
Heuristic Search with Reachability Tests
for Automated Generation of Test Programs

Wee Kheng Leow, Siau Cheng Khoo, Tiong Hoe Loh, and Vivy Suhendra
Dept. of Computer Science, National University of Singapore

leowwk, khoosc, lohtiong, vivysuhe@comp.nus.edu.sg

Abstract

Our research complements the current research on au-
tomated specification-based testing by proposing a scheme
that combines the setup process, test execution, and test val-
idation into a single test program for testing the behavior
of object-oriented classes. The test program can be gener-
ated automatically given the desired test cases and closed
algebraic specifications of the classes. The core of the test
program generator is a partial-order planner which plans
the sequence of instructions required in the test program.
A first-cut implementation of the planner has been pre-
sented in [4] based on simple depth-first search. This paper
presents a more efficient and effective heuristic search algo-
rithm that performs reachability tests using the Omega Cal-
culator. Test results show that heuristic search with reach-
ability tests significantly reduce the search time requiredto
generate a valid sequence of instructions.

1. Introduction

Specification-based testing involves three stages [8]: (1)
test case generation, (2) text case execution, and (3) test re-
sult evaluation. The first stage generates test cases from a
software system’s specification. Before the system can be
tested, it must be properly set up, i.e., prepare the input vari-
ables and data used in the tests according to the require-
ments stated in the test cases. This setup process is usu-
ally performed manually, especially when testing complex
data structures. After the system is properly set up, a test
execution tool runs the system according to the test cases
and pre-recorded test scripts to obtain the outputs, which
are checked by a test evaluation tool.

Test execution and test result evaluation are easy to auto-
mate, and tools for these stages are already available. Most
research on automated specification-based testing has fo-
cused on the automated generation of test cases [2, 3, 5, 6,
8, 10]. There is not much research on automated genera-
tion of test programs that combine system setup, test execu-
tion, and test validation into a single framework, except for

the well-known ADL (Assertion Definition Language) sys-
tem [1]. However, ADL requires the additional program-
ming effort from the user to supplyauxiliary functionsthat
define the semantics of the function to be tested,provide
functionsfor constructing the required test data, andrelin-
quish functionsfor releasing the test data.

Our research complements the current trend by propos-
ing a scheme that combines the setup process, test execu-
tion, and test validation into asingletest program for testing
the behavior of object-oriented classes. The test program
can be generated automatically given the desired test cases
andclosed algebraic specificationsof the object classes [4].
After compiling and linking with the object classes under
test, it can be executed to perform test case setup, test exe-
cution by invoking the class methods, and test results verifi-
cation, all in a single program. This scheme provides great
convenience in automated specification-based testing by re-
moving the need to perform manual system setup and in-
voking separate tools for test execution and test evaluation.

The core of the test program generator is a partial-order
planner which plans the sequence of instructions required in
the test program. A first-cut implementation of the planner
has been presented in [4]. In this paper, we presents a more
efficient and effective heuristic search algorithm for find-
ing a valid plan. It performsreachability testson objects us-
ing Omega Calculator library [7, 9] to determine whether
the application of a method or methods can bring the ob-
jects to the desired states. Experiment results (Section 3)
show that the heuristic search with reachability tests signif-
icantly improves the search efficiency and effectiveness of
the algorithm.

2. REBID Planner

The detailed algorithm of REBID is given in [4]. The
heuristics used in the insertion of new plans into the search
queue are:

• Reachable plans are inserted at the front of the queue,
and sorted in decreasing number of state labels in the
test case that the plans affect. Anaffectedstate label



is a state label in the test case whose state is changed
by the application of a method. In other words, a plan
is inserted nearer to the front of the queue if its most
recently included instruction affects more state labels.

• Unreachable plans are inserted at the front of the queue
behind the reachable plans, and ordered in the same
manner as reachable plans.

Note that reachability test is performed for a single
method applying on a single target object. A plan is reach-
able if the application of the method on the target object
satisfies the constraints on the object, which can be just
a subset of all the constraints in the test case. Unreach-
able plans are not discarded immediately because, in some
cases, a desired goal state is not reachable by applying only
one method. They are retained in the queue but given a
lower priority for further expansion. Therefore, the heuris-
tic search is guaranteed to find a valid plan and terminate.

2.1. Reachability Tests

Reachability tests determine whether the the precondi-
tions of a method are satisfied, and whether the postcondi-
tions of a method invocation imply the constraints on an ob-
ject. If the constraints are satisfied, then the goal state ofthe
object (represented as constraints) is reachable after apply-
ing the method on the object in the test program.

Reachability tests are performed on one object at a time.
Single application of a method on an object involves aone-
step reachability test. Multiple, repeated application of a
method on an object involves amulti-stepreachability test.

One-Step Reachability Tests

A one-step reachability test can be formulated as acon-
straint satisfactionproblem:

{[a1, . . . , am, s1, . . . , sn] : P ∧ Q ∧ C} (1)

whereai are the method’s arguments,sj are the object’s
state labels (including both pre-state and post-state),P is
the pre-condition of the method to be invoked,Q is the post-
condition, andC links P andQ to the existing test state.

Consider the following (partial) specification of three
classes:Teacher, Student andCourse:1

class Course {
Course()
{ true

--> #max = 1 && #size = 0}
Course(int max)
{ max > 0

--> #max = max && #size = 0}

1 Here, preconditions are specified before the arrow symbol ‘-->’ while
postconditions are specified after ‘-->’. Symbols prefixed with ‘#’
such as#name and#size refer to state labels. Symbols prefixed
with ‘@’ refer to thepre-statesof the objects. Kindly refer to [4] for a
detail description of the symbols.

void setMax(int max)
{ max >= #size

--> #max = max && #max >= #size}
void incMax()
{ true

--> #max = @#max + 1}
void decMax()
{ #max > #size

--> #max = @#max - 1}
void setTeacher(Teacher t)
{ t != null

--> #teacher = t}
void addStudent(Student s)
{ s != null && #size < #max

--> #size = @#size + 1 &&
exist(#s in Course){#s = s}}

void deleteStudent(Student s)
{ #size > 0 &&

exist(#s in Course){#s = s}
--> #size = @#size - 1 &&

!exist(#s in Course){#s = s}}
// Other access/constructor methods omitted.

}
class Teacher {

Teacher(String name, int id)
{ name != null && id > 0

--> #name = name && #id = id}
// Access methods omitted.

}
class Student {

Student(String name, int id)
{ name != null && id > 0

--> #name = name && #id = id}
// Access methods omitted.

}

Suppose the pre-state of acourse object is #max = 1

&& #size = 0. If we want to see if#max can be set to
5 via the methodsetMax(a) in one step, we can write:

{[a, max, size, newmax] :
a >= size && # pre-cond
newmax = a && newmax >= size && # post-cond
max = 1 && size = 0 && newmax = 5} # test states

In this example,#max, the affected state label, is repre-
sented by its pre- and post-state labels. In REBID, abind-
ing table is maintained to record the values of bound state
labels and method arguments. This can be used to simply
the above problem to:

{[a] : a >= 0 && 5 = a && 5 >= 0}

Evaluation of this expression in Omega Calculator yields
a = 5. This means the constraints can be satisfied by bind-
ing a to the value 5. The bound labels and their values are
recorded in REBID’s binding table.

Multi-Step Reachability Tests

Multi-step reachability test is performed using Omega
Calculator’s reachable function. For example, sup-
pose the pre-state of acourse object is#max = 10 &&

#size = 0, and we want to know if multiple invoca-
tions of addStudent(s) can change the object state to
#max = 10 && #size = 5. In this case, REBID forms a
start state namedt that containssize – the pre-state of



#size. In Omega Calculator, the above multi-step reacha-
bility test can be written as

R := reachable of t in (t) {
t : {[size, max] : size = 0 && max = 10} |
t -> t: {[size, max] -> [newsize, max] :

exists([s] : s != null && size < max &&
newsize = size + 1 &&
exists([s1] : s1 = s))

}};

The second line defines thestart stateof t. The third line
indicates thestate transitionthat changes the state. The
exists clause specifies the constraints on the state tran-
sition, which has the same syntax as Equation 1.2

The above test will be simplified by REBID using its
binding table. Evaluation of the simplified expression in
Omega Calculator yields

R := {[size] : 1 <= size <= 10}

which gives a set of possible solutions tot. To verify
whether the solutions satisfy the test case requirement, a
non-empty test is performed on the intersection of the re-
turned set and the test case requirement (i.e.,#size = 5):

R intersection {[5]};

which yields a non-empty answersize = 5.

3. Experiments and Discussions

Five variations of the REBID planner were tested:3

• BFS: Breadth-first search without heuristics.
• DFS: Depth-first search without heuristics.
• 0RT: Heuristic search without reachability test (RT).

The plans are ordered by the number of affected state
labels without checking whether they are reachable.

• 1RT: Heuristic search with one-step RT only.
• MRT: Heuristic search with one-step and multi-step

RT. One-step RT is performed first. Multi-step RT is
performed only if one-step RT fails.

Three test cases were performed based on the exam-
ple specifications given in Section 2.1. These specifications
were chosen because they were simple and straightforward,
and yet rich enough to illustrate various important aspects
of the REBID algorithm.

3.1. Test Case 1

Test Case 1 assessed the performance of the algorithms
in constructing a simple object that contained another ob-
ject as its attribute:

2 The symbolnull will be substituted with a known constant.
3 The performance of the algorithms were measured in terms of(1) ex-

ecution time (in a Pentium 1.6GHz PC with 256MB RAM), (2) depth
of search tree, and (3) total number of plans generated, which reflects
the space requirement.

Course c1: c1.#max=10, c1.teacher = t1
Teacher t1: t1.name = "Ms Lee"

The test performance is as follows:

BFS DFS 0RT 1RT MRT
run time (s) 0.51 > 120 0.01 0.17 0.19
depth 3 > 106 3 3 3
no. of plans 30 > 373 5 5 5

The search algorithms with heuristics were most efficient
and they found valid plans by searching only a tree of depth
3 containing 5 plans. MRT took a little longer than 0RT and
1RT because it invoked thereachable function of Omega
Calculator, which took a little more time to solve compared
to simple constraint satisfaction. BFS could also find a valid
plan after searching through 30 plans up to a depth of 3.
Therefore, it took longer to find a valid plan.

DFS could not find a valid plan after executing for 2 min-
utes and was aborted. This happened because DFS chose the
constructor to construct aCourse object with#max = 1

first. Then, it pickeddecMax and incMax alternately to
modify the value of#max, entering an infinite loop.

DFS is very sensitive to the sequence of method speci-
fications. If we swap the sequence ofincMax anddecMax
in the specification so that DFS always triesincMax be-
fore decMax, then DFS can also find a valid plan. Never-
theless, the heuristics algorithms significantly shorten the
execution time by directing the search along paths that are
more likely to succeed.

3.2. Test Case 2

Test Case 2 measured the algorithms’ performance in
constructing an aggregate object that contained 2 elements.

Course c1: c1.#max=10, c1.#size=2

For Test Case 2, DFS again could not find a valid plan,
as it was trying alternate invocations ofaddStudent and
deleteStudent:

BFS DFS 0RT 1RT MRT
run time (s) 4.87 > 120 > 120 0.54 0.62
depth 6 > 106 > 106 5 5
no. of plans 199 > 373 > 373 9 9

0RT also suffered the same fate as DFS. On the other
hand, 1RT and MRT could obtain valid plans, and they exe-
cuted more efficiently than BFS did.

3.3. Test Case 3

Test Case 3 was similar to Test Case 2 except that the
algorithms were to construct aggregate objects with maxi-
mum number of elements, and the maximum numbern var-
ied from 1 to 10:
Course c1: c1.#max= n, c1.#size= n



1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

n

search depth

1 2 3 4 5 6 7 8 9 10
1

10

100

1000

n

number of plans

1 2 3 4 5 6 7 8 9 10
0.1

1

10

100

BFS
DFS
MRT
1RT
0RT

n

execution time (s)

(a) Search depth (b) Number of plans generated (c) search time (sec)

Figure 1. Performance of search algorithms with increasing n.

For Test Case 3, when the original method sequence was
used, DFS and 0RT could not generate a valid plan for
n > 1, 1RT failed forn > 2, and BFS failed forn > 3,
each after running for 2 minutes. DFS, 0RT, and 1RT were
stuck for the same reason discussed in Sections 3.1 and 3.2.
On the other hand, BFS tried to search through all plans to
find the valid one, and it could not complete the search in 2
minutes whenn > 3.

As for Test Cases 1 and 2, after changing the method se-
quences in the specification, DFS, 0RT, and 1RT could all
generate valid plans. Figure 1 illustrates the algorithms’per-
formance.4 The heuristic search algorithms were more ef-
ficient than DFS. MRT and 1RT were a little slower than
0RT due to the invocation of reachability tests. MRT in-
voked multi-step reachability tests using Omega Calcula-
tor’s reachable function, which took a little more time
than the one-step reachability tests invoked by 1RT. BFS
tried to search all possible plans for a valid plan. Its exe-
cution time and space requirement (number of plans gener-
ated) increased exponentially withn.

4. Conclusion

This paper presented a method of improving the search
efficiency and effectiveness of REBID for automated gen-
eration of test programs. Using heuristic search with multi-
step reachability tests, it can find a correct plan (i.e., instruc-
tion sequence) more efficiently than BFS and DFS. More-
over, it can always find a valid plan regardless of the se-
quence of methods in the class specifications because it can
direct the search along paths that are more likely to yield a
valid plan. On other the hand, heuristic search with one-step
reachability tests and no reachability tests may not be able
to find a valid plan for moderately complex test cases.

Further enhancements can be made in the following
ways. The current reachability tests return only true or false

4 In Figure 1(a), BFS’s search depths forn > 3 are projected values
based on its search depths forn ≤ 3.

values. They can be enhanced to returnlikelihood of suc-
cessbased on a measure of thedistancebetween the state of
the current plan and the goal state. Also,partial reachabil-
ity tests can be performed. That is, if a subset of constraints
can be satisfied by the invocation of a method, then partial
reachability is obtained. This is especially useful when ap-
plication of several different modifier methods is required
to bring an object to the desired state.

References

[1] Assertion Definition Language, adl.opengroup.org.
[2] M. Donat. Automating formal specification based testing.

In Proc. Conf. on Theory and Practice of Software Develop-
ment, volume 1214, pages 833–847, 1997.

[3] H. Hong, I. Lee, O. Sokolsky, and S. Cha. Automatic test
generation from statecharts using model checking. Technical
Report MS-CIS-01-07, Dept. of Computer and Information
Science, U. of Pennsylvania, 2001.

[4] W. K. Leow, S. C. Khoo, and Y. Sun. Automated genera-
tion of test programs from closed specifications of classes
and test cases. InProc. ICSE, 2004.

[5] A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a goal-
driven approach to generate test cases for guis. InInt. Conf.
Software Engineering, 1999.

[6] A. J. Offutt and S. Liu. Generating test data from SOFL spec-
ifications.J. of Systems and Software, 49(1):49–62, 1999.

[7] The Omega Project. www.cs.umd.edu/projects/omega.
[8] R. M. Poston. Automating Specification-Based Software

Testing. IEEE Computer Society Press, 1996.
[9] W. Pugh. The Omega Test: A fast practical integer program-

ming algorithm for dependence analysis.Comm. of ACM,
8:102–114, 1992.

[10] M. Scheetz, A. von Mayrhauser, R. France, E. Dahlman, and
A. E. Howe. Generating test cases from an OO model with
an ai planning system. InProc. 10th Int. Symp. on Software
Reliability Engineering, 1999.


