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Abstract. Fracture of the bone is a very serious medical condition. In
clinical practice, a tired radiologist has been found to miss fracture cases
after looking through many images containing healthy bones. Computer
detection of fractures can assist the doctors by flagging suspicious cases
for closer examinations and thus improve the timeliness and accuracy
of their diagnosis. This paper presents a new divide-and-conquer ap-
proach for fracture detection by partitioning the problem into smaller
sub-problems in SVM’s kernel space, and training an SVM to special-
ize in solving each sub-problem. As the sub-problems are easier to solve
than the whole problem, a hierarchy of SVMs performs better than an
individual SVM that solves the whole problem. Compared to existing
methods, this approach enhances the accuracy and reliability of SVMs.

1 Introduction

Fracture of the bone is a very serious medical condition. According to the In-
ternational Osteoporosis Foundation [1], 1 in 3 women and 1 in 5 men above
age 50 may experience osteoporotic fractures. 30–50% of women and 15–30% of
men may suffer osteoporotic fractures in their lifetime. In particular, worldwide
incidence of hip fractures can rise from 1.6 million to between 4.5 and 6.3 million
by 2050, with more than 50% of all osteoporotic hip fractures occurring in Asia.

In clinical practice, a tired radiologist has been found to miss fracture cases
after looking through many images containing healthy bones. Computer detec-
tion of fractures can assist the doctors by flagging suspicious cases for closer
examinations and directing the doctors attention to suspicious cases. It can thus
improve the timeliness and accuracy of their diagnosis.

Computer detection of fractures in x-ray images is a difficult and challenging
problem. The femur can fracture in many ways with varying degrees of severity.
While severe fractures cause drastic change to the shape of the femur, mild
fractures do not change the femur’s shape and leave only very subtle signs in the
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Fig. 1. Healthy and fractured femurs. (a–c) Healthy femurs can have different appear-
ances due to patients’ standing postures. (d) Severe fracture changes the femurs’ shape.
(e, f) Mild fractures leave the femurs’ shape unchanged. Arrows indicate fractures.

x-ray images (Fig. 1). There is no single characteristic that can describe all kinds
of fractures. X-ray images of healthy femurs also exhibit a significant amount of
variation primarily due to the patients’ standing postures when the images are
taken (Fig. 1).

The unbalanced data problem, i.e., large difference in the proportions of
healthy and fractured samples, further compounds to the problem’s difficulty.
In a consecutive set of x-ray images of femurs (i.e., consecutive in the time that
the patients took their x-ray images) that we collected from a local public hos-
pital, only about 12% of them are fractured. When the training set is small, the
difficulty becomes even more severe because there may not be enough samples
to capture the whole range of possible variations.

This paper presents a new approach for fracture detection by partitioning
the classification problem into smaller sub-problems in SVM’s kernel space. A
hierarchy of SVMs is trained so that each SVM specializes in solving a sub-
problem, which is easier to solve than the whole problem. Thus, the hierarchy
of SVMs performs better than a single SVM solving the whole problem.

2 Related Work

Tian et al. [2] published the first research work on the detection of fractures
in x-ray images by computing the angle between the neck axis and shaft axis.
Subsequently, Lim et al. [3] Yap et al. [4] and Lum et al. [5] reported methods
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that detect femur fractures based on Gabor, Markov Random Field, and gradient
intensity features extracted from the x-ray images. Three SVMs were trained to
classify the samples each based on a different feature type. The individual SVM’s
performance was not very good. By combining the decisions of the three SVMs,
the overall accuracy and sensitivity (i.e, fracture detection rate) were improved.

Combination of SVMs is a standard way to obtain a multi-class SVM from
binary (two-class) SVMs [6,7,8]. Typically, each constituent SVM is trained to
solve a one-vs-one problem, and they are combined using either a tree, a graph,
a voting scheme, or other methods. Our method differs from these SVM combi-
nation methods in two important ways. Instead of partitioning a k-class problem
into many one-vs-one sub-problems, our method partitions a binary (healthy-
vs-fractured) problem into several smaller 3-class (healthy, fractured, unknown)
problems such that each is handled by a SVM. Moreover, the partitioning is
performed based on estimations of the reliability of the SVMs.

3 Hierarchical SVMs

The guiding principle of our approach is divide and conquer or division of la-
bor. A hierarchy of complementary SVMs are trained to each tackle a different
sub-problem of the whole fracture detection problem. A well known divide-and-
conquer approach is to first cluster the input samples so that the samples in
each cluster are more consistent with each other [9]. Then, a set of classifiers are
trained to each classify only the samples in a different cluster. This approach is
effective when the training set is large. The more complex the problem, the more
clusters are needed to achieve good performance, and the larger the training set
needs to be. In our investigation of this approach, we found that a large number
of clusters are required to capture the large variations of both healthy and frac-
tured samples. As a result, there are not enough training samples in each cluster
to train a classifier.

Instead of partitioning the problem in the feature space, our approach parti-
tions it in SVM’s kernel space. This approach has two advantages. First, it is eas-
ier to separate the healthy and fractured samples in the SVM’s high-dimensional
kernel space. Second, the partitioning performed by SVM is optimal.

3.1 Training Algorithm

The training of the hierarchical SVMs is guided by three principles:
1. Samples that can be reliably classified by a higher-level SVM should be

handled by it.
2. Samples that cannot be reliably classified by a higher-level SVM should be

passed to its child, a lower-level SVM.
3. The performance of a lower-level SVM on the samples passed to it should

be better than the performance of its parent on these samples.

The training algorithm begins with the top-level SVM S, which is given two data
sets: the training set T and the validation set V . Its main stages are as follows:
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1. Train SVM S on training set T .
2. Run S on validation set V to obtain classification error rate E(S, V ).
3. Based on E(S, V ), select a subset V ′ of V .
4. Create a new SVM S′ at the next level.
5. Find a subset T ′ of T that can be used to train S′ to achieve the performance

of E(S′, V ′) < E(S, V ′) and E(S′, F ′) ≤ E(S, F ′), where F ′ is the subset of
fractured samples in V ′. That is, 1 − E(S′, F ′) is the sensitivity of S′ on V ′.

6. If S′ cannot achieve the above performance, then stop.
7. Otherwise, set S ← S′, T ← T ′, V ← V ′, and continue at Step 3.

This algorithm uses probabilistic SVMs, such as Gini-SVMs [10], that produce
classification results and probability estimates p. The p value ranges from 0 to
1, with 0.5 corresponding to ambiguous cases located on the decision surface in
the kernel space. We shall call the side of the decision surface with p > 0.5 the
positive side, and the side with p < 0.5 the negative side. After running a trained
SVM on a sample set, each sample v will be assigned a probability estimate p(v),
and the samples can be sorted in increasing order of p(v).

There are two critical stages in the algorithm: Stage 3 and 5, which select
appropriate subsets T ′ and V ′ to channel to the SVM S′ at the next level.
In essence, V ′ defines the sub-problem that S′ needs to solve, and T ′ is the
appropriate training set that can train S′ to solve the sub-problem. These stages
will be discussed in more details in the following sections.

3.2 Selection of Validation Subset

Stage 3 of the training algorithm embodies the first two principles outlined in
Section 3.1. It determines a subset V ′ of V that the SVM S cannot reliably
classify. This subset V ′ is channeled to another SVM in the next level to achieve
division of labor. Classification reliability is estimated based on two quantities:
(1) the classification error rate E(S, V ) and (2) the probability estimates p(v)
assigned to samples v in V by S.

Let us compute the cumulative error rate c+(p) from p = 1.0 towards 0.5 for
the samples with p(v) > 0.5, and c−(p) from p = 0 towards 0.5 for the samples
with p(v) < 0.5 (Fig. 2(b)). Then, the samples in the range p+ to p = 1 where
c+(p+) < E(S, V ) would have estimated error less than E(S, V ); similarly for
the samples in the range p = 0 to p− where c−(p−) < E(S, V ). That is, samples
in the tail regions can be reliably classified. Therefore, samples in the middle
range from p− to p+ should be selected to form the subset V ′. In the current
implementation, c+(p+) = c−(p−) = ε called the error tolerance.

3.3 Selection of Training Subset

Stage 5 of the training algorithm embodies the third principle outlined in Sec-
tion 3.1. Selection of appropriate training subset T ′ is tricky because SVMs are
very strong classifiers. Their accuracy on the training set is often close or equal
to 100%. If the method for selecting validation subset is applied directly to the
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selection of training subset, very few training samples will be selected and they
are not enough for training the lower-level SVM to achieve high performance. On
the other hand, if the selection criterion is too loose and almost all the training
samples are channeled to the lower-level SVM, then it would be solving the same
problem as its parent and there would be no division of labor. So, the goal is to
find a subset that is not too large and not too small.

Let q(u) denote the probability estimate of sample u in T . Our method
searches for the appropriate T ′ iteratively:
For q− from 0 to 0.5 in increments of Δq−,

For q+ from 1 to 0.5 in decrements of Δq+,
Set T ′ to contain all training samples between q− and q+.
Train S′ on T ′ and then test S′ on V ′.
If E(S′, V ′) < E(S, V ′) and E(S′, F ′) ≤ E(S, F ′), then found T ′ and
return with success.

Cannot find desired T ′. Return with failure.
The increment Δq− and decrement Δq+ are set as fixed proportions of the

standard deviations of the distributions of training samples T + and T− in the
positive and, respectively, negative side of the decision surface (Fig. 2(a)).

3.4 Testing Algorithm

The same testing algorithm is applied to the validation set during training and
testing set at system test. Given a sample v, the following algorithm is applied:
1. For each SVM S from top to bottom of hierarchy,

(a) Run SVM S on sample v to compute the probability estimate p(v).
(b) If p(v) > p+, then classify v as healthy and stop.
(c) If p(v) < p−, then classify v as fractured and stop.
(d) Otherwise, pass v to the child of S.

2. If with rejection, then classify v as unknown and stop.
3. (Without rejection) If p(v) > 0.5, then classify v as healthy and stop.
4. Otherwise, classify v as fractured and stop.

4 Experiments and Discussions

420 consecutive femur images were collected from a local public hospital. They
were divided randomly into 200 training, 160 validation, and 60 testing samples.
The percentages of fractured samples were kept roughly the same for all three
sets at about 12%. Gabor and intensity gradient (IG) features as described in
[3,5,4] were extracted as the features for classification.

The following SVM configurations were trained and tested for comparison:
– SVM: Single SVM trained on the training set and tested on the testing set.
– SVM+: Single SVM trained on the combined training and validation set,

and tested on the testing set.
– H-SVM: Hierarchical SVM without rejection.
– H-SVM−: Hierarchical SVM with rejection.
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Fig. 2. Performance of SVMs in first two levels of the hierarchy. (a) Distributions of
training samples over probability estimates. (b) Cumulative errors on validation sets.

Each of the above configuration was trained to classify Gabor and IG separately.
Figure 2 shows the internal working of H-SVM. The curves on the left and

right side of Fig. 2(a) show the distributions of samples on the corresponding
sides of the SVMs’ decision surfaces. They show that the fracture detection
problem is very difficult because all the samples fall within a narrow range of
p = 0.4 to 0.55, and most of them are on the positive side. Fig. 2(b) shows that
the cumulative error at the second level has a narrower spread than that in the
first level. That is, errors of the level-2 SVM are focused within a narrower range,
indicating that it solves the sub-problem better than its parent.

Figure 3 shows the results of testing H-SVM on the validation and testing
sets for both feature types. With very small error tolerance ε, no training and
validation samples can be passed down to the lower-level SVMs, reducing H-
SVM to a single SVM. With very large ε, most, if not all, the training and
validation samples are passed down to the lower-level SVMs defeating the divide-
and-conquer strategy. With an appropriate ε, there is a good division of labor.
The trends of the error curves for validation set and testing set are similar
although their minimum may not coincide at the same ε. In actual application,
the error tolerance is selected as the ε that maximizes accuracy (i.e., 1 − error
rate) and sensitivity on the validation set.

The trained H-SVMs have a hierarchy of three levels for Gabor and four levels
for IG (Table 1). Level-1 SVMs classify more than 70% of the testing samples
and pass the remaining samples to the lower-level SVMs. They classify most of
the healthy samples and sizable amounts of fractured samples. Therefore, they
achieve higher accuracy but lower sensitivity compared to lower-level SVMs, just
like single SVMs (Table 2). The samples processed by lower-level SVMs are more
balanced, but the discrimination of healthy and fractured cases is still relatively
difficult. So, they achieve higher sensitivity at the expense of lower accuracy.
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Fig. 3. Test results on different feature types. (a) Gabor. (b) Intensity gradient (IG).

Table 1. Performance of SVMs in the hierarchy. IG: Intensity gradient. accu: accuracy,
sens: sensitivity, %class: percentage of testing samples classified by the SVMs in the
respective levels, %frac: percentage of fractured testing samples classified.

Gabor IG
level accu sens %class %frac accu sens %class %frac

1 95.45% 50.00% 73.33% 28.57% 96.15% 66.67% 86.66% 42.86%
2 90.00% 0.00% 16.67% 14.29% 100% 100% 1.67% 14.29%
3 66.67% 75.00% 10.00% 57.14% 75.00% 100% 6.67% 28.57%
4 — — — — 66.67% 100% 5.00% 14.29%

overall 91.67% 57.14% 93.33% 85.71%

Table 2 compares the performance of various SVM configurations on the test-
ing set. The performance of SVM+ is better than that of SVM for IG but the
converse is true for Gabor. This shows that having more training samples does
not always improve the accuracy of single SVM. In comparison, H-SVM can use
the training and validation sets optimally to achieve high performance. Its accu-
racy is as high as the larger accuracy between SVM and SVM+. Its sensitivity
is also as high as those of SVM and SVM+ except for IG.

By rejecting uncertain samples, H-SVM− achieves higher accuracy for Gabor
and IG at the expense of lower sensitivity compared to H-SVM. The classification
results based on Gabor and IG can be combined using a simple OR rule: classify
a sample as fractured if it is classified as fractured using either Gabor or IG. For
H-SVM−, the combined performance is better than that using single feature.
Moreover, its rejection rate drops to 0. With feature combination, H-SVM−
achieves a significantly higher accuracy compared to SVM, SVM+, and H-SVM,
and the same sensitivity as SVM and H-SVM. In summary, the test results show
that the overall performance can be optimized if an SVM can reject samples
that it cannot classify reliably, and pass the samples to other SVMs to classify.
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Table 2. Test results on different feature types. IG: intensity gradient. Last column is
the rejection rate of H-SVM−. OR: Combine Gabor and IG results using OR rule.

SVM SVM+ H-SVM H-SVM− reject
Gabor accuracy 91.67% 90.00% 91.67% 94.45% 10.00%

sensitivity 57.14% 57.14% 57.14% 33.33%
IG accuracy 90.00% 93.33% 93.33% 94.83% 3.33%

sensitivity 85.71% 100% 85.71% 83.33%
OR accuracy 86.67% 88.33% 90.00% 93.33% 0.00%

sensitivity 85.71% 100% 85.71% 85.71%

5 Conclusion

This paper presents a new divide-and-conquer approach for fracture detection
by partitioning the problem in the kernel space of the SVM into smaller sub-
problems, and training an SVM to specialize in solving a sub-problem. Each sub-
problem is easier to solve than the whole problem. The training scheme ensures
that lower-level SVMs always complement the performance of higher-level SVMs.
As a result, the hierarchy of SVMs performs better than an individual SVM
solving the whole problem. Compared to existing methods, this approach can
enhance the accuracy and reliability of the SVMs.
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