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Abstract

Histograms are commonly used in content-based image retrieval systems to repre-

sent the distributions of colors in images. It is a common understanding that histograms

that adapt to images can represent their color distributions more efficiently than do

histograms with fixed binnings. However, existing systems almost exclusively adopt

fixed-binning histograms because, among existing well-known dissimilarity measures,

only the computationally expensive Earth Mover’s Distance (EMD) can compare his-

tograms with different binnings. This article addresses the issue by defining a new

dissimilarity measure that is more reliable than the Euclidean distance and yet com-

putationally less expensive than EMD. Moreover, a mathematically sound definition of

mean histogram can be defined for histogram clustering applications. Extensive test

results show that adaptive histograms produce the best overall performance, in terms

of good accuracy, small number of bins, no empty bin, and efficient computation, com-

pared to existing methods for histogram retrieval, classification, and clustering tasks.

Keywords: Color histograms, adaptive binning, histogram-based dissimilarity measures,

image retrieval, image classification, image clustering.
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1 Introduction

In content-based image retrieval systems, histograms are often used to represent the dis-

tributions of colors in images. There are two general methods of generating histograms:

fixed binning and adaptive binning. Typically, a fixed-binning method induces histogram

bins by partitioning the color space into rectangular bins [8, 9, 21, 25, 32, 35, 38]. Once

the bins are derived, they are fixed and the same binning scheme is applied to all images.

On the other hand, adaptive binning adapts to the actual distributions of colors in images

[3, 11, 22, 27, 31]. As a result, different binnings are induced for different images.

It is a common understanding that adaptively-binned histograms can represent the distri-

butions of colors in images more efficiently than do histograms with fixed binning [11, 27, 31].

However, existing systems almost exclusively adopt fixed-binning histograms because among

existing well-known dissimilarity measures, only the Earth Mover’s Distance (EMD) can

compare histograms with different binnings [27, 31]. But, EMD is computationally more

expensive than other dissimilarity measures because it requires an optimization process.

Another major concern is that fixed-binning histograms have been regarded as vectors

in a linear vector space, with each bin representing a dimension of the space. This conve-

nient vector interpretation makes it possible to apply various well-known algorithms, such

as clustering, Principle Component Analysis, and Singular Value Decomposition to process

and analyze histograms [10, 26, 34]. Unfortunately, this approach is not satisfactory because

the algorithms are applied in a linear vector space, which assumes the Euclidean distance

as the measure of vector difference. And Euclidean distance has been found to be less reli-

able than other measures for computing histogram dissimilarity [5, 27, 33]. As a result, the
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effectiveness and reliability of the approach is compromised.

Adaptive histograms cannot be conveniently mapped into a linear vector space because

different histograms may have different bins. Although Multidimensional Scaling (MDS) [4]

can be used to recover the Euclidean coordinates of the histograms from pairwise distances

between them, it is computationally expensive to apply MDS on a large number of (say,

more than 100) histograms. Moreover, MDS incurs an error in recovering the coordinates,

further compromising the effectiveness of adaptive histograms in practical applications.

To address the above issues, this article proposes a new dissimilarity measure for adaptive

color histograms (Section 5) that is more reliable than the Euclidean distance and yet com-

putationally less expensive than the Earth Mover’s distance. Moreover, a mathematically

sound definition of mean histogram can be defined for histogram clustering applications. Ex-

tensive test results (Section 6) show that the use of adaptive histograms produces the best

overall performance, in terms of good accuracy, small number of bins, no empty bin, and

efficient computation, compared to existing methods in histogram retrieval, classification,

and clustering tasks.

2 Related Work

There are two types of fixed binning schemes: regular partitioning and color space clustering.

The first method simply partitions the axes of a target color space into regular intervals, thus

producing rectangular bins. Typically, one of the three color axes is regarded as conveying

more important information and is partitioned into more intervals than are the other two

axes. For example, VisualSeek [35] partitions the HSV space into 18×3×3 color bins and
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4 grey bins, producing 166 bins. PicHunter [9] also partitions the HSV space in a similar

manner. The CIELUV space has also been used [21, 32] because it is more perceptually

uniform than RGB space [2]. In partitioning these spaces, bins that correspond to illegal

RGB colors are usually discarded.

The second method partitions a color space into a large number of cells, which are then

clustered by a clustering algorithm such as the k-means. For example, QBIC [13] partitions

the RGB space into 16×16×16 cells, maps the cells to a modified Munsell HVC space, and

then clustered the cells into k clusters. Vailaya et al. [38] apply a similar method but map

the RGB cells into the HSV space, where 64 bins are produced. Quicklook [8] maps sRGB

[1] cells into CIELAB and clusters them into 64 bins.

Adaptive binning is similar to color space clustering in that k-means clustering or its

variant is used to induce the bins. However, the clustering algorithm is applied to the colors

in an image instead of the colors in an entire color space [3, 11, 22, 27, 31]. Therefore,

adaptive binning produces different bins for different images.

Different binning schemes require different color quantization methods. For regular par-

titioning, a color is quantized to the centroid of the rectangular bin containing the color,

producing a rectangular tessellation of the color space. On the other hand, with color space

clustering and adaptive clustering, a color is quantized to the centroid of its nearest clus-

ter, thus producing a Voronoi tessellation of the color space. We shall call the histograms

produced by the three methods regular, clustered, and adaptive histograms.

Among commonly used dissimilarity measures, Earth Mover’s Distance (EMD) is the only

one that can compare histograms with different binnings [27, 31]. Puzicha et al. performed

a systematic evaluation of the performance of various dissimilarity measures in classifica-
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tion, segmentation, and retrieval tasks [27]. They concluded that dissimilarities such as χ2,

Kullback-Leibler divergence, and Jeffreys divergence performed better than other measures

for large sample size (i.e., number of pixels sampled in an image), while EMD, Kolmogorov-

Smirnov, and Cramer/von Mises performed better for small sample size. In an earlier paper,

they presented another similar study for the tasks of texture segmentation and retrieval [28].

Manjunath and Ma also performed a benchmark study for texture retrieval [19].

The study of Sebe et al. [33] shows that the Euclidean distance is justified from a maxi-

mum likelihood perspective when the additive noise distribution is Gaussian. However, their

experiments on image retrieval, stereo matching, and motion tracking suggest that real noise

distributions are better modeled by the Cauchy distribution than Gaussian and Exponential.

Consequently, the Cauchy metric achieves greater accuracy than the Euclidean distance, sum

of absolute difference, and Kullback relative information.

Brunelli and Mich [5] proposed the concept of histogram capacity to quantify the effec-

tiveness of histograms as image descriptors and histogram dissimilarities for image retrieval.

Their analysis results permit the design of scalable image retrieval systems that make optimal

use of computational and storage resources.

This article complements the above studies in the following ways: (1) It provides a quan-

titative evaluation of the performance of the three types of binning schemes (Section 3). (2)

It defines a new dissimilarity measure that can compare histograms with different binnings

(Section 5). Since the dissimilarity measure does not require an optimization procedure, it

can be computed more efficiently than EMD. (3) It proposes different methods for bench-

marking the combined performance of binning and dissimilarity measure in image retrieval,

classification, and clustering tasks (Sections 6.3, 6.4, 6.5). These benchmarking tests more
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closely resemble the retrieval of complex images with one or more regions of interests than

those in [27].

3 Adaptive Binning

Adaptive binning of the colors in an image can be achieved by an appropriate vector quan-

tization algorithms such as k-means clustering or its variants [24]. This section describes an

adaptive variant of k-means that can automatically determine the appropriate number of

clusters required. The algorithm can be summarized as follows:

Adaptive Clustering

Repeat

For each pixel p,

Find the nearest cluster k to pixel p.

If no cluster is found or distance dkp ≥ S,

create a new cluster with pixel p;

Else, if dkp ≤ R,

add pixel p to cluster k.

For each cluster i,

If cluster i has at least Nm pixels,

update centroid ci of cluster i;

Else, remove cluster i.
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The distance dkp between the centroid ck of cluster k and a pixel p with color cp is defined

as the CIE94 color-difference equation [2]:

dkp =

[

(

∆L∗

kLSL

)2

+
(

∆C∗
ab

kCSC

)2

+
(

∆H∗
ab

kHSH

)2
]1/2

(1)

where ∆L∗, ∆C∗
ab, and ∆H∗

ab are the differences in lightness, chroma, and hue between ck

and cp, SL = 1, SC = 1+0.045 C̄∗
ab, SH = 1+0.015 C̄∗

ab, and kL = kC = kH = 1 for reference

conditions. The variable C̄∗
ab is the geometric mean between the chroma values of ck and cp,

i.e., C̄∗
ab =

√

C∗
ab,kC

∗
ab,p. The CIE94 color-difference equation is used instead of the Euclidean

distance in CIELAB or CIELUV because recent psychological studies show that CIE94 is

more perceptually uniform than does Euclidean distance [2, 12, 14, 23, 36].

The adaptive clustering algorithm groups a pixel p into its nearest cluster if it is near

enough (dkp ≤ R). On the other hand, if the pixel p is far enough (dkp ≥ S) from its

nearest cluster, then a new cluster is created. Otherwise, it is left unclustered and will be

considered again in the next iteration. This clustering algorithm, thus, ensures that each

cluster has a maximum radius of R and that the clusters are separated by the distance

of approximately S called the nominal cluster separation. The value of S is defined as a

multiple γ of R, i.e., S = γR. Reasonable values of γ range from 0 (for complete overlapping

of the clusters) to 2 (for non-overlapping of clusters). Since the algorithm creates a cluster

only when a color is far enough from all existing clusters, it can determine the number of

clusters required to adequately represent the colors in an image. It also ensures that each

cluster has a significant number of at least Nm pixels; otherwise, the cluster is removed. In

the current implementation, Nm is fixed at 10.
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This adaptive clustering algorithm is similar to that of Gong et al. [11] Both algorithms

ensure that the clusters are not too large in volume and not too close to each other. However,

our adaptive algorithm is simpler than that in [11]. Moreover, it does not require seed

initialization, and can automatically determine the appropriate number of clusters.

In practice, for efficiency sake, the algorithm is repeated for only 10 iterations. When

the algorithm terminates, some colors may still be unclustered. During color quantization

or histogram generation, these unclustered colors are quantized to the colors of their nearest

clusters. Empirical tests show that having a small amount of unclustered colors during the

clustering process does not produce significant error in the color quantization results. For

instance, our test results show that 5% unclustered colors contribute to only a 1% increase

in the mean error of color quantization compared to the case in which all the colors are

clustered. In fact, leaving some colors unclustered makes the algorithm more robust against

noise colors that differ significantly from other main colors in the image. These noise colors

typically occur at abrupt color discontinuities in the images.

4 Overview of Histogram Similarity

Before discussing the mathematics of adaptive histograms, let us motivate the mathematical

formulation by first describing a possible definition of similarity measure for adaptive color

histograms. To begin, let us first consider two adaptive histograms H and H ′, each having

only one bin located at c and c′, with bin counts h and h′, respectively. Let f(x) and f ′(x)

denote the actual density distributions of colors in and around the two bins, where x denote

3D color coordinates. Then, the similarity ζ(H,H ′) between the two distributions can be
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defined, as is commonly practiced, as the correlation between them:

ζ(H,H ′) =
∫

f(x) f ′(x) dx . (2)

Equation 2 is integrated over the 3D space. It is very tedious and time-consuming to compute

the integration even if normal distributions are assumed for f(x) and f ′(x). To simplify the

computation, let us assume that the distributions are uniform within the bins and 0 outside.

Then, Eq. 2 has to be integrated over the intersecting volume V only, yielding:

ζ(H,H ′) =
∫

V

h

V

h′

V ′
dx =

Vs

V V ′
hh′ (3)

where V and V ′ are the volumes of the bins and Vs is the volume of intersection. Therefore,

the similarity between two distributions can be defined as the weighted product of the bin

counts h and h′, with the weight w(c, c′) defined in terms of the volume of intersection Vs.

The weight w(c, c′) can be interpreted as the similarity between the two bins.

In an appropriate color space that is perceptually uniform, such as CIELAB, spherical

bins of the same radius can be adopted for ease of computation of bin similarity. The adoption

of spherical bins is supported by the use of appropriate color-difference equations such as

CIE94, CMC, and BDF, all defined in the CIELAB color space [2]. Recent psychological

tests have confirmed that these color-difference equations are more perceptually uniform

than does Euclidean distance in the CIELAB and CIELUV spaces [2, 12, 14, 23, 36].

From solid geometry, the volume of intersection Vs between two equal-sized spherical bins

of radius R, separated by a distance d between their centroids, can be derived as:

Vs = V − πR2d+
π

12
d3 (4)

where V = 4πR3/3 is the volume of a sphere. The bin separation d can be specified as a
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Figure 1: A plot of bin similarity w(α) against bin separation ratio α.

multiple of R, i.e., d = αR, and the weight w(c, c′) can be defined as

w(c, c′) = w(α) =
Vs

V
=



























1− 3

4
α +

1

16
α3 if 0 ≤ α ≤ 2

0 otherwise.

(5)

This definition of the weight is simpler than that derived in Eq. 3 because it is dependent only

on the distance between the bin centroids and is independent of the bin volumes. Figure 1

shows that the function w(α) decreases at a faster-than-linear rate with increasing α.

For histograms with more than one bin, the similarity ζ(H,H ′) can thus be defined as

follows:

ζ(H,H ′) =
n
∑

i=1

n′
∑

j=1

w(ci, c
′
j)hih

′
j . (6)

In practice, it is useful to bound the value of similarity measure so that its inverse, the

dissimilarity measure, is also bounded. To achieve this goal, it is necessary to normalize the

bin counts hi and h′j. So, a proper definition of histogram normalization is needed. In the

next section, we shall provide a rigorous mathematical treatment of histogram normalization
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and similarity.

5 Adaptive Color Histograms

An adaptive color histogram H = (n, C,H) is defined as a 3-tuple consisting of a set C of

n bins with bin centroids ci, i = 1, . . . , n, and a set H of corresponding bin counts hi > 0.

Given two adaptive histograms G = (m, {bi}, {gi}) and H = (n, {ci}, {hi}), define the

weighted correlation G ·H as in Eq. 6:

G ·H =
m
∑

i=1

n
∑

j=1

w(bi, cj) gi hj . (7)

A histogram H can be normalized into H by dividing each bin count by the histogram

norm ‖H‖ =
√
H ·H. The similarity s(G,H) between G and H is then defined as the

weighted correlation between their normalized forms: s(G,H) = G · H. We will prove in

Theorem 2 that s(G,H) is bounded between 0 and 1 (under a mild condition). So, the

dissimilarity d(G,H) can be defined as d(G,H) = 1− s(G,H).

Mean histogram is very useful in applications such as clustering. It is defined in terms

of an operation called the merging of histograms, which is, in turn, defined in terms of the

addition and union of histograms.

Definition 1 (Addition) The addition of histograms G = (n, C, {gi}) and H = (n, C, {hi})

with identical set of bins C is G+H = (n, C, {gi + hi}).

Histogram addition is defined only for histograms with an identical set of bins.

Definition 2 (Union) The union of histograms G = (m,B,G) and H = (n, C,H) with

disjoint sets of bins, i.e., B ∩ C = ∅, is G ∪H = (m+ n,B ∪ C,G ∪ H).
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Note that the notation G ∪ H is used to mean the collection of the bin counts of the two

histograms, which allows for duplicates, instead of the usual set union. Although it is possible

to define the union operator on histograms with common bins, the above definition is more

convenient for the following histogram merging operator which combines addition and union

into a single operation.

Definition 3 (Merging) Let histogram G = X ∪ Y and H = X ′ ∪ Z such that X and X ′

have the same set of bins and X, Y , and Z have disjoint sets of bins. Then, the merged

histogram G ]H = (X ∪ Y ) ] (X ′ ∪ Z) = (X +X ′) ∪ Y ∪ Z.

That is, two histograms are merged by collecting all the bins and adding the bin counts of

identical bins. Note that it is always possible to express two histograms G and H in the

form given in Definition 3 for histogram merging to be well-defined.

In order that histogram dissimilarity is well defined (i.e., d(G,H) ≥ 0), histogram simi-

larity has to be bounded from above by the value 1. It turns out that this is guaranteed if

an equivalent form of Cauchy-Schwarz inequality holds for adaptive histograms:

(G ·H)2 ≤ (G ·G) (H ·H) (8)

or equivalently

G ·H ≤ ‖G‖‖H‖ . (9)

Unfortunately, the Cauchy-Schwarz inequality does not hold for adaptive histograms in gen-

eral. Here, we provide a necessary condition and a sufficient condition for Cauchy-Schwarz

inequality, supplemented by examples and discussion about practical issues.

Theorem 1 (Cauchy-Schwarz Inequality) Given histograms G = (m, {bi}, {gi}) and

H = (n, {ci}, {hi}), define
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• Φ =

∑

i,j,k,l

w(bi, ck)w(bj, cl)

∑

i,j,k,l

w(bi,bj)w(ck, cl)

• λ = min
i,j,k,l

gigjhkhl =
(

min
i
gi min

k
hk

)2

• Λ = max
i,j,k,l

gigjhkhl =
(

max
i
gi max

k
hk

)2

.

Then, a necessary condition for Cauchy-Schwarz inequality (G · H)2 ≤ (G · G) (H · H) to

hold is Φ ≤ Λ/λ, and a sufficient condition is Φ ≤ λ/Λ.

Proof. (Necessary condition) From the definition of weighted correlation,

(G ·H)2 =





∑

i,k

w(bi, ck) gihk





2

=
∑

i,j,k,l

w(bi, ck)w(bj, cl) gigjhkhl (10)

and

(G ·G) (H ·H) =
∑

i,j

w(bi,bj) gigj

∑

k,l

w(ck, cl)hkhl =
∑

i,j,k,l

w(bi,bj)w(ck, cl) gigjhkhl . (11)

Thus,

∑

i,j,k,l

w(bi, ck)w(bj, cl)λ ≤ (G ·H)2

and

(G ·G)(H ·H) ≤
∑

i,j,k,l

w(bi,bj)w(ck, cl) Λ .

If Cauchy-Schwarz inequality holds, then

(G ·H)2 ≤ (G ·G)(H ·H)

which implies that Φ ≤ Λ/λ.

(Sufficient condition) If the sufficient condition is satisfied, then

(G ·H)2 ≤
∑

i,j,k,l

w(bi, ck)w(bj, cl) Λ ≤
∑

i,j,k,l

w(bi,bj)w(ck, cl)λ ≤ (G ·G)(H ·H) .
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Thus, Cauchy-Schwarz inequality holds. 2

Note that there is a gap between the necessary condition and the sufficient condition

(Fig. 2). Histograms that satisfy Cauchy-Schwarz inequality must satisfy the necessary con-

dition but may or may not satisfy the sufficient condition. The following examples illustrate

the gap.

Example 1: Consider histograms G = (n, {bi}, {gi}) and H = (n, {ci}, {hi}) with the

same number of n bins such that w(bi,bi) = w(ci, ci) = w(bi, ci) = 1 for all i while all other

weights w(·) = 0. Then, the weighted correlation G ·H reduces to the inner product of two

vectors, which is well-known to satisfy Cauchy-Schwarz inequality [20]. But, Φ = 1 > λ/Λ

for most G and H, except for the case λ = Λ in which the histograms have uniform bin

counts.

For a more concrete example, take G = (2, {bi}, {1, 1/2}) and H = (2, {ci}, {1, 1/4})

with the above weights. Then, Φ = 1 > λ/Λ = 1/64, i.e., the histograms violate the

sufficient condition. But, Cauchy-Schwarz inequality still holds:

(G ·H)2 =
81

64
< (G ·G)(H ·H) =

85

64
.

Example 2: Consider G = (2, {bi}, {1, 1/2}) and H = (2, {ci}, {1, 1/4}) with weights

w(bi,bi) = w(ci, ci) = 1 for all i, w(bi,bj) = w(ci, cj) = 0 for i 6= j, and w(bi, cj) = 1 for

all i, j. Then, Φ = 4 ≤ Λ/λ = 64, i.e., the histograms satisfy the necessary condition. But,
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Figure 2: Cauchy-Schwarz inequality is satisfied when Φ falls in the shaded region. Φ ≤ Λ/λ

gives the necessary condition and Φ ≤ λ/Λ gives the sufficient condition.

Cauchy-Schwarz inequality does not hold:

(G ·H)2 =
255

64
> (G ·G)(H ·H) =

85

64
.

These examples are summarized in Fig. 2.

In practice, the bins of a histogram are sparsely distributed and with minimum overlap

between them. A bin of G overlaps at most a small number of, say µ, bins of H significantly,

and µ ¿ min(m,n). Moreover, the weight function is inversely related to the distance

between the bins (Eq. 5, Fig. 1). As a result, the numerator of Φ has at most µ2 significant

terms. On the other hand, the denominator of Φ has at least m×n significant terms because

w(bi,bi) = w(ck, ck) = 1 for all i, k. Therefore, Φ tends to be much smaller than Λ/λ, the

necessary condition. This explains the observation that the histogram dissimilarities that

we computed in our tests and applications are all non-negative.

The boundedness of histogram similarity and dissimilarity follows directly from Cauchy-

Schwarz inequality:

Theorem 2 (Boundedness of Similarity) For any histograms G and H satisfying Cauchy-

Schwarz inequality, 0 ≤ s(G,H) ≤ 1 and 0 ≤ d(G,H) ≤ 1.

Proof. Since the bin similarity w and bin counts gi and hi are non-zero, s(G,H) ≥ 0 and
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d(G,H) ≤ 1. From Cauchy-Schwarz inequality,

(G ·H)2 ≤ (G ·G) (H ·H) = ‖G‖2‖H‖2 .

Therefore,

s(G,H) =
G ·H
‖G‖‖H‖ ≤ 1 and d(G,H) ≥ 0 . 2

Next, let us provide a mathematically sound definition for a mean histogram.

Definition 4 (Mean Histogram) M is a mean histogram of Hi, i = 1, . . . , N , if M

maximizes the total similarity S(M):

S(M) =
N
∑

i=1

s(M,Hi) . (12)

This definition is equivalent to saying that the mean histogram minimizes the total distance

∑

i d(M,Hi), which is consistent with the usual definition of mean.

Now, we can show how to compute the mean histogram that is mathematically sound.

Theorem 3 (Mean Histogram)
⊎

iH i is a mean of histograms Hi, i = 1, . . . , N .

Proof. Let M denote
⊎

iH i. Total similarity S(M) between M and Hi is

S(M) =
∑

i

s(M,Hi) =
∑

i

M ·H i .

From the definition of weighted correlation (Eq. 7) and histogram merging (Definition 3), it

is easy to show that

∑

i

M ·H i = M ·
⊎

i

H i .
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Therefore,

S(M) = M ·M = ‖M‖ .

Now, consider any histogram M ′ that is arbitrarily close to but different from M , i.e.,

s(M ′,M) < 1. Total similarity S(M ′) between M ′ and Hi is

S(M ′) =
∑

i

s(M ′, Hi) =
∑

i

M ′ ·H i

= M ′ ·
⊎

i

H i = M ′ ·M = ‖M‖M ′ ·M

< ‖M‖ = S(M) .

Therefore, M maximizes the total similarity S(M). 2

Notice that the computation of mean histogram based on other non-Euclidean distances

may require an optimization procedure that is computationally expensive in general. In

contrast, the computation of mean histogram based on adaptive histogram dissimilarity is

as straightforward as that of a Euclidean mean, and yet is applicable to histograms with

different binnings.

The usual definition of mean divides the sum by the number of items that are added

together:

M =
1

N

∑

i

Hi . (13)

But, it is applicable only to fixed-binning histograms. For adaptive histograms, this division

is not necessary because the “division” is performed within the merging operation, i.e.,

histograms are normalized before they are merged to produce the mean histogram.

An implication of Theorem 3 is that histogram merging is equivalent to histogram av-

eraging. If histograms that are very different from each others are merged, we expect to

obtain a mean histogram that is not similar to any of the histograms that are merged. Such
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a mean may not be useful in practice. An analogy is the mixing of the color pigments of

red, green, and blue, and yielding grey which is very different from the original colors. On

the other hand, merging similar histograms yields a mean that is similar to the histograms

that are merged.

The merging of many histograms together may result in a merged histogram with a

large number of bins. So, it might be useful to merge similar bins so as to reduce the

number of bins. This procedure can be performed by applying the adaptive binning algorithm

(Section 3).

6 Performance Evaluation

Four types of tests were conducted to evaluate the performance of adaptive color histograms

and weighted correlation dissimilarity measure: color retention, image retrieval, image clas-

sification, and image clustering.

6.1 Color Retention

In this test, the performance of the adaptive clustering was compared with those of regu-

lar partitioning and color space clustering. The colors of the images were assumed to be

represented in the sRGB space [1], and the target color space was CIELAB.

6.1.1 Test Setup

Adaptive clustering algorithm was tested with cluster radius R ranging from 7.5 to 22.5 and

nominal cluster separation factor γ ranging from 1.1 to 1.5. For regular partitioning, the
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L∗-axis of the CIELAB space was partitioned into l equal intervals (l = 8, 10, 12, 14, 16),

and the a∗- and b∗-axes were partitioned into m equal intervals (m = 5, 8, 10 and m ≤ l).

The centroids of the bins were mapped back to the sRGB space and bins with illegal sRGB

values were discarded. For color space clustering, the CIELAB space was partitioned into

32×32×32 equal partitions and the bin centroids were clustered using the same adaptive

clustering algorithm, with 7.5 ≤ R ≤ 20 and 1.1 ≤ γ ≤ 1.5.

As the test images, 100 visually colorful images were randomly selected from the Corel

50,000 photo collection. The images had sizes of either 256×384 or 384×256. Color histograms

were generated for each image using the three binning methods.

The performance of the three binning methods were measured by three indicators, namely,

the number of bins or clusters produced, the number of empty bins, and the mean color error

measured as the mean difference between the actual colors and the quantized colors (in CIE94

units). These performance indicators were averaged over all the images.

6.1.2 Color Error

Experimental results (Fig. 3a) show that regular partitioning produced slightly larger mean

color error compared to color space clustering while adaptive clustering produced the smallest

error. Given a fixed number of bins, regular and clustered histograms have about twice the

amount of error as do adaptive histograms. As the bin volume (or cluster radius R) and the

bin separation γ of adaptive histograms increase, the number of bins decreases but the mean

color error increases. Figure 3(a) shows that beyond a sufficiently large number of bins, the

decrease in error with increasing number of bins becomes insignificant.
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6.1.3 Empty Bins

Figure 3(b) shows the average percentage of empty bins in the regular and clustered his-

tograms. With a large number of bins, both histograms have 50% or more empty bins. With

a small number of bins, clustered histograms have as few as 20% empty bins. The adaptive

histograms have no empty bins. These test results show that adaptive histograms can retain

color information more accurately with fewer bins than do regular and clustered histograms.

6.1.4 Visual Quality

Figure 4 shows two sample images quantized using adaptive binning and achieved a mean

color error of 5 CIE94 units or less. Visual inspection reveals that the color-quantized images

look indistinguishable from the original images except at regions where banding occurs such

as clear blue sky. This is the result of quantizing the gradually varying colors into discrete

bins. This observation matches recent psychological study [36] very well, which shows that

that human’s color acceptability threshold is 4.5. That is, two colors with a color difference

of less than 4.5 are regarded as practically identical. Note that the acceptability threshold

is slightly larger than the perceptibility threshold of 2.2 [36], which is the threshold below

which two colors are perceptually indistinguishable.

6.2 Discussion

Existing image retrieval systems (Section 2) typically use 64-bin clustered histograms or

more than 150 bins for regular histograms. Their respective mean color errors are about 8

and 6, with 45% and 50% empty bins (Figure 3). In comparison, 64-bin adaptive histograms
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can achieve a color error of about 3.5, lower than human acceptability threshold [36], with

no empty bins.

In the subsequent tests, the parameter values of clustered and adaptive binning methods

were fixed at R = 10 and γ = 1.5 because this combination yielded good color retention with

small number of bins. With these parameter values, the adaptive binning method produced

an average of 37.8 bins with a mean color error of 4.53, and the color space clustering method

produced 80 bins, a mean color error of 7.19, and 42% empty bins. In principle, the mean

color error of color space clustering could be reduced to, say, below 5 so that it is comparable

to that of adaptive binning. However, this will require the clustered histograms to have much

more than 250 clusters—a value that is both impractical and beyond our experimental range.

It was not necessary to test regular partitioning further because its performance was similar

to that of color space clustering.

6.3 Image Retrieval

This test assessed the combined performance of binning schemes and dissimilarity measures

in image retrieval. The weighted correlation dissimilarity (WC) described in Section 5 was

compared with three existing dissimilarity measures, namely L2 (Euclidean), Jessen Differ-

ence Divergence (JD)1, and Earth Mover’s Distance (EMD).

1The formula that Puzicha et al. [27] called “Jeffreys divergence” is more commonly known as “Jessen

difference divergence” in Information Theory literature [6, 7, 37]. Jeffreys divergence, as given in the literature

[6, 7, 15, 18, 37], takes the form
∑

i
(gi − hi) log(gi/hi) =

∑

i
[gi log(gi/hi) + hi log(hi/gi)].
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• L2 (Euclidean) distance:

d(G,H) =

(

∑

i

(gi − hi)
2

)1/2

(14)

• Jessen difference divergence (JD):

d(G,H) =
∑

i

(

gi log
gi

mi

+ hi log
hi

mi

)

(15)

where mi = (gi + hi)/2.

• Earth Mover’s distance (EMD) [30]:

d(G,H) =

∑

i,j

fij d(bi, cj)

∑

i,j

fij

(16)

where d(bi, cj) denotes the dissimilarity between bins bi and cj, and fij is the optimal

flow between G and H such that the total cost
∑

i,j fij d(bi, cj) is minimized, subject

to the constraints:

fij ≥ 0 ,
∑

i

fij ≤ hj ,
∑

j

fij ≤ gi ,
∑

i

∑

j

fij = min(
∑

i

gi,
∑

j

hj) . (17)

The dissimilarity d(bi, cj) between two bins is typically defined as a monotonic increas-

ing function of the ground distance between the bins.

Among these dissimilarity measures, L2 served as the base case of the performance evaluation.

JD and EMD are reported in [27] to yield good performance, respectively, for large and small

sample sizes. Other dissimilarity measures evaluated in [27] are expected to yield similar

results and are therefore omitted.

WC is tested with both clustered and adaptive histograms whereas L2 and JD could

be tested only with clustered histograms. The program for EMD was downloaded from
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Rubner’s web site (http://robotics.stanford.edu/~rubner), and was tested only with adaptive

histograms due to its longer execution time. The CIE94 distance was used as EMD’s ground

distance because it is more perceptual uniform than Euclidean distance in the CIELAB

space, and was taken as the dissimilarity between two bins. This arrangement produced a

total of five combinations of binning schemes and dissimilarity measures.

6.3.1 Test Setup

In the image retrieval test of Puzicha et al. [27], random samples of pixels were extracted

from the test images. Samples that were drawn from the same image should have similar

distributions and were regarded as belonging to the same class. This kind of test samples is

useful for testing the performance of dissimilarity measures in computing global similarity

between two images.

A different kind of test samples was prepared for our tests. Each of the 100 images used

in the color retention test (Section 6.1) was regarded as forming a different query class.

These images were scaled down and each embedded into 20 different host images, giving

a total of 2000 composite images at each scaling factor. The scaled images were used as

query images, and the composite images that contained the same embedded images were

regarded as relevant. This test paradigm should be useful for testing the performance of

binning schemes and dissimilarity measures in retrieving images that contain a particular

target region or color distribution of interest. We feel that this test more closely resembles

the retrieval of complex images containing one or more regions of interests compared to

that in [27]. In the test, scaling factors for image width/height of 1/4, 1/2, and 3/4 were

used. These values gave rise to embedded images with area scaling factors of 1/16, 1/4,
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and 9/16 compared to the original images. The test was performed with L2 (i.e., Euclidean)

distance, Jessen difference divergence (JD), Earth Mover’s distance (EMD), and the weighted

correlation (WC) dissimilarity of adaptive histograms.

6.3.2 Results and Discussion

Figure 5 plots the precision-recall curves of the image retrieval results for width/height

scaling factors of 1/2 and 3/4. The curves for scaling factor of 1/4 are not shown because

all combinations of binnings and dissimilarity measures performed poorly. They all had very

low precision of less than 0.2 at recall rate of 0.1, and their precision dropped to about 0.01

at recall rate of 0.3 and above.

All five combinations of binning schemes and dissimilarity measures performed signif-

icantly better for the larger scaling factor of 3/4 than for 1/2. For both scaling factors,

clustered histograms together with JD (c + JD) performed best, with the adaptive his-

tograms and WC (a + WC) combination following closely behind. The a + WC combination

performed significantly better than c + WC, which had roughly the same performance as

c + L2. These results show that, given the same dissimilarity measure, adaptive histograms

perform better than clustered histograms because they can describe color information more

accurately and yet use fewer bins (Section 6.1).

Somewhat surprisingly, EMD (with adaptive histograms) performed poorer than L2.

Compared to the results of Puzicha et al. [27], which show that EMD performed better

for small sample sizes, it is noted that our smallest scaling factor of 1/4 corresponds to an

image size of 6144 pixels, which is far larger than the sample sizes used in [27]. Moreover,

the adaptive histograms have an average of 37.8 bins, and they correspond to medium sized
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histograms in [27]. These parameter values may have obscured the strengths of EMD in

extreme cases of small sample sizes and small number of bins. However, our choices of the

number of bins, which are supported by the color retention test (Section 6.1), and the sample

sizes are expected to match practical retrieval of complex images with multiple regions better

than those of Puzicha et al. [27].

6.4 Image Classification

This test assessed the combined performance of binning schemes and dissimilarity measures

in image classification.

6.4.1 Test Setup

The composite images generated in the retrieval tests (Section 6.3) were used for image

classification test. The composite images that contained the same embedded image were

considered as belonging to the same class. This would correspond to the practical application

in which images containing the same region are considered as identical.

The k-nearest-neighbor classifier with leave-one-out procedure was applied on each of

the 2000 composite images. Odd values of k = 1, 3, 5, 7, 9 were chosen. Classification error,

averaged over all 2000 images, were computed for each combination of binning scheme,

dissimilarity measure, and k value.

6.4.2 Results and Discussion

Figure 6 shows the classification performance for width/height scaling factors of 1/2 and

3/4. The curves for 1/4 scaling are not shown because all combinations of binnings and
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dissimilarity measures performed poorly.

All five combinations performed significantly better for the larger scaling factor of 3/4

than for 1/2. Moreover, their classification accuracies increased with increasing number of

nearest neighbors k. Similar to the image retrieval results, c + JD gave the best performance

for both scaling factors, with a + WC following closely behind. The a + WC combination

performed better than c + WC, and c + L2 had the lowest accuracy. These results again

show that, given the same dissimilarity measure, adaptive histograms perform better than

clustered histograms. Unlike in the retrieval tests, the performance of a + EMD was very

good in the classification tests. The classification accuracy of a + EMD closely matched that

of a +WC, especially for the larger scaling factor of 3/4.

6.4.3 Spatial Precision

To further investigate the cause of EMD’s inconsistent performance, another performance

index called spatial precision [29] was computed. Spatial precision measures, for a given

image I, the proportion of images within a given distance d from I that belong to the same

class as I. The distance d is usually defined in terms of the distance to the k-th nearest

image of the same class as I. Figure 7 plots the spatial precision averaged over all 2000

images for each k. The spatial precision of the dissimilarity measures is smaller for a smaller

image scaling factor and decreases with increasing value of k.

The result shows that as the value of k (i.e., the neighborhood size) increases, more

negative samples that belong to other classes are included in the neighborhood. However,

given the large number of classes (100) in the test, it is possible that only a small number of

negative samples from each class is included. As a result, the majority class can still be the
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correct class even when there are many negative samples. This is especially true for EMD

since its spatial precision decreases faster than those of other dissimilarity measures.

In the tests that we conducted, CIE94 distance was used as the ground distance of EMD

because it is more perceptually uniform than Euclidean distance in the CIELAB space.

It may be possible to improve EMD’s performance by using a different, hopefully more

appropriate ground distance. For instance, Puzicha et al. used 1− g, where g is a Gaussian,

as the ground distance in their performance evaluation [27]. Nevertheless, the appropriate

choice of the ground distance can only be determined empirically, and this implies that EMD

is less convenient to use and less robust than the other dissimilarity measures.

6.5 Image Clustering

Clustering of images or image regions have been used in content-based image retrieval as a

preprocessing step of image or region classification. In the case of clustering based on fixed

color histograms of images, a typical method is to regard each histogram bin as represent-

ing a dimension in a high-dimensional space in which clustering is performed (e.g., [10]).

This method implicitly assumes that Euclidean distance is a reliable measure of histogram

dissimilarity, which we have shown to be false in the previous sections. Although there

are other more reliable similarities such as JD, no easy way of computing mean histogram

based on these similarities exists—because there is no easy way to compute a histogram that

minimizes the sum distance to the histograms in a cluster. An alternative may be to apply

k-medoid clustering algorithms [16, 17] but they are computationally more expensive than

k-means clustering. In the case of adaptive histograms, k-means clustering is still applicable
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because a simple and mathematically correct method of computing mean histogram exists,

i.e., histogram merging (Section 5).

As an example, we describe a version of k-means clustering for adaptive histograms.

k-means clustering for adaptive histograms

Pick k histograms as the centroids Mi of clusters Ci.

Repeat

For each histogram Hj,

Group Hj to the nearest cluster Ci:

d(Hj,Mi) ≤ d(Hj,Ml) for all l.

For each cluster Ci,

Compute new centroid Mi of cluster Ci:

Mi =
⊎

Hj∈Ci

Hj,

Merge bins of Mi by applying the adaptive binning algorithm (Section 3).

6.5.1 Test Setup

400 composite images from 20 classes (20 from each class) were randomly chosen from the

images generated for the retrieval test. The composite images that contained the same em-

bedded image should be closer to each other then to the other images. Three sets of tests

were performed using the following combinations of color histograms and dissimilarity mea-

sures: (1) fixed clustered histograms with Euclidean distance and Euclidean mean (c + L2),

(2) fixed clustered histograms with JD for cluster assignment and Euclidean mean for com-
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puting cluster centroid (c + JD/L2), and (3) adaptive histograms with weighted correlation

dissimilarity and histogram merging (a + WC). For the first two cases, an ordinary k-means

clustering was used. For the third case, the k-means clustering for adaptive histograms was

used. For each case, separate clustering tests were conducted with the number of clusters

ranging from 5 to 40.

6.5.2 Results and Discussion

Clustering performance is measured in terms of the cluster spread and cluster homogeneity.

The cluster spread Ω is the effective radius of a cluster normalized by its distance to the

nearest neighboring cluster:

Ω =
1

k

k
∑

i=1

ωi (18)

ωi =

1

|Ci|
∑

Hj∈Ci

d(Mi, Hj)

min
j 6=i

d(Mi,Mj)
(19)

whereMi is the mean histogram of cluster Ci, d(·) is the CIE94 distance, and k is the number

of clusters. It measures the compactness of the clusters and the amount of overlaps between

the clusters. The smaller the cluster spread, the more compact are the clusters and the less

are the overlaps between them.

The cluster homogeneity Θ measures the proportion of histograms in a cluster that belong

to the majority class of the cluster:

Θ =
1

k

k
∑

i=1

P (L(Ci) |Ci) (20)
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where L(Ci) denotes the majority class of cluster Ci and P (L(Ci) |Ci) is the conditional

probability of L(Ci) given Ci. If the cluster homogeneity is less than 1/n, then the cluster

must contain histograms that belong to at least n+ 1 classes. Therefore, the smaller the n,

the larger than Θ, and the more homogeneous is the cluster.

Figure 8 compares the cluster spread and cluster homogeneity of the three test cases

at different number of clusters. For all three cases, clustering performance improved sig-

nificantly when the number of clusters k increased from 5 to 20. At k > 20, the cluster

spreads of c + L2 and c + JD/L2 improved slightly with increasing k but their cluster ho-

mogeneity decreased. Notice that performing cluster assignment with JD did not improve

clustering performance significantly because the computation of mean histogram was based

on L2 instead of the more reliable JD.

In contrast, the cluster spread and homogeneity of a + WC stabilized at k > 20, and

were better than those of c + L2 and c + JD/L2 for all k. In other words, a + WC produced

more compact and more homogeneous clusters that were more widely spaced out than did

c + L2 and c + JD/L2. Moreover, its performance is more stable than those of the other

two cases. This result indicates that a + WC is more effective and reliable for practical

applications in which the optimal number of clusters k is often unknown.

7 Conclusions

This paper presented an adaptive color clustering method and a dissimilarity measure for

comparing histograms with different binnings. The color clustering algorithm is an adaptive

variant of the k-means clustering algorithm and it can determine the number of clusters
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required to adequately describe the colors in an image. The dissimilarity measure computes

a weighted correlation between two histograms, and the weights are defined in terms of the

volumes of intersection between overlapping spherical bins. Since this measure does not

require optimization, it executes more efficiently than does Earth Mover’s Distance (EMD).

Extensive tests were performed to evaluate the performance of adaptive histograms on

color retention, image retrieval, image classification, and image clustering. Compared to fixed

binning schemes, adaptive color clustering can retain color information more accurately with

fewer bins and no empty bin. The combined performance of adaptive color clustering and

weighted correlation dissimilarity (WC) is comparable to that of Jessen difference divergence

and better than those of L2 and EMD for image retrieval and image classification tasks. For

image clustering, a variant of k-means clustering algorithm is adapted to cluster adaptive

histograms. Test results show that WC performs better than L2 and the JD/L2 combination

because it allows the clustering algorithm to produce more compact and more homogeneous

clusters that are widely spaced out. In conclusion, the adaptive histograms achieve the best

overall performance in terms of accuracy, small number of compact and homogeneous bins,

no empty bin, and efficient computation for image retrieval, classification, and clustering

tasks.
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Thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 1997.

35



[27] J. Puzicha, J. M. Buhmann, Y. Rubner, and C. Tomasi. Empirical evaluation of dis-

similarity for color and texture. In Proc. ICCV ’99, pages 1165–1172, 1999.

[28] J. Puzicha, T. Hofmann, and J. Buhmann. Nonparametric similarity measures for

unsupervised texture segmentation and image retrieval. In Proc. CVPR ’97, pages

267–272, 1997.

[29] K. Rodden, W. Basalaj, D. Sinclair, and K. Wood. A comparison of measures for

visualising image similarity. In Proc. Challenges of Image Retrieval, 2000.

[30] Y. Rubner. Perceptual Metrics for Image Database Navigation. PhD thesis, Computer

Science Dept., Stanford U., 1999.

[31] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications

to image databases. In Proc. ICCV ’98, 1998.

[32] S. Sclaroff, L. Taycher, and M. La Cascia. Image-Rover: A content-based image browser

for the world wide web. In Proc. IEEE Workshop on Content-Based Access of Image

and Video Libraries, 1997.

[33] N. Sebe, M. S. Lew, and D. P. Huijsmans. Toward improved ranking metrics. IEEE.

Trans. on PAMI, 22(10):1132–1143, 2000.

[34] G. Sheikholeslami, W. Chang, and A. Zhang. Semantic clustering and querying on

heterogeneous features for visual data. In Proc. ACM Multimedia ’98, pages 3–12,

1998.

36



[35] J. R. Smith and S.-F. Chang. Single color extraction and image query. In Proc. ICIP

’95, 1995.

[36] T. Song and R. Luo. Testing color-difference formulae on complex images using a CRT

monitor. In Proc. of 8th Color Imaging Conference, 2000.

[37] I. J. Taneja. New developments in generalized information measures. In P. W. Hawkes,

editor, Advances in Imaging and Electron Physics, volume 91. Academic Press, 1995.

[38] A. Vailaya, A. Jain, and H. J. Zhang. On image classification: City images vs. land-

scapes. Pattern Recognition, 31:1921–1935, 1998.

37



0
 50
 100
 150
 200
 250


mean number of bins


0


5


10


15


adaptive


mean color error


regular


clustered


(a)

0
 50
 100
 150
 200
 250


mean number of bins


10


20


30


40


50


60


regular


clustered


mean % of empty bins


(b)

Figure 3: Color clustering performance. (a) Mean color errors of regular, clustered, and

adaptive histograms. (b) Average percentage of empty bins in regular and clustered his-

tograms.
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(a) (b)

(c) (d)

Figure 4: Color quantization results. The original images contain (a) 71599 colors and (b)

46218 colors. The color-quantized images contain only (c) 39 colors and (d) 31 colors, and

are visually indistinguishable from the original images except for the regions where banding

occurs.
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Figure 5: Precision-recall curves of various combinations of binning methods (c: clustered,

dashed line; a: adaptive, solid line) and dissimilarities (JD: Jessen difference divergence,

WC: weighted correlation, L2: Euclidean, EMD: Earth Mover’s Distance). (a) Scaling =

1/2, (b) scaling = 3/4.
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Figure 6: Classification accuracy of various combinations of binning methods and dissimi-

larities. (a) Scaling = 1/2, (b) scaling = 3/4.
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Figure 7: Spatial precision of various combinations of binning methods and dissimilarity

measures. (a) Scaling = 1/2, (b) scaling = 3/4.
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Figure 8: Comparison of (a) cluster spread and (b) cluster homogeneity between the three

test cases.
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