult because there are many ways of putting two proteins in
a complementary manner (six degrees of freedom for rigid transformation). This problem
could become even more complicated when considering conformation changes for unbound

docking. This additional difficulty of unbound docking derives from the conformational



change that take place between the bound and unbound protein structures.

The conformation changes mainly result from protein ‘disorder’. A free protein can exist in
a range of conformational substates, with low-energy barrier separating them. However,
experimentally determined 3D structure for a protein is available, in most cases, for only one
conformational substate. And the protein - protein interaction will stabilize both proteins, and
force them into equilibrium, which will alter the structures of both participant of the
interaction. Therefore, usually the experimentally detected structure of a protein in bound
state will be different from the structure detected in unbound state. The complementarity,
either shape or chemical, between structures of a bound protein pair, may not be easily

observed in their unbound states.

According to how conformational changes are handled, docking algorithms are classified

into three classes:

® [Flexible docking: both receptor and ligand are considered as flexible. However, the
extent of flexibility is either limited or simplified. Such flexibility is modeled by
simulation methods (Halperin et al, 2002).

® Rigid body docking: a simplified model that regards two proteins as rigid bodies. The
conformation change is tolerated by allowing certain degree of penetration between
proteins. This assumption will limit the problem to a six-dimensional (three for
translation and three for rotation) search space.

® Semi-flexible docking: Only one protein involved in docking is considered as flexible.
Usually the smaller protein involved in docking, the ligand, is considered as flexible. The
underlying reason for this is that small proteins are likely to have more conformational
variations, and further more, compared to large proteins, simulating conformational
changes of small proteins are computationally affordable.

Simulation of structural flexibility is a computational expensive process even for only one

protein involved in docking. Due to the high computational complexity, flexible docking

algorithms are not applicable to practical protein docking at present, while the semi-flexible

docking is for docking that involves small molecules. On the contrary, the rigid body



algorithms, which limit the search space to six dimensions by rigid body assumption, are

extensively used for large protein docking.

A lot of literatures have been published on Semi-flexible docking. Generally speaking,
Semi-flexible docking algorithms are designed for docking between a small molecule and a
big molecule, such as protein drug docking. A general approach for semi-flexible docking is a
two-stage process. The first stage is to produce sets of possible ligand conformations from
conformational simulation. Several general algorithms have been applied for simulating such
conformational flexibilities, for example: Monte Carlo (Totrov and Abagyan, 1994),
simulated annealing (Goodsell and Olson, 1990) and genetic algorithm (Jones, Willet, Glen,
Leach and Taylor, 1997). The second stage is to dock these generated ligand conformations
with the receptor by certain rigid body docking algorithm. Rigid body docking actually serves

as the foundation for semi-flexible docking.

For docking between large proteins, the number of degrees of freedom may be tremendous
with conformational changes taken into consideration. Generally, rigid body docking
algorithms will be used for such problem in order to reduce computational complexity.
Although the ability to handle conformational changes is limited, those algorithms are
remarkably successful for large protein docking (Halperin et al, 2002). That is because for
large proteins, structural flexibility is mainly restricted to surface side chains (Betts and

Sternberg, 1999), which could be tolerated if a rigid body docking algorithm is ‘soft’ enough.

As a conclusion for above paragraphs, rigid body assumption is reasonable for protein
docking, especially for large protein docking. In addition, rigid body docking can also serve

as the foundation for some flexible algorithms. Therefore, this assumption is widely adopted.

2.2. Representations of Proteins as Rigid bodies
The inputs of the docking problem are two sets of atomic coordinates of proteins. Such basic
representation is usually not used for the docking algorithms. More often, the protein or the

protein surface only will be reconstructed from the atomic coordinates and represented by certain



mathematical models for ease of searching and ranking of possible solutions. There are two major

branches of representations, namely, by geometric features and by grids.

®  Geometric features representation: A bulk of algorithms chose to represent a protein by
its geometric features of the protein surface. Connolly laid the foundation for this class of
algorithms by introducing protein surface analysis. He proposed a protein surface model:
the Connolly surface, which is also known as molecular surface. Based on the Connolly
surface analysis, a surface is described by sparse critical points of the mathematical
function describing the surface (Lin, Nussibov, Fischer and Wolfson, 1995). Those critical
points could be cavities, local knob or holes on the actual surface. In the later stage,
surface normals of those critical points are also included for surface representation
(Norel, Lin, Wolfson and Nussinov, 1995). Besides Connolly surface, critical points can
also be sampled on other kinds of rigid body protein surface models, such as
solvent-accessible surface and molecular skin. For this class of representation, the
sparseness of sampled points is critical for effective and accurate search for candidate
rigid transformations associating the surfaces of two proteins in a complementary
manner.

® Grids representation: Besides representing the protein by geometry features, another
mainstream way is to represent the protein by grids. This approach was first applied to
docking by Katchalsi-Katzir et al (1992). In this representation, the structure of a protein
was discretized into three-dimensional Cartesian grid, and different numeric values are
assigned to nodes of the grids. Similarly, grid representation could also be applied to
different rigid body protein models. The original protein model by Katchalsi-Katzir is the
most widely used one.

Comparing to the geometry feature representation of the protein, the grid-based one has

several advantages. In addition to surface shapes, it can be easily applied to other protein

surface properties such as electrostatic and hydrophobicity. Another advantage for this

representation is that it can choose to represent the protein with either high resolution or low

resolution depending on whether the accuracy is favored or the speed is favored. In

conclusion, grid-based representation is more flexible than the geometry feature

representation. Therefore, it has been widely adopted since it was proposed.



2.3. Searching algorithms and scoring schemes for Rigid body docking

For rigid body docking, a candidate solution is a rigid transformation which associates two
proteins in a complementary manner. As stated in the beginning of this chapter, search for
such transformations are closely related to protein representation. In the following section,

two fundamental algorithms for rigid body docking will be illustrated.

Geometry feature representation represents a protein by critical points on the surface and
the associated surface normals. To compute a rigid transformation to superimpose a receptor
onto a ligand, three non-collinear points from each protein are needed. However, there may
not always be three independent matching critical points pairs. In order to cope with this
problem and reduce the complexity, Norel introduced geometry hashing-based docking
algorithm (Norel et al, 1995; Norel, Petrey, Wolfson and Nussinov, 1999). Their algorithm
picks two critical points from protein surface. For each pair of points from each protein, a
‘signature’ including certain geometry information about the two points and normals is
computed. The computational complexity is reduced by breaking up the search into
preprocess step and recognition step. In preprocess step, a look-up table with each entry
consisting of a pair of points from ligand, a signature, and coordinate of a critical point using
the two points as reference frame etc is built up for all possible pair of critical points on each
protein. In recognition step, the best rigid transformation between the two pairs of points is
computed by exploiting the pre-computed look up table only if the signatures are compatible
according to some criteria. Those locally determined transformations will then undergo
post-processing to remove spatially prohibited transformations, such as deep penetration

between proteins.

Unlike the geometry hashing-based algorithm which explore only part of the solution space,
algorithms using grid model of protein usually scan the entire solution space by
systematically rotating and translating one protein about another. Matching of surfaces is
accomplished by calculating correlation functions, which favors close contact and
automatically penalizes surface overlap. The correlation calculation and successive

translational increment can be performed efficiently using Fast Fourier Transform (FFT)



algorithm. No post-processing step is needed for removing transformations causing deep

penetrations since it is already integrated into the search stage.

As stated in the previous subsection, grid-based representation has several advantages over
geometrical feature representation. These advantages make FFT based approaches more
attractive than the geometry hashing based algorithms. First, FFT based algorithms could also
correlate other protein surface properties such as electrostatic and hydrophobicity. And those
properties can be integrated together when searching for the solutions instead of employing
additional post-processing steps. In addition, FFT based algorithms can either perform fast
low resolution scan for rough docking, or high resolution scan for accurate docking, and even

a combination of low and high resolution docking to compromise between quality and speed.

The major disadvantage for FFT based algorithms is that it is quite slow compared to
geometry hashing based ones due to its full solution space searching. However, restricting
search space may bear the danger of missing correct solutions. In addition, at the current stage
of development of docking algorithm, the docking community is much more concerned about the

docking quality rather than speed of execution.

A docking algorithm may produce a large number of solutions during or after searching. To
discriminate between ‘correct’ solutions and false positives, a reliable and fast scoring
function is required. One of the most commonly used scoring functions is shape
complementarity, which awards surface contact, penalizes overlap and rejects serious overlaps.
However, geometry along is not powerful enough to filter out the undesired solutions. Some
false positive solutions for some docking cases may appear to have a better shape
complementarity than correct solutions. In recent years, biochemical properties such as
electrostatic, hydrophobicity, and hydrogen bond have been extensively applied as scoring
criteria in the development of docking algorithm. However, since geometry complementary
calculation is highly efficient, they usually serve as a primary filter for the solutions (Halperin

et al, 2002).
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Chapter 3

Evaluation System

To evaluate the performance of an algorithm, a good evaluation protocol has to be
developed and a pool of varied testcases must be collected. This chapter consists of two
sections. The first section describes the parameters and methods used for evaluating the
docking results whereas the second section lists all bound and unbound cases employed for

development and verification of the new algorithm proposed in this report.

3.1. Evaluation protocol
To assess the quality of a docked complex generated by a docking algorithm from a given
pair of proteins, a natural way is to compare it with the known ‘correct’ structure. This is

exactly what has been used for this project.

For bound docking, which aims at reconstruction, the ‘correct’ structure is obviously the
structure of the protein complex from which both input receptor and input ligand are extracted.
For unbound docking, which aims at prediction, the ‘correct’ structure is the experimentally
determined structure of the complex formed by the receptor and the ligand in real biochemical

interaction.

There are three parameters used for measuring the distance between a docked complex and
the correct structure: namely, ligand RMSD (root mean standard deviation), interface RMSD
and fraction of native residue-residue contact. These three parameters are adopted by CAPRI

with the purpose of providing a reliable basis for performance evaluation and analysis.

3.1.1. Interface RMSD and Ligand RMSD.

These two quantities are used to evaluate the overall geometric fit between the 3D
structures of the docked complex and the correct one. RMSD is a term measuring the distance

between two sets of values, as formally defined:

11



Given two sets with Nvalues each X = {:ra X1, X1.... xu} ¥ = {:L'l: VL V..., J.'n}

- 'I:x;'—J.':':I1 Nue X, pel v
A lower RMSD indicates a better fit between the structures.

Because the docked complex and the correct complex may be at different orientations,
before actual RMSD calculation, the receptor of both the docked complex and the correct one
have to be superimposed/aligned. Based on Kabsch (1978)’s work. the procedure for

superimposition has been developed as shown below:
Given two sets of 3D coordinates, X = {xl: XL, .'xjrz} = {JJL V1LV, ., _:L-'n},
1. Compute the centoids of X, ¥ xand v respectively

Compute X=X-x and Y=¥V-v.

Compute 3 by 3 matric

5]

L

R= [g‘i_;- ] =2 [\}'m-_xm- l where x,.. v, is the jg, i, coordinate of ng pointin X.T.

4. Compute eigenveciors gy and cooresponding eigenvalues ui of RR by STD

decompositionof R, arranging i descending order Let a; = a) ¥ a, o ensure right
handed system.

Compute b, = R a, and normalizelet b; = b % b,

iy

6. Compute the 3 by 3 rotation matrix U = [ub] = rZ EJ_;L.:-c:_,-t._:-\l
\ k& J
7. Uand y—xis the desired mtation and translation to superimpose X onto ¥
After superimposition of receptors, L RMS, the RMSD between ligands in the docked
complex and the correct complex, can be computed. Both the superimposition and L_rms are
computed on coordinates of backbone atoms (C, Cq, N, 0), for the reason that the structure of

the backbone of a protein is usually stable upon protein conformational change.

L RMS is a global measure. Therefore, it may not always portrait the real fit at
protein-protein interface, especially when ligand is large. Hence, another local parameter,
interface RMSD (I RMYS) is used for measuring the fit between the docked complex and the

correct complex in the interface region. The interface region is defined in the correct complex.

12



It consists of interface residues'. A residue is said on the interface if any of its atoms is within
10 A of an atom on the other protein in the correct complex. Once more, only the backbone
atoms of those interface residues and their equivalents in the docked result will then be used

to compute the I RMS after superimposition.

3.1.2. Fraction of native residue-residue contact Fnat.

A pair of residues on different sides of protein-protein interface is considered to be in
contact if any of their atoms were within SA (angstrom). Fnat is defined as the number of
native (correct) residue-residue contacts in the docked complex divides by the number of
contacts in the known correct complex. The number of residue-residue contacts is critical for

protein interaction to take place. Therefore, Fnat is also used for evaluating docked complexes.

3.1.3. Evaluating a docking algorithm using these parameters

In most cases, a docking algorithm will produce several complexes, which are usually
ranked according to their scores, for one docking case. Depending on whether the docking
case is bound or unbound, the performance of the algorithm on this specific case is evaluated
in different ways:
® For a bound docking case, only L RMS will be computed, since L RMS alone is good
enough for measuring the quality of bound docking. The lowest L RMS among all
produced complexes and the rank of the complex with the lowest L RMS will be used
to evaluate how well the algorithm performs on this case. The lowest L_RMS is an
indication for how good the best docked complex is, whereas the rank shows the ability
of the algorithms to distinguish correctly docked complexes from false positives. A
case is identified as Fail, if the lowest L_RMS is larger than 18 A.

® For an unbound case, the evaluation protocol strictly follows CAPRI’s procedure
(Mendez et al 2003). All three parameters will be computed. The performance of the
algorithm for s case is evaluated by the quality of the best docked complex. The quality
is in terms of Fnat, L RMS and I RMS as defined in Table 3.1. A docked complex is

considered as the best, if it has the lowest | RMS.

! Residue is a term referring to those amino-acids which made up proteins.

13



Quality Frat L RMS or I RMS
High >0.5 <1.0 or<1.0
Medium >0.3 <5.0 or<5.0
Acceptable | > 0.1 <10.0 or<10.0
Incorrect <0.1 >10.0 or>10.0

Table 3.1. Quality of a docked complex is determined according to Fnat AND (L_RMS OR I _RMYS).
These criterias are adopted in CAPRI (Norel et al 2003 Table II)

3.2. Docking cases.

3.2.1 Bound cases

A total of sixteen bound cases, consisting of proteins with a large variety of number of

atoms, are used in this project (See Table 3.2). Structure files of all complexes are taken from

Protein Data Bank. After ligands and receptors are extracted from the complexes, their

orientations are randomized before docking. All bound cases were from Mendez et al (2002)

Complex Receptor name No. Of Ligand name No. Of
name Atom Atoms
1ICHO Alpha-chymotrypsin Chain | 1048 Alpha-chymotrypsin Chain 148-245 | 702
1ABI Hydrolase alpha thrombin 2039 Hydrolase Chain L 265
1ACB Hydrolase 1769 Eglin C (I) 522
ICSE Subtilisin (E) 1920 Subtilisin Inhibitor (I) 522
ITGS Trypsinogen (Z) 1646 Panecreatic Secreatic Inhibitor 454
2KAI Kallikrein a 1799 Bovine Panecreatic trypsin Inhibitor | 438
2MHB Hemoglobin o 1069 Hemoglobin 3 1134
2PTC Beta-trypsin 1629 Panecreatic Secreatic Inhibitor 454
3HFM IG * G1Fab fragment 3295 Lysozyme 1001
4HVB HIV-1 protease Chain A 746 HIV-1 protease Chain B 746
4SGB Serine proteinase 1310 Potato Inhibitor 300
4TPI Trypsinogen (Z) 1629 Panecreatic Secreatic Inhibitor 456
9LDT Lactate ddehydrogenase | 2568 Lactate ddehydrogenase Chain B 2568
1FDL IG * G1Fab fragment 3308 2-lysozyme 1001
28IC Subtlisin 1938 Subtilisin Inhibitor (I) 764

Table 3.2: Bound testcases used for performance analysis.
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3.2.2 Unbound cases

Six unbound cases given by CAPRI team (Norel et al 2003) are used to evaluate the

performance of the new algorithm (See Chapter 5). The table below gives a brief description

of these unbound cases.

Complex Receptor name No. Of Ligand name No. Of
name Atom Atoms
CAPRIO2 | bovine rotavirus VP6 9486 Fab 3237
CAPRIO3 | flu hemagglutinin 11679 Fab HC63 6677
CAPRIO4 | alpha-amylase 3898 Camelide antibody VH domain 1 882
CAPRIOS | alpha-amylase 3908 Camelide antibody VH domain 2 905
CAPRIO6 | alpha-amylase 3908 Camelide antibody VH domain 3 899
CAPRIO7 | T cell receptor 1757 Toxin 1785

Table 3.3: Unbound testcases. Detail description of those cases can be found on CAPRI website'.

! http://capri.ebi.ac.uk/capri.html
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Chapter 4

The algorithm and experimental results

As a pioneer, Katchalsi-Katzir’s algorithm inspired many researchers in docking filed.
However, under the current standard, this algorithm is no longer applicable for docking due to
the low accuracy of results it produced. A new algorithm based on Katchalsi-Katzir’s work
was developed for relatively high accuracy docking. Same as Katchalsi-Katzir’s algorithm,
the docking criteria used for this new algorithm is also shape complementarity only. However,
with existing protein models, the performance of the algorithm is not as good as what is
expected. In this chapter, the algorithm will be introduced in first section, and the

experimental results with two protein model will be presented in second section.

4.1. The algorithm

4.1.1 The grid based FFT docking approach
Rigid body docking is essentially finding the best rigid transformations to associate two proteins.
A rigid transformation consists of two components: translation and rotation. In the following

paragraph, a detail explanation will be given on how these two components will be scanned.

4.1.1.1 Measuring shape complementarity and scanning the translational space by FFT

The grid-based FFT docking starts with representing proteins with grids. Both protein
molecules are considered as rigid body and projected onto two three-dimensional grids of N
X N X N nodes each by aligning the centroid of the protein with the center of the grid.

Every node in the grids is assigned to a value according to the following function:

1 : on the surface of the protein molecule
f A = < p :inside the proteinmolecule. a negativevalue Fune. 1
Lm.n 0 : outsidethe proteinmolecule
1 : on the surface of the protein molecule
fB = < & :insidethe protein molecule. a positivevalue Func. 2
Lm.n 0 : outside the protein molecule
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Where A, B are the grid representation for the receptor and the ligand respectively and 1, m, n

are the grid indices. A node is considered inside the protein molecule if there is at least one

heavy atom (Carbon, Nitrogen or Oxygen) within ¥ A from it. The surface is defined as a
boundary layer of finite width # A between the inside and the outside of the protein molecule.
A node is said to be the surface if the distance to the nearest heavy atom is between 7 and ¢ +

¥ (See Figure 4.1).

Qutside

t N Pt

Inside

Figure 4.1: An illustration of ‘inside’,
On the surface ‘outside’, ‘on the surface’, r and .

There are two atoms.

The matching of surface is accomplished by calculating the correlation functions defined as:

fc :iiz f4 -fB Eq.1

£

a. by imeln=l Ilmn “l+a,m+pB n+y
Where a, B, vy are the number of grid steps by which B is shifted with respect to protein A in
each dimension. According to a translation vector {a, B, v}, if there is no contact between the
two proteins, the correlation value should be zero. If there is a good geometry match, the
correlation value should be positive. If two proteins deeply penetrated each other, negative
correlation values should be obtained. (See Figure 4.2) To formulate a clear distinction
between the above three situations, a relatively large negative value should be assigned to p in
f4 while a relatively small positive value should be assigned to d in fg. Therefore, if there is a
penetration between two proteins after relative shifting, p times é or 1 (the value assigned to
grid in the surface layer) will contribute negatively to the overall correlation score. On the
contrary, if there is a overlapping of surface, positive value will be contributed. In a
conclusion, a correlation value is the score for surface contacts after being penalized by

penetration. A positive correlation will be obtained if the contribution from contacts
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overweighs contribution from penetration. This scoring scheme is a ‘soft’ scoring scheme.
Even for a translation vector such that there is certain degree of penetration, a large positive
correlation score can still be obtained as long as there is a good surface overlapping.

a b

c d Legend:

Surface
Overlapped
surface

Inside of
Ligand : &

Inside of
Receptor: 2

Figure 4.2: Different relative position of receptor and ligand, illustrated in 2D. a) No surface contact.

b) Limited contact. ¢c) Good Geometry match. d) Deep penetration.

If we plot a graph of fc¢ using correlation scores versus {a, B, Y} in the entire translation
space (N X N X N), a good geometry match will be represented by a high peak in the graph
(See Figure 4.3) while a poor match will be a low peak. Thus, the translation for the best

shape match can be readily determined by the coordinates of the highest correlation peak.

Figure 4.3: Cross Section at o = 0
through function f¢,, g,y for a docking
case. The height of the graph

represents the correlation value at

each shift vector {0, B, y}. Negative
values are omitted, and center area is
left empty. Graph is taken from
Katchalski-katzir et al (1992).
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Direct calculation of £, for each {a, B, y} shift involves N° multiplications and additions,
which means an O(N®) complexity for all N* possible shifts. However, since both f4 and f

are discrete functions, such calculation can be much more rapidly done using Discrete Fast

Fourier Transform. The discrete Fourier transformation (DFT) of a discrete function Y/ i

defined as:

N N N
F,,.=>>> exp[-2x(ol + pm+qn)/N]x f, , ., where o, p, q= {1, 2,..., N}

And the inverse discrete Fourier transformation (IFT) is defined as:

N N N

ﬁm _ ZZexp[—Zn‘f(o[erm + qrr:r)/j'\f]><,2t79:p:{ir

3
N o=1 p=1 g=1

Apply DFT to both side of Equation. 1 yields:

Fe =F4* #Fg where F;* = Complex conjugation of DFT(f;).

Eq. 2
Fg =DFT(f3), Fc = DFT(f). !

The above equation reveals that f¢ for all possible shifting vector can be obtained by an IFT
operation on F¢ which is computed by simplify multiplying complex functions F4* and Fpg
together. By performing fast Fourier transform algorithm (Eliot and Rao, 1982) for those DFT
and IFT, calculation for correlation scores for all possible shifts requires O(N’In(N)) steps,

which is significantly faster.

4.1.1.2 Scanning the rotational space.

The correlation calculation and scan for the highest correlation peak must be performed for
all relative orientations of two input proteins in order to find the transformations that produce
good geometry matches. An orientation is defined by three Eulerian angles: ¢ (0° ~ 360°), 6
(0° ~ 180°) and v (0° ~ 360°) (See Goldstein, (1980) for definition of three angles). It can be
represented below by a rotation matrix R.

—sin ¢gcosBsin 7 + cos@gcosy  cosgcosPsiny +sin geosy  sin Gsinys

Ry

o —sin ¢gcos@cosy —cos@siny  cos@cos G cosy —sin@siny  sin @ cosy

sin ¢sin & — cos¢@sin & cosé

In practice, the receptor is fixed, while the ligand is rotated with respect to its centroid
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according to the three Eulerian angles which are varied at fixed angular step A. However,
such sampling of the rotational space is biased. The authors of Katchalsi-katzir’s algorithm
didn’t handle this drawback. Gabb et al (1997) suggested computing the pair-wise distance

between two orientations, which is measured by the following formula:

”(R_q:el:wl XR;;:@:WJ )_1
2

, where tr() is matrix trace

dfsr((gﬁl:gl:%):(%agzﬁ”z )) = arccos

In geometry sense, this distance is the magnitude of the angle by which one orientation is
rotated to another with respect to certain axis (Lattman, 1971). Therefore, orientations within
1° distance from any already scanned orientation are defined as degenerate and will not be
scanned again. For example, when A = 15° preventing scanning degenerate orientations
reduces total number of orientations from 360 x 180 x 360/A> = 6912 to 6360. For scanned

orientation, the highest peaks found will be saved.

After the entire rotational space has been traversed, all the peaks saved will be sorted
according their correlation score. Each of these peaks indicates a geometric match and
represents a potential docked complex. The higher a peak is ranked, the more likely it could
represent the correct complex. The relative transformation between two input proteins to
produce such complex can be easily derived from the coordinates of the peak and the three

Eulerian angles at which the peak was found.

It is also noteworthy that orientation sampling is discrete. It’s not reasonable to assume that
the correct orientation will be sampled during rotational space scanning. However, by
assigning appropriate values to these parameters, such as A, 7 etc., an orientation that slightly
deviates from the correct orientation would still produce a distinct correlation peak. The
maximal deviation from the correct orientation that would still result a correlation peak is
defined as angular tolerance. This quantity is crucial for the FFT docking approach. Docking
with a A larger than the angular tolerance will result in missing correct orientations for some

docking cases.
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4.1.2. Katchalsi-katzir’s docking algorithm

Katchalsi-katzir and his colleagues did not stop when they had developed the above
docking approach. Instead, they proposed a two-stage docking algorithm which compromises
between computation load and docking quality. The first stage is a coarse global search with a
larger n (grid step size) and a smaller N (the number of nodes in each dimension of grid). The
second stage is a discrimination stage using a finer grid with smaller  and larger N. The
global search stage will scan the entire rotational space and translational space for the highest
peak of each sampled orientation. These peaks will be sorted and the top k peaks will be
passed to the discrimination stage. In the discrimination stage, the surface correlation scores
for orientations that yields the k peaks will be recalculated using the smaller  and the bigger
N and the highest peaks will be scanned one more time. During this stage, correct correlation
will be enhanced while spurious peaks will be suppressed. After this stage, recalculated peaks
will be sorted according to their correlation scores, and then used to generate potential docked

complexes.

4.1.3. A new variation based on the FFT docking approach

Katchalsi-katzir’s algorithm can only produce roughly correct docked results because of its
discrete sampling of the rotational space during the global search stage. A correct orientation
could not be accurately detected unless it is fortunately sampled during global search. Hence,
a smaller A is always desired to produce high quality docked complexes. However, the
angular step A in global search stage can not be too small otherwise the computation load will
be too heavy for practical use. This contradiction between speed and quality was not handled
in their algorithm. If we want to get some accurate results after running their algorithm, we
have to assign a small value to A, but such small value may result in days of computation. If
we want the program to finish in reasonable time, the results produced will not be accurate

enough under the current standard of docking.

Therefore, a variation aiming to resolve this contradiction has been proposed and

implemented in this project (See Figure 4.4).
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Figure 4.4: The flowchart of the docking algorithm based on the approach of Katchalsi-katzir et al.

Docked complex

As shown in Figure 4.4, this new algorithm also consists of two stages. The first stage is a
global search which can be either coarse or fine depending on the choice of grid step n and
number of nodes N. The top k peaks found in the first stage will passed to the next stage. In the
refinement stage, each of the k orientations at which the top k peaks are found will be refined
by performing an iterative coarse-to-fine search in its neighbouring rotational space for the
locally best orientation to dock the receptor and the ligand in a shape-complementary manner.
The translational space scanning by FFT will be performed for every newly sampled
orientations using a grid specified by N’ and n’, which could be either finer or the same as the

one used in previous stage. The detail procedure of refining one orientation is given below:

Ag = angular step in global search stage.
( @, 0, w) = an orientation that needs to be refined.
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For A=A¢/2, Ag/4,......, 4¢/2" > 1°
For each of the 3 x 3 x 3 orientations ( @, 0°, y’) within a small neighborhood of size
A centered at ( @, 0, y),
Find the highest correlation peak P at (@, 8°, w’) by FFT correlation approach
with a grid of grid step 5’ and number of nodes N”.
Replace ( @, 0, w) by the angles ( @°, 0°, w’) at which the largest peak P is found.
Return ( @, 0, w) as refined and its corresponding peak.

After refinement is performed for all k orientations, all the peaks corresponding to the refined
orientations will be sorted again according to their surface correlation scores. And then they

will be used to generate docked complexes for the input docking case.

The time complexity of this algorithm is determined by N, N’, k and A. The time
N*log(N)

complexity for the global search stage is O( ye ) while the time complexity for the

refinement stage is O(AN" log(N ')log(A)) . In actual running, for N, N°= 128, A = 15° and

k = 60, the running time for the global search stage and refinement stage are roughly 65

minutes and 50 minutes using a Pentium 4 2.0G CPU.

Compared to the algorithm proposed by Katchalsi-katzir et al, this new algorithm can still
exploit the coarse global search and fine discrimination technique to reduce computational
load depending on the choice of related parameters. Furthermore, the use of the refinement

stage will remarkably increase the quality of docked complexes (See Figure 4.5).

700
630
600 |
350 |
300
450
400
350
300
230

= = = -Before refinement
— After refinment

Surface Correlation Score

Figure 4.5: The effect of refinement. Plotting 60 peaks from 1ABI case in table 5.5 using rank as X-axis
and surface correlation score as Y-axis. As can be observed from the graph, after refinement, the surface

correlation scores become larger for each peaks.
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4.2. Experimental Results on different configuration of parameters.

To implement the new algorithm, a number of parameters have to be specified. Those

parameters can be classified into two groups:

® Parameters that specify the protein model: 7 the radius of an atom; £: the surface

thickness; p: the value assigned to the nodes inside the molecule in the receptor grid; o:

the value assigned to the nodes inside the molecule in the ligand grid;

® Parameters that control the algorithm running: A: the angular step; N: the number of
nodes in each dimension of the grid in global search stage; n: the grid step size used in
global search stage; N’: the number of nodes of the grids used in refinement stage; n’:
the grid step size used in refinement; k: the number of peaks passed to the refinement
stage.

An additional constraint should be noticed that the products Nn and Ny’ have to be larger

than any potential complex otherwise the algorithm might function improperly due to the

periodicity of Fourier space.

4.2.1. Two existing protein models for grid-based docking

4.2.1.1. Katchalsi-katzir’s model and corresponding parameter values

In Katchalsi-katzir’s implementation, atom radius 7 is 1.8 A which is 0.2 A larger than the

average VDW radius of carbon, nitrogen and oxygen. The additional 0.2 compensated for fact

that the hydrogen atoms are not projected on the grids. Thickness # is chosen to be 2.0 A

which is used to tolerate the penetration due to conformation change. p and 9, the value for

interior nodes, are assign to -15 and 1 respectively (See a visualization in Figure 4.6).

Figure 4.6: One atom

in Katchalsi-katzir’s

Surface layer protein model. This
Interior model is for both

— receptor and ligand.
VDW surface )
e The VDW surface is
Surface Interior Boundary contained in  the

interior region.
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4.2.1.2. Gabb’s model and corresponding parameter values

Gabb et al (1997) proposed to use two different models for receptor and ligand respectively.

They also assigned 1.8 A to r, but 1.5 A for £. The major difference is that they chose to
model the ligand with no surface layer. In other words, they chose to assign 0 to nodes within
the surface layer of ligand molecule whereas Katchalsi-katzir and his colleagues assigned 1

(See Figure 4.7). p and 0 in Gabb’s model are also set to be -15 and 1.

Surface layer

Interior

VDW surface

Surface Interior Boundary

Receptor Ligand

Figure 4.7: Two atoms in Gabb’s protein models for receptor and ligand respectively. As can be

observed from the above Figure, the ligand has no surface layer.

4.2.2. Performance of Katchalsi-katzir’s model

To find a set of suitable parameters for Katchalsi-katzir’s model, several experiments using
fifteen bound cases have been conducted. It can be concluded that the Katchalsi-katzir’s protein
model is not suitable for the new docking algorithm according to the experimental presented

in following subsections.

4.2.2.1. Experiment 1

The first experiment was conducted on the values used by Katchalsi-katzir (See Table 4.1 A.).
The angular step A was set to 20° because they believed the 2.0 A surface thicknesses yield an
angular tolerance of about +10°. N, n, N’ and 1’ were set to 90, 1.1A, 128, 0.8A to
compromise between computation load and docking quality. The choice of 0.8A for 1’ is

because it is the half of carbon-carbon bond length.

Parameter A N n N’ n' p o k
Value 20° 90 1.1A 128 0.8A -15 1 60

Table 4.1 A: Parameters used in Experiment 1. (Katchalsi-katzir et al 1992).
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Cases ICHO | 1ABI | 1ACB | ICSE | ITGS | 2KAI | 2MHB | 2PTC | 3HFM

Rank Fail 52 40 37 25 48 17 5 34

L RMS(A) | Fail |13.46 | 152 145 | 822 | 13.85 | 1497 | 11.2 17.3

Cases 4HVB | 4SGB | 4TPI | 9LDT | 9RSA | 1FDL | 2SIC

Rank Fail 14 19 4 55 Fail —

L RMS(A) | Fail | 13.55 | 12.71 | 12.28 | 14.47 | Fail —

Table 4.1 B: Results from Experiment 1: Rank and L_rms rows list the rank and L _rms of the docked
complex with the lowest L_rms. A case is considered as fail if the lowest L_RMS is bigger than 18 A.

See Chapter 3 for reasons of using these quantities to assess the performance. —: not tried.

As can be seen in above table, only 1TGS case is acceptable if we strictly follow CAPRI
evaluation criteria (See Chapter 3). Nevertheless, some cases can still be considered as
roughly correct because the correct protein-protein interaction interface can be roughly
observed in the docked complex, for example, 2MHB. Although its lowest L_RMS is 14.97A,
certain degree of similarity between the best docked complex and the correct complex can
still be observed (See Figure 4.7). However, such accuracy is far from good enough for

docking applications.

Figure 4.7: 2MHB case: Although the ligand (red) in the docked complex (right) is skewed and
deviated compared to the ligand in the correct complex (left), the correct interaction interface can

still be roughly observed from the docked complex.

4.2.2.2. Experiment 2 . 3, 4.

Three other experiments were conducted in order to determine whether the poor performance of
the algorithm using Katchalsi-katzir’s protein model is due to the choice of parameters (other
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than those parameters for modeling protein).

Parameter | A | N n N|n | pl|lod r t k
Value 15| 90 | 1.1A | 128 | 0.8A | -15 | 1 1.8A | 20A 60

Table 4.2 A: Parameters used in Experiment 2.

Parameter | A | N n N | n | plo r t k
Value 20°| 128 | 0.8 A | 128 | 0.8A | -15 | 1 1.8A | 20A 60

Table 4.2 B: Parameters used in Experiment 3.

Parameter | A | N n N | n | plo r t k
Value 20°| 128 | 0.8 A | 128 | 0.8A | -5 1 1.8A | 20A 60

Table 4.2 C: Parameters used in Experiment 4.

Expriment 2 | Experiment 3 Experiment 4
Cases
Rank | L RMS | Rank | L RMS | Rank | L RMS

ICHO | Fail Fail Fail Fail Fail Fail
1ABI | Fail Fail 55 15.42 29 15.64
1ACB 22 13.11 51 14.31 49 13.13
1CSE 18 6.80 8 14.02 53 12.57
ITGS | 51 7.77 23 7.69 37 6.80
2KAI 6 13.41 33 9.70 59 9.43
2MHB | 15 4.70 45 13.59 4 2.03
2PTC | 31 9.48 39 10.23 6 12.33
3HFM | Fail Fail Fail Fail Fail Fail
4HVB 28 17.32 33 15.11 51 14.35
4SGB 27 14.37 33 9.73 32 5.55
4TPI 19 11.16 30 12.28 60 10.51
9LDT | 54 17.06 26 12.91 46 12.30
9RSA 9 17.92 10 6.01 35 14.70
1FDL 51 14.99 Fail Fail Fail Fail
28IC | — — — — — —

Table 4.2 D: Resullts for experiment 2 — 4

The poor performance remained, although for some cases the performance was slightly better.

4.2.2. Performance of Gabb’s model

Only one experiment using all parameters proposed by Gabb et al (1997) was conducted for

this model. The result (See Table 4.3) is still not satisfactory, although there are five correct
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cases (2MHB, 2PTC, 4SGB, 4TPI and 9RSA) according to CAPRI criteria.

Parameter | A | N 1 N | 7 p |0 R t k
Value 15°| 128 | 0.8 A | 128 | 0.8A | -15 | 1 18A 15A 60

Table 4.3 A: Parameters used in Experiment 5 on Gabb’s model: Ligand has no surface layer. (Gabb et al

1997)

Cases ICHO | 1ABI | 1ACB | ICSE | 1TGS | 2KAI | 2MHB | 2PTC | 3HFM
Rank Fail | Fail | 16 1 21 1 1 10 | Fail
L RMS (A) | Fail | Fail | 1070 | 16.84 | 14.65 | 1272 | 796 | 1.03 | Fail

Cases 4HVB | 4SGB | 4TPI | OLDT | 9RSA | 1FDL | 2SIC
Rank 30 1 7 39 2 58 30

L RMS (A) | 1601 | 0.56 | 489 | 12.81 | 4.05 | 18.03 | 16.01

Table 4.3 B: Results from Experiment 5.



Chapter 5

A new protein model and its performance

The experimental results in chapter 4 show the proposed docking algorithm doesn’t perform
well using Katchalsi-Katzir’s and Gabb’s protein models. A new protein model must be
proposed to achieve high quality docking. This chapter will introduce the new model in the
first section, whereas its performance on both bound and unbound cases will be presented in

the second section.

5.1. A double-layer protein model

By investigation of the failed cases of previous experiments, it could be found that there is
an always-fail case, 1CHO. This interesting case is the starting point of the new protein

model.

5.1.1 The Drawback of both protein models

The 3D structure of 1CHO shows very close contact between nearly half of entire VDW
surfaces of the receptor and the ligand. Furthermore, the receptor and the ligand are actually
combined in a ‘locked’ manner: three protrusions on the ligand were tightly held by the same

number of holes on the receptor (See Figure 5.1).

@

Figure 5.1: 3D structure of 1CHO. The protrusion-hole pairs are marked by yellow circles. A close

contact can also be observed between the receptor (blue) and the ligand (red)
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However, close contact between VDW surfaces of two proteins is prohibited if we use
Katchalsi-Katzir’s model for docking. This is because of 2.0A thick surface layers of both
receptor and ligand. Once the actual VDW surfaces of two atoms of different proteins are in
contact, the surface layer of one atom will deeply penetrated into the interior of the other one
(See Figure 5.2). Such penetration will result in a deduction of correlation score because p is
set to be << -1 and ¢ falls in [0, 1]. Therefore, a small gap between the receptor and ligand
can always be observed in any docked complex produced using this model (See Figure 5.3).
That is why 1CHO case always fails, no matter how we change the other parameters. One
may argue that it’s possible to assign a small negative value to p, but this might cause the
docking procedure to fail to reject deep penetrations for some cases. Besides, the thicker the

surface layer is; the more faulty matches could be.

Figure 5.2: Surface layer of
Surface Layer one atom penetrates into
the interior of other atom

when their VDW surfaces

Interior

are in contact. Negative
VDW surface &

contribution will be made
Surface Interior  to the correlation score If
boundary these two atoms residing

on different proteins.

Figure 5.3: A gap between the
receptor and ligand can be easily
observed in the docked complex

produced by the proposed algorithm

using Katchalsi-Katzir’s model.

Gabb’s model allows such close contact between the VDW surfaces by eliminating the
surface layer of ligand. If two atoms’ VDW surface are in contact, only positive contribution
will be made to total correlation score. However, using this model for the algorithm still failed
to generate a complex that was close to the original 1CHO. The possible reasons for that

might be: 1) Gabb’s choice of -15 for p is too large, which may result in penetrations to be too
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heavily penalized. Then, even though an orientation close to the correct orientation is sampled,
its peak’s correlation score could not be higher enough for refinement stage. 2) This model
requires an angular step smaller that 15° because of the single layered model of ligand, which
may result in missing orientations in global scan stage. Both these two could be the reasons

for the absence of close to correct one among the docked complexes.

5.1.2 The new protein model

To overcome the drawbacks, a novel double-layer protein model has been proposed for both
the receptor and ligand are modeled in the same way. The fundamental difference between
this new model and other two is that it models the protein to have an inner core layer and an
surface layer such that the VDW surface is approximately in the middle of the surface layer
(See Figure 5.4). This model allows contact between VDW surfaces (See Figure 5.5), while

its angular tolerance is about 15° (See next section).

Surface layer

Core layer Figure 5.4: An atom in the new

— protein model with a core layer

VDW surface and surface layer. This model is

Surface core boundary applied to both receptor and
ligand.

Figure 5.5: Surface layers of both
Surface layer atoms overlap each other when
Core layer their VDW surfaces are in

s contact. Positive contribution

VDW surface will be made to correlation score

Surface core boundary if both atoms residing on

different proteins.

This model can be easily used by the docking algorithm by assigning 1.1A to both 7 and .

After several experiments (See next section), -5 and 1 is found to be suitable values for p and

o while 1 is still assigned to the surface layer.

5.1.3. Configurations of other parameters

The new model alone is not enough for the proposed algorithm to run; several other parameters

have to be specified. As stated by Katchalsi-Katzir et al (1992), “optimal results were obtained

31



when the grid step size was 0.7-0.8A”. In refinement stage, n' is fixed to be 0.8A. The
corresponding numbers of nodes N have a default value 128, but it could be larger if 128
x0.8A is smaller than any potential docked complex (Refer to pg. 24). -5 is assigned to p for
two reasons: 1) Docking using Katchalsi-Katzir’s model will produce a docked complex with
a small gap between the receptor and ligand. The original intention for this gap to exist is to
tolerate certain degree of conformation changes. However, docking using the new model
won’t produce such gaps; hence this degree of conformation changes has to be tolerated by
assigning a smaller negative value to p to core layer. 2) A thinner surface layer leads to a
smaller angular tolerance. A smaller angular tolerance requires a smaller angular step A which
will increase the computation load. Therefore, a smaller p should be used to enhance the
angular tolerance. In order to figure out the appropriate values for the rest of the parameters,

several experiments using the bound cases have been conducted.

Experiment 6 is designed to determine the angular step A. In this experiment, A is set to 20°
while 1 is assigned to be the optimal value 0.8A. Among the results (See Table 5.1), only one
case is incorrect according to CAPRI’s 10A L RMS upper bound for correct docked
complexes. It can also be observed that the lowest L RMS of the correct cases are all quite
small. This suggests that the correct orientations were actually missed during the global
search stage for the incorrect case. Therefore, it could be concluded that 20° as angular step is

too large for the new model.

Parameter | A N n N’ n |[pld r t k
Value 20° | 128*' [ 0.8 A | 128* | 0.8A | -5 | 1 I.1A | 1.1A 60

Table 5.1 A: Values used in Experiment 6. Shadowed column is the focus of this experiment.

Cases ICHO | 1ABI | 1ACB | ICSE | ITGS | 2KAI | 2MHB | 2PTC | 3HFM

Rank 1 1 5 11 1 3 1 1 1

L RMS(A) | 096 | 085 1.68 1.00 | 097 | 1.61 1.26 1.28 0.65

Table 5.1 B: Results from Experiment 6.

' <*> mark indicates that the marked value could be altered. For example, if 0.8 x 128 is smaller than
any possible docked complex (Refer to pg. 24), a larger value has to be assigned to N and N’ whereas i
and 7' are still fixed at 0.8A.
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Cases AHVB | 4SGB | 4TPI | 9LDT | 9RSA | IFDL | 2SIC
Rank 1 9 54 2 — | 44 4
L RMS(A) | 141 | 1.04 | 1450 | 130 | — | 1.96 | 1.54

Table 5.1 B cont’d: Results from Experiment 6.

Experiment 7 is designed for testing whether 1.1A is an appropriate value for grid step size

n in global search stage. In this experiment, A is set to 15 ° in order to minimize the influence of

angular step on the docked results. Among the result (See Table 5.2), three cases are failed and other

two cases are incorrect according to CAPRI. These results clearly show that 1.1A is not an appropriate

choice for n although it could reduce the computation load.

Parameter

A

N

n

N,

N _|p

0

r

t

k

Value

15°

90*

1.1 A

128* | 0.8A | -5

1

1.1 A

1.1 A

60

Table 5.2 A: Values used in Experiment 7. Shadowed column is the focus of this experiment

Table 5.2 B: Results from Experiment 7.

Cases ICHO | 1ABI | 1ACB | 1CSE | 1TGS | 2KAI | 2MHB | 2PTC | 3HFM
Rank 1 1 17 2 1 6 1 2 Fail
L RMS (A) | 0.89 1.03 | 14.06 | 232 | 195 | 3.38 1.25 1.27 Fail
Cases 4HVB | 4SGB | 4TPI | 9LDT | 9RSA | 1FDL | 2SIC
Rank 1 7 1 Fail 2 Fail —
L RMS (A) | 1.36 1.34 | 1.52 | Fail | 17.51 | Fail —

Experiment 8 aims to verify -5 is a good choice for p by investigation of the results

produced by p = -10. A and n are set to 15° and 0.8 to minimize their influence on the results. Four
failed cases (See Table 5.3) could be found in this experiment. This poor performance clearly

demonstrates that, the magnitude of p could not be too large in order for the docking algorithm to

function properly.
Parameter | A N " N’ n" | plo r t k
Value 15°| 128* | 0.8 A | 128* | 0.8A | -10 | 1 1.1A | 1.1A 60

Table 5.3 A: Values used in Experiment 8. Shadowed column is the focus of this experiment
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Cases ICHO | 1ABI | 1ACB | ICSE | ITGS | 2KAI | 2MHB | 2PTC | 3HFM

Rank Fail 1 1 1 1 3 23 1 Fail

L RMS (A) | Fail 1.13 192 | 0.61 | 040 | 0.75 | 1420 | 1.59 Fail

Cases 4HVB | 4SGB | 4TPI | OLDT | 9RSA | 1FDL | 2SIC

Rank 2 22 1 Fail 5 Fail 2

L RMS (A) | 0.85 | 1422 | 1.35 | Fail | 17.76 | Fail | 1.19

Table 5.3 B: Results from Experiment 8.

From these three experiments, an optimal configuration for the parameters of the proposed

algorithm could be deduced (See Table 5.4) as listed in the following table.

Parameter | A N n N’ n' plo r t
Value 15° 128* | 0.8A | 128* |08A | -5 | 1 | I.L1A | 1.1A

Table 5.4: The best configuration for the parameters of the proposed algorithm.

5.2. Performance of the algorithm with the new model.

To evaluate the performance of the proposed algorithm with the best configuration, sixteen
bound cases and six CAPRI unbound cases have been tried. The results from these trials are
quite encouraging. The execution time for each cases were also recorded, a typical running
time using the best configuration is about two hours on a P4 2.0 GHz machine. k is fixed as

60 in the following experiments.

5.2.1. On the bound cases.

Cases ICHO | 1ABI | 1ACB | ICSE | 1TGS | 2KAI | 2MHB | 2PTC | 3HFM

Rank 1 1 6 10 5 3 2 3 15

L RMS(A) | 0.66 | 065 | 123 | 060 | 0.78 | 087 | 134 | 1.08 | 0.93

Cases 4HVB | 4SGB | 4TPI | OLDT | 9RSA | IFDL | 2SIC

Rank 1 8 6 3 1 50 5

L RMS (A) | 1.00 098 | 0.87 | 1.73 1.37 1.34 | 0.81

Table 5.5: Results for sixteen bound cases produced by the proposed algorithm with the best

configuration.

Results listed in Table 5.5 are quite good in terms of the lowest L RMS. The lowest
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L RMS of ten cases fall in the interval from 0 to 1, which means that ten high quality docked
complexes have been produced by the algorithm according to the CAPRI criteria. The other
six cases’ lowest L RMS fall in the interval from 1 to 5, which could be considered as with
medium accuracy. The results are much better compared to the results produced by the
algorithm using the other two models presented in previous chapter. This demonstrates the
ability of the proposed algorithm to match the protein surfaces as long as appropriate

configuration is specified.

In terms of the ranking, ten cases have ranked the lowest L RMS docked complexes in top
five, while four cases ranked such complexes in top ten. There are two exceptions, 3HFM
case and 1FDL case. The algorithm with the best configuration ranked the best docked
complex as 15" for 3HFM case and 50™ for 1FDL case. These two cases have the same
receptor that has a hole in the center. The algorithm always tends to place the ligand into that
hole, because such placement appears to be more ‘complementary’ in term of shape. As
shown in Figure 5.6 A and B, it is obvious that the shape complementarity between receptors
and ligands in the two top ranked docked complexes is better than the complementarity in the
real complex. This fact reveals that shape complementarity alone is not powerful enough to
discriminate the false positives. A conclusion could be made that a high surface correlation

score doesn’t necessarily indicate a correctly docked complex (See Figure 5.7).

Figure 5.6 A: the top ranked complex (left) for IFDL case vs. the structure of the real IFDL. Receptors

are colored in blue whereas ligands are colored in red.
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Figure 5.6 B: the top ranked complex (left) of 3HFM case vs. the structure of the real 3HFM.

Receptors are colored in blue whereas ligands are colored in red.
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Figure 5.7: Plotting the 60 docked results of 2PTC case and 3HFM case using surface correlation

score as Y axis and L RMS as X axis, A high surface score does correspond to low L RMS in 2PTC

plot. However, in 3HFM plot, such relation can not be observed. A high surface correlation score

may not necessarily indicate a correctly docked complex.

5.2.2. On the unbound cases.

Only the top ten docked complexes for each CAPRI case produced by the proposed

algorithm with the best configuration were evaluated. This strictly followed the CAPRI

procedure in which each participant can only submit 10 predictions. As shown in table 5.6;

the docking algorithm failed in four cases while succeeded in two cases. It is not surprising
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that there are four failed cases, because the docking algorithm uses only shape
complementarity for docking while the participants of CAPRI experiments employs various
kinds of chemical and physical information to guide their docking. But it is quite encouraging
that there are one high quality case and one medium quality case. This fact shows that shape

complementarity could be the dominant factor for some protein-protein interactions.

Capri Cases 2 3 4 5 6 7
L RMS (A) | 3632 |44.95 26.68 2.055 1.023 36.18
I RMS (A) 22.87 | 2493 15.59 1.100 0.65 27.46
Fnat 0.0 0.0 0.0107 0.95 0.908 0.0
Quality incorrect | incorrect | incorrect | medium | high | incorrect

Table 5.6: Results on CAPRI cases produced by the proposed algorithm with the best configuration.
Refer to Chapter 3 for details on how to determine the quality of a docked complex. I RMS, L RMS

and Fnat rows lists the corresponding value of the complex with lowest I RMS.

Another interesting fact is that every participant of CAPRI failed the fifth case (See
Appendix B) while it has been correctly predicted by my docking procedure based on only
shape complementarity. Mendez et al (2003) has given the reason for why all participants
failed the fifth case: they used prior knowledge to restrict the search space, but unfortunately,
by doing so they also excluded the correct complex. On the contrary, a full search space scan
is always performed by the proposed algorithm, and hence the correct docked complex could
be generated. This fact demonstrates that applying biochemical and physical information is
not always beneficial for docking, especially when such information would prune the search

space.

37



Chapter 6

Conclusion

6.1. Conclusion

In this project, a study on the Katchalsi-katzir’s grid-based FFT docking approach was
presented. Although this approach is proposed 10 years ago, it could still be used as a
foundation for protein docking algorithms. A new docking algorithm based on this approach
was developed in this project. This new algorithm overcame the drawbacks of the original
two-stage algorithm proposed by Katchalsi-katzir et al (1992) by removing degenerated
orientations during rotational space scanning in the global scan stage and incorporating a
refinement procedure into the discrimination stage. The refinement procedure carries out a
coarse-to-fine adaptive search in the neighbouring rotational space for each of the given
orientations from the global search stage. The quality of docking at this specific orientation is
improved by iteratively replacing it with the neighbouring orientation which yields a better

docking result in terms of shape complementarity.

Several Experiments were conducted in order to find the best configuration for the new
algorithm. Two existing protein models designed for grid based protein representation were
tried for this algorithm. However, both of these two models were not suitable for this new
algorithm according to experimental results on different configurations for other parameters.
By analyzing the drawbacks of two models, a new protein model was proposed. This protein
model has a core layer and surface layer such that the VDW surface of the protein molecule is
in the middle of the surface layer. In such a way, the contact between VDW surfaces of
receptor and ligand is allowed while the angular tolerance remains relatively large. An
optimal configuration for other parameters was found for this model and the proposed
algorithm through several experiments. Pretty good results were obtained from the
combination of the new model, the optimal configuration and the proposed algorithm on the

sixteen bounded cases. Two unbound CAPRI cases were also successfully predicted in spite

38



of only shape complementarity is used in this algorithm. These facts demonstrate the ability

of the new algorithm on matching proteins when an appropriate configuration is specified.

Several facts have also been drawn from the experiments.

Shape Complementarity alone is not powerful enough for discriminate false positives.
Chemical or physical properties should also be employed.

For some unbound cases, shape complentarity solely can successfully predicte the
docked complex. However, it is not possible in general.

Pruning of the search space by prior knowledge may not always be an advantage.

6.2. Future work

The work has been done so far is only a start in protein docking research. There are several

problems that need to be addressed in future work:

Biochemical and physical properties of the protein surface should be incorporated in
the docking algorithm, but how to balance the weights of shape complementarity and
other properties is still a problem. Intensive experiments should be employed in order
to find an optimal solution.

The rotational space scan sampled a lot of undesired orientations, how to detect these
undesired orientation so that translational scan does not have to be performed for those
orientations.

Current rotational space sampling in global search stage is still biased even though
degenerate orientations are removed. An optimal sampling strategy might be employed

to achieve efficient sampling.
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Appendix A

The participants of CAPRI experiment.

Predictor Program Algorithm CAPRI specifics
Seripps, US (Abagyan) ICM-DISCOr Rigid body peeudo-Brownian MC with grid-hased  T¥1: filtered for H15 or D46 in contact with phesphate
energy function; refinement: grid-based Biased and ranked according to score, TO2-TU6: filtered,
Probakility MC Minimization using ICH for CDRs in contact; TOT: filtered for VHH CDBz in
(internal coordinate mechanics), contact, and no clashes with TCR-w.
Bogton UL US iCamacho) SmcothDiock Clustering, refinement and discrimination T01: restricted search to presumed phosphate binding
protocol: constrained minimization using region. T04: restricted to solutions involving CDRs.
CHARMM; Coulomb and solvation. TOT: ranked first solution as in homologue.
Weizmann Inst. IL MolFit Weighted geometric docking with FFT followed T01: up-weight conserved residues in HPrl and HFPr;
(Efsenstein) by clustering and filtering, Searing by filtering for solutions with TME directed to P-loop.
welghted geometric complementarity. TOZ-T06: up-weight interactons with CDRs; Tld—
TG filter against solutions with non-CDR contacts,
TOT: homeclogue used, down-weight residues n
TCRw contacts.
Cancer Research UKLRI  Guided Docking Rigid body molecular mechanies using Omly TO4-TO7 predicted. Partial manual ranling,
(Fitzjohn/Bates) CHARMMZ22 foree field. Flexible refinement TOT: hommolague { 1JCKnsed
step in some cases, Solvation wsed in final
energy ranking.
Sheffield 11 UK GAFDIOCE GA for sampling different relative rotations and T01, TO2 only. Search restricted to expected contact
(Gandiner) clustering. Seoring based on shape correlation regions. Final selection, manual.
and buried area, as per CCP4 package; some T1: selected solutions with Ser 46 contacting
clash checks, ligands on kinase. TUZ: limited search space, and
selected solution containing CTRs.
. Washington US (Gray/ Monte Carlo and clustering, side-chain T01-T02: no mindmization; T01: search restricted to
Baker) repacking, rigid body mimmization. Fitted HPr. Ser46-HPrC AzplST in contact, kinase
multiberm scoring function, mainly vdW red residues, TO2-TO6: favored contacts
orentation-dependent hydrogen bonding,; Rs; TO2: only cuter cap.; TOT: used
implicit solvation. homeologue, manual selechion except for modell
Aberdeen 1T, UK CONCOORD*+ Hex Dock 500 essential dynamics structures from TOT: 500 Sped structures docked onto rigid TCE.
(Mustand) CONCOORD using Hex. Search eonstrained to TCR hypervariable loope.
Colurnbia 11, TS (Nanel) FFD Geometric hashing multiple rescoring.
Beripps US Surfdods*® Fourier corvelation of spherical harmonics. Crmly TO1-TVS predicted. Mammal inspection of top
(O aom [ Narlede) Seoring by electrostatic, hydrophobic, van der seoring solutions. TO1: Hpr 345 constrained near
Waals (buried surface area) interactions and kinase active site + manual check of kinase
shape complementarity. Clashes determined hinding regiom. TO2-T0: Ag epitopes from other
by overlap of the docked surfaces. structures. Penalization of Ag regions inaccessible
invirion. Manual filtering of svmmetric solotions
Universidade Nova De BiGGER iChemera) Binary grids; scoring with geometric, contacts Some manual rankang, TOT: TCR. truncated at D118
Lishoa counts, dectroetaties and solvation, no clash
{Palma [ Erippahl) cheeles.

Aberdeen U1, UK (Ritchic)

North Western 11, US
(Shoichet)

Imuperial Coll. UK
(Sternberg)

UCEDUS (Ten Evck)

Kitazato U JP
(Umeyama / Komats)

SUNY/StonyBroak, 115
(Toeehigrechho,
Vakser)

1. Autonoma Madrid, 5P
(Valencia)
Boston U, US (Weng)

Tel Aviv U1, ILNIH, US
(Wafson / Nussinou)

Hex

Northwestern DIOCK

AD-DOCK MULTIDOCE

DoT

TSCF

GRANMM

PatehDaock (T04-07)
EUDDA (TO1-07)
FFDNTO1)

Spherical polar Fourier correlation of shape and
electrastatics, followed by soft rigid body OFLS
Tinin zation,

Search for hot-spot corres pondences between
receptor and ligand to caleulate orientations,
precaleulation of ensemble of ligand
conformations, receptor held rigid, energy
evaliation using electrostatics and van der
Waals terms.

FFT, rescore: residus potentials; flexdble
refinement: mean-field side-chain multicopy,
solution clustering

FFT for shape complementarity and Poission—
Boltzmann electrostatics.

Solvent cluster fithing; refinement by molecular
mechanics and molecular dynamics using
AMBER foree field.

FFT for shape complementarity; softer potential
for conformational changes; no elash checls;
symmetry of multimeric receptors used to
enhance sampling; docking of higand to
overlapping fragments of recepbor for speed.

Meural neberork-based predichions of interactions
gites, using information on related sequences.

FFT with scoring by pairwise shape
complementarity, solvation and electrostatics;
clustering.

Geometric docking: matching of local shape
features and geometric hashing, fast geometric

sooring and search, avoids exhaustive
orentation search.

T1: search restricted to HPr K P-loop, TO2-T07:
search restricted to antibody and TCR
hypervariable loope, Visual inspecbon and
gelection of crientations for TO1-T03,

Crnly TO1 predicted

Search restricted to expected interacting regions in all
caszes (CDRs for targets TO2-T06), marmal
selection from highest ranking sdutions.

Ranking by shape complementarity (FADE), T02—
TOT sereened for CDRs. Manual ranking for TO1
and T0Z. Cluster analysis for TO4-T0T.

Nobiochemical data, or bicinformaties used. Some

manusal ranking.

Crnly TO1-TV3 predicted. TO1: filtered for HPr H15 or
46 come to kinase active site. TOZY: filtered for for
CDRs* in contact + constraints on epitope
residues, TOZ: Filtered for CORe" in contact +

Crnly TO1 predicted

Elocked non-CDR residues for TO2-T06. TOL: Ser 46
af Hpr within 7 A from Ploop. TO2: distal half of
V6. TO7: locked residues ascording to homalogy;
manusal selection from best solutions

Ti1: HPr Ser46 elose to P on anase, TO2-T06: CDRs
only. TO4-T0E: preference for high-sequence
variability regions in mammalian amylases, TOT:
used interface from homologue.
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Appendix B

Summary of Docking Results for each CAPRI participant, T02 is referred as CAPRI 02 in

main text.

Predictor group T1 TO2 T03 TO4 TOS TG TO7 Predictor sumumary

Seripps US 0 0 ek 0 0 ok dok ke
(Abagyan)

Boston 11 US * 0 0 0 0 Hokik bk okt
(Camacho)

Weizmann Inst. IL L L] 0 0 0 0 ik b Cad
i Eisenstein)

Irnperial Coll. UK [ * [ 1] [ i * ek
I\Sternberg)

uCsD, Us * * 0 0 0 - 0 a1
(Ten-Eyck)

Sheffield U1, UK * * — — — — — 2
(Gardiner)

U. Washington TS 0 0 0 1] 0 ok Wk ] ek
(Gray / Baker)

1. Lishon, Pt = 0 — 0 0 ok ¥ o
(Palma/Krippahl)

Aberdeen U UK. UK 0 0 e 0 0 ok 0 ke
(Ritchie)

Boston U, US ] R L] 1] W] 0 ok Dtk
(Weng)

TAUIL/NIH US = 0 0 0 0 0 itk sk
(Wolfson { Nussinou)

Cancer Research UK — — — 0 0 0 ik 171
i Fitzjohn ! Bafes)

Seripps US e 0 0 = = — — 1
(C]som)

1. Autonoma Madrid SP L = e = — — — 1
(Valencia)

SUNYMLISC US 0 * 0 = == — — 1
(Vakser)

Target summary T BI1¥ DDk 0 0 TRk Lk Qypetk B

This table summarizes the results cbtained by all the groups that submitted one or more predictions of acceptable quality or better for at least one
target. Column 1 lists the group's affiliation and the last name of the principle investigator. The next seven columns list the results obtained for
each of the seven tarpets. The right-most column summarizes the resulta per predictor group, and the bottom row summarizes the resulta per
target. 0, none of the submitted predictions was of acceptable quality;—no predictions were submitted; *, at least one of the submitted predictions
was in the acceptable range; **, at least one of the submitted predictions was of medium accuracy; and *##_ at least one prediction was of high
accuracy. See Table IT for the definition of the parameters range used to rank the predictions. The summary entries list the total number of
acceptable predictions, followed by the number of predictions of medinwm and high accuracy denoted by a ** and *#*, respectively.
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