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Abstract— Breast cancer grading of histopathological images
is the standard clinical practice for the diagnosis and prognosis
of breast cancer development. In a large hospital, a pathologist
typically handles 100 grading cases per day, each consisting
of about 2000 image frames. It is, therefore, a very tedious
and time-consuming task. This paper proposes a method for
automatic computer grading to assist pathologists by providing
second opinions and reducing their workload. It combines
the three criteria in the Nottingham scoring system using a
multi-resolution approach. To our best knowledge, there is no
existing work that provide complete grading according to the
Nottingham criteria.

I. I NTRODUCTION

Breast cancer grading of histopathological images is the
standard clinical practice for the diagnosis and prognosis
of breast cancer development. Pathologists perform grading
manually under a microscope. Their experience directly
influence the accuracy of grading. Variability among pathol-
ogists have been observed in clinical practice [1]. In a large
hospital, a pathologist typically handles 100 grading cases
per day, each consisting of about 2000 image frames [2].
It is, therefore, a very tedious and time-consuming task. A
computer system that performs automatic grading can assist
the pathologists by providing second opinions, reducing their
workload, and alerting them to cases that require closer
attention, allowing them to focus on diagnosis and prognosis.

Breast cancer grading is performed according to the Not-
tingham scoring system, which combines three criteria: (1)
nuclear pleomorphism, (2) tubular formation, and (3) mitotic
count. It is also called the modified Bloom-Richardson
system, which is preferred by most pathologists as it gives
a more objective grading assessment than previous systems.

Existing methods, except [2] and [3], handle only one of
these criteria for histological images. This paper presents
a multi-resolution method for breast cancer grading that
combines the three criteria.

II. RELATED WORK

Automatic grading of prostate cancer have been proposed
[4], [5]. They adopt the Gleason system instead of Notting-
ham system, and uses different grading criteria.
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Fig. 1. Overall structure of breast cancer grading system.

Many techniques have been proposed for the segmenta-
tion of cell nuclei in histological images [1], [6], [7], [8],
[9], [10], including thresholding, morphological operation,
watershed, etc. They are used for nuclear pleomorphism
scoring. Petushi et al. [3], [11] proposed a method for
tubular formation scoring. They modeled the microstructure
present in histological images and used them to segment
and classify the cells and assess localized tubular formation.
Baak et al. [12], [13] proposed a method for counting mitotic
cells in histopathological images. Mitotic cells are segmented
using thresholding and region growing techniques. They are
then classified according to features such as elongation and
roundness before they are counted.

The methods reviewed above handle only one of the
three criteria in the Nottingham system. The first attempt at
combining all the three criteria is proposed in our previous
paper [2]. In this paper, we present an improvement over [2]
based on a multi-resolution approach.

III. B REAST CANCER GRADING SYSTEM

Our breast cancer grading system adopts a multi-resolution
approach (Fig. 1). First, a low-resolution global image of the
whole histological slide is reconstructed by scaling down and
tiling high-resolution micro-image frames. These frames are
captured at40× magnification from a patient’s histological
sample stained with H&E marker. Typically, as many as 2000
image frames are generated from a patient’s sample.

Next, neoplasm localization and detection of tubular for-
mations are performed on the low-resolution global image.
High-resolution image frames that contain the neoplasm are
selected. Within these image frames, cells are segmented



(a) (b)
Fig. 2. Sample micro-image frames. (a) Epithelial and tumor cellsforming
tubular formation. (b) Mitotic cell.

using Gaussian color models. Then, they are classified as
epithelial/tumor cells or candidate mitotic cells based on
similarity of Gaussian distributions (similar to Eq. 2). The
candidate mitotic cells are further classified as mitotic or
non-mitotic (Section IIID). Epithelial/tumor cells are used for
nuclear pleomorphism scoring, and mitotic cells are detected
for scoring of mitotic count. Finally, a global pathological
grading is computed from the three criteria of nuclear
pleomorphism, tubular formation, and mitotic counts. These
stages are described in the following sections.

A. Localization of the Neoplasm

In the input images, cell nuclei appear blue-purple in color
due to staining by H&E marker. They can be distinguished
from the fat and lumina, which are white, and the stroma,
which is red (Fig. 2). Given the low-resolution global image,
red regions are segmented from other structures such as the
stroma, fat, and lumina by a color thresholding technique
based on Otsu’s method [14]. Next, morphological opening
and closing operations are performed on the segmented
regions to fill up small holes and connect nearby cells,
yielding compact areas corresponding to neoplasm. High-
resolution image frames that contain neoplasm are selected
for further analysis.

B. Detection and Scoring of Tubule Formation

Tubule formation is a structure that consists of at least
one lumina (i.e., white region) surrounded by tumor cells
(Fig. 2(a)) [3]. To detect tubule formation, a morphological
closing operation is applied to the segmented neoplasm in the
low-resolution global image to connect nearby cells. Next,
a morphological filling operation is applied to obtain blob
structures. If a blob structure contains fat/lumina regions,
then it is regarded as a tubule formation.

Tubule formation is scored as follows. First, a measureR
of the amount of tubule formations is computed. as the ratio
of the total area occupied by the tubule formations over the
total area of the cells in all the image frames. Then, the score
ST of tubule formation is computed as:

ST =







1 if R > 0.75
2 if 0.1 ≤ R ≤ 0.75
3 if R < 0.1

(1)

C. Scoring of Nuclear Pleomorphism

Given the detected epithelial/tumor cells, nuclear pleo-
morphism is scored as follows. Gaussian functions are
constructed from training samples to model the probability
distributions of the colorsc in the three types of cells
used for nuclear pleomorphism scoring. The Gaussian model
Gi(c|µi,Σi) of type i cells is defined in terms of the mean
µ and covariance matrixΣ of the colors in typei cells.

For a cell detected in a high-resolution image, the distri-
bution of colors in the cell is also modeled using a Gaussian
model G(c|µ,Σ). Then, the differencesd(G,Gi) between
the color distributions of the detected cell and the three cell
types are computed based onχ2 test:

d(G,Gi) =
1

4

∑

c∈N(µ,Σ)

(G(c|µ,Σ) − Gi(c|µi,Σi))
2

mc

(2)

wheremc is the mean ofG(c|µ,Σ) and Gi(c|µi,Σi), and
N(µ,Σ) is a neighborhood of color samples within one
standard deviation ofµ.

Note that there are three standard deviations in a 3D
color space, one for each of the three dimensions. These
standard deviations are computed from the square roots of the
diagonal elements in the covariance matrixΣ. In the current
implementation, 3 color samples are considered along each
color dimension. Thus, a total of 27 colors are sampled from
N(µ,Σ). Finally, the cell is classified as a typei cell if its
color distributionG is closest to the Gaussian modelGi.

All the detected cells in the high-resolution images are
classified into one of the three types. The proportionpi of
cells in each type is then computed. Based on the proportion,
the scoreSN of nuclear pleomorphism is computed as:

SN =







3 if p3 ≥ T3

2 if p3 < T3 andp2 > T2

1 otherwise
(3)

whereT2 andT3 are appropriate parameters.

D. Detection and Scoring of Mitotic Cells

Candidate mitotic cells are classified into mitotic and
non-mitotic using five kinds of features, namely solidity
(i.e., roundness), eccentricity, area, and mean and standard
deviation of the intensity in the region. Solidity is measured
by fitting a standard polygon to the boundary of a cell region
and computing the ratioS = (Ap − Ac)/Ac, whereAp is
the area (i.e., number of pixels) of the fitted polygon and
Ac is the area of the cell region. If the cell region is close
to a circular disk, itsR will be close to 1, and the cell
region is classified as epithelial/tumor cell. Eccentricity E
is measured by fitting an ellipse to the boundary of a cell
region and computing the ratioE = Df/DM whereDf is
the distance between the foci of the ellipse andDM is the
length of its major axis. AreaA is the number of pixels in
a cell region.

Two Gaussian models are constructed from training sam-
ples, one for mitotic cellsPM and one for non-mitotic cells
PN . Then, a candidate mitotic cells is classified as follows:



If PM > C0PN , then the cell is a mitotic cell.

PM andPN are the probabilities that the candidate is and is
not a mitotic cell.C0 is a weighting factor.

The score for mitotic count is computed as follows. First,
a mean countC is computed as the mean mitotic count over
all image frames multiplied by a factor of 10. The factor
of 10 is included because the Nottingham scoring system
for mitotic count is computed as the total count over 10
randomly selected image frames. In our automatic grading
system, this randomness is replaced by averaging over all
the image frames. Therefore, the factor of 10 is included to
be consistent with the Nottingham system. Given the mean
countC, the scoreSM for mitotic count is computed as:

SM =







1 if C ≤ 9
2 if 10 ≤ C ≤ 19
3 if C ≥ 20

(4)

E. Overall Grading

The overall grade of the patient is defined in terms of the
scores for tubule formationST , nuclear pleomorphismSN ,
and mitotic cellsSM . ComputeG as the sum ofST , SN ,
andSM . Then, the overall grade is assigned as follows:

• Grade I (low grade):G = 3, 4, 5
• Grade II (intermediate grade):G = 6, 7
• Grade III (high grade):G = 8, 9

IV. EXPERIMENTS AND DISCUSSION

The biopsy samples of six patients were obtained from
a local hospital. Each sample was stained with the H&E
marker and digitized into a set of histological image frames
of 40× magnification and1024×1280 pixel resolution. There
were altogether 16565 image frames.

Figure 3 shows a sample low-resolution global image and
a segmented neoplasm. Tubule formations are found within
the neoplasm. Figure 4 illustrates detected cells for nuclear
pleomorphism scoring. It is noted that not all the cells in
the images are detected. In particular, indistinct cells are
not detected. Nevertheless, scoring is still reliable as long
as enough type-2 and type-3 cells are detected. This is
analogous to clinical practice in which a pathologist just
performs a quick scan of at most 10 image frames to pick
up enough type-2 and type-3 cells to make an assessment.

Table I compares the grading results of the algorithm and a
pathologist. It can be seen the system’s scores are very close
to the pathologist’s scores. The system’s scores tend to be
slightly lower than the pathologist’s scores. This could bedue
to the slightly more stringent criteria taken by the system.
Given these encouraging results, we are confident that an
automatic grading system can be developed to assist the
pathologists by providing second opinions and alerting them
to cases that require further attention. Nevertheless, more
comprehensive tests are needed to provide better evaluation
of the algorithm’s performance.

TABLE I

GRADING RESULTS. ST : TUBULE FORMATION SCORE, SN : NUCLEAR

PLEOMORPHISM SCORE, SM : MITOTIC COUNT SCORE, G: OVERALL

GRADE. P: PATHOLOGIST, S: SYSTEM.

patient ST SN SM G

B15 P 1 2 1 1
S 1 2 2 1

B10 P 1 2 1 1
S 1 3 1 1

C10 P 3 3 3 3
S 2 2 2 2

B11 P 3 3 2 3
S 2 2 2 2

5075 P 3 2 1 2
S 2 2 1 1

5042 P 3 3 2 3
S 2 2 2 2

V. CONCLUSION

This paper presented a multi-resolution method for au-
tomatic breast cancer grading of histopathological images.
Tubule formations are detected in the low-resolution global
image whereas the individual cells are detected and classified
in the high-resolution image frames. They are then scored
according to the three criteria of the Nottingham system. Test
results show that the overall grades computed by the system
match those given by the pathologist very well. Given the
encouraging test results, we are confident that an automatic
grading system can be developed to assist the pathologists
by providing second opinions and alerting them to cases that
require further attention.
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Fig. 3. Segmentation of neoplasm. (a) Low-resolution global image with neoplasm. (b) Segmented neoplasm.
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Fig. 4. Sample results for nuclear pleomorphism scoring. (a, c) Detected cells are marked with green boundaries. A score-3 image frame (d) has more
type-3 cells than a score-2 image frame. Blue: type 1, yellow: type 2, red: type 3.
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