
REMOVAL OF ABDOMINAL WALL FOR 3D VISUALIZATION AND
SEGMENTATION OF ORGANS IN CT VOLUME

Feng DING, Wee Kheng LEOW∗

Dept. of Computer Science
National University of Singapore

13 Computing Drive, Singapore 117417

Sudhakar VENKATESH∗

Dept. of Diagnostic Radiology
National University of Singapore

10 Medical Drive, Singapore 117597

ABSTRACT

3D visualization and segmentation of organs in abdominal
volume images are important in medical image processing
for applications such as diagnosis, treatment and surgical
planning. However, the abdominal wall leads to difficulties
in both visualization and segmentation. These difficulties
can be eliminated by removing the abdominal wall. This
paper presents an algorithm that removes abdominal wall by
registering a 3D flipping-free deformable model to the inner
boundary of the wall. To our best knowledge, it is the first
work in removing the abdominal wall for the purpose of 3D
visualization and segmentation of the organs.

Index Terms— 3D deformable model, medical image
segmentation, abdominal wall

1. INTRODUCTION

3D visualization and segmentation of organs in abdominal
volume images are important in medical image processing for
applications such as diagnosis, treatment and surgical plan-
ning. However, the abdominal wall leads to difficulties in
both visualization and segmentation. For visualization, the
existence of the abdominal wall which consists of skin, fat,
muscle and bones prevents the viewer from examining the or-
gans in the volume rendered 3D image. A common solution
in practice is to apply a transfer function for the user to ad-
just the opacity of the rendered volume. Although adjusting
transparency of the abdominal wall voxels enables the user to
see some of the organs, it can also cause organ voxels to ap-
pear transparent and cannot be clearly visible. The organs can
physically touch the abdominal wall, and their voxel intensi-
ties are close to those of the abdominal wall. Such properties
lead to unclear boundaries between organs and the abdominal
wall, which leads to difficulty in 3D segmentation.

These problems can be eliminated by removing the ab-
dominal wall. It usually contains only 4 types of tissues, i.e.,
skin, fat, muscle, and bones (ribs and spines), and they usually
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have different x-ray attenuation coefficients. So, the abdom-
inal wall is easier to be modelled using its intensity distribu-
tion. This motivates our research on abdominal wall removal
to facilitate 3D visualization and segmentation of the organs.

2. RELATED WORK

General deformable segmentation algorithms such as snake [1]
and level set [2, 3] are not appropriate for extracting the ab-
dominal wall. The snake algorithm, which deforms a contour
based on strong edge information, may be attracted to noise
edges instead of the true boundary of the wall. The level set
algorithm adopts an implicit representation and is computa-
tionally expensive. It is also prone to the leakage problem.
Moreover, both methods are difficult to be initialized for
extracting the wall.

Maedaet al. [4] proposed to use rib cage to approxi-
mate the interface between the abdominal wall and the cavity.
Spline interpolation is used to estimate the position of the
interface where ribs are missing. A user interface is used
to initialize a liver model where the edge between the liver
and the abdominal wall is weak. This approach can work to
some extent. However, it is in general not accurate enough
to approximate the anterior part of the abdominal wall where
the rib cage is made up of coastal cartilage. The cartilage
has very similar x-ray attenuation coefficient to that of the
neighboring muscles, and thus is difficult to be identified. In-
terpolation in these regions is inaccurate. Therefore, ribcage
alone cannot provide enough information for extracting the
abdominal wall. Moreover, their method requires that the rib
cage be segmented first. Due to highly variant bone density
across different patients and noise in the CT volume, simple
algorithms such as thresholding are not robust and accurate
enough for segmenting spine/ribs. In contrast, the proposed
algorithm does not require accurate segmentation of the rib
cage, though a relative good segmentation of these bones can
help to extract the abdominal wall more accurately. Existing
rib cage segmentation algorithms such as [5] can be applied.

The proposed algorithm requires the user to initialize a
generic mesh sphere inside the body volume. This can be
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Fig. 1. (a) Extract and sample feature points (red) in the ab-
dominal wall for (b) building intensity GMM.

easily automated by putting an appropriately sized spherical
mesh at the center of gravity of the volume data. Based on the
constructed intensity distribution of the abdominal wall (Sec-
tion 3.2), the mesh model is deformed iteratively to register
to the inner boundary of the abdominal wall (Section 3.3).
To our best knowledge, this is the first work in removing the
abdominal wall for the purpose of 3D visualization and seg-
mentation of the organs.

3. METHOD

3.1. Overview of Algorithm

Our algorithm extracts the abdominal wall by i) image fea-
ture extraction from the input volume and ii) 3D flipping-free
deformation of a generic mesh model to register it to inner
boundary of the abdominal wall.

3.2. Feature Extraction

The feature extraction stage estimates the intensity distribu-
tion of abdominal wall voxels. Since voxels between the skin
surface and the bone structure clearly belong to the abdominal
wall, they can be sampled to build an intensity distributionto
approximate that of the abdominal wall. Therefore, the fea-
ture extraction stage contains two steps. The first is to identify
the skin surface and the bones, and the second is to build the
intensity distributions of the body wall voxels.

Identification of skin surface and bones. Identification
of the skin surface is straight-forward by using a contour trac-
ing algorithm [6]. Since accurate segmentation of the bone
structure is not necessary, identification of bone voxels can
simply be performed by applying thresholding with a high
threshold and then by extracting the largest connected compo-
nent. Note that thresholding alone may get voxels belonging
to other body parts as well besides bones. These parts have
similar or even higher x-ray attenuation coefficients than that
of the bones. A practical example is shown in Fig. 4, where
the stool in the colon has such a property.

Building intensity distribution of body wall voxels .
Once the skin surface and the bones are identified, the voxels
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Fig. 2. Quadrilateral mesh on (a) a cube and (b) a sphere.

between the two can be extracted. To do this, for each point
on the skin surface, a ray is projected along the inward sur-
face normal direction until it meets a bone voxel. The voxels
along the ray definitely belong to the body wall and are ex-
tracted (Fig. 1(a)). If a ray cannot find any bone voxel within
certain distance, all the voxels along the ray are discarded. To
reduce the number of extracted voxels, uniform sampling of
the extracted voxels can be performed.

In general, most of the parametric or non-parametric
distribution functions are suitable for building the intensity
distribution model. In our work, a Gaussian mixture model
(GMM) containing 3 Gaussians is used to serve this purpose,
where each Gaussian approximates the intensity distribution
of one type of tissue (i.e., skin, fat and muscle). The pa-
rameters of the GMM are estimated using the Expectation
Maximization (EM) method. An example of the recovered
GMM is shown in Fig. 1(b). The recovered GMM will be
used for correspondence search in the deformation stage.

3.3. Registration by 3D Flipping-free Deformation

Based on the extracted features, this stage deforms a surface
mesh, making it registered to the inner boundary of the ab-
dominal wall. Essentially, the deformation of a mesh model
M can be defined non-parametrically as the displacementD :
ui → vi whereui is a mesh vertex andvi is the target loca-
tion of ui. However, naively deforming a surface mesh based
on corresponding points is prone to theflipping problem as
explained in [7]. In order to solve this problem, a special
quadrilateral mesh is initially defined on a cube (Fig. 2(a)),
then projected onto a sphere (Fig. 2(b)). Each vertex has ex-
actly 4 neighboring vertices, and 3 orthogonal contour groups
can also be defined on the mesh. These internal properties
contribute to an easier solution of the flipping problem during
deformation. This stage iteratively performs correspondence
search for mesh vertices, flipping detection/resolution and de-
formation of the mesh until convergence.

Correspondence search. This step searches for each ver-
texui on the modelM a possible corresponding pointvi on
target volumeT along the projection lineP (ui). The direc-
tion of P (ui) can be defined as the surface normal atui.

The idealvi is located on either the inner boundary of
the muscle layer or the bones. Therefore, the algorithm can
start fromui (inside the abdominal wall), and estimate forvi

along a ray going outwards.vi can be the first bone voxel
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Fig. 3. Initial 3D quadrilateral mesh (a) and its 2D view (b) in
one axial slice. Extracted 3D surfaces (c,e) and their respec-
tive 2D axial views (d,f) for sample CT volume Images.

or muscle voxel. To ensure robust estimation of muscle, a
voxel is treated as muscle only if its subsequent consecutive
n voxels are all within a standard deviation of the computed
Gaussian distribution. Largern guarantees more robust esti-
mation, since the joint probability of making false estimation
goes down significantly with largern. Howevern cannot be
too large because the muscle layer has limited thickness. Usu-
ally n = 5 will suffice.

Flipping detection & resolution. The flipping of a mesh
cell after mesh deformation can be characterized by the flip-
ping of at least one of its edges. The edge flipping can be
detected by checking the following condition:

ui − uj

‖ui − uj‖
·

vi − vj

‖vi − vj‖
≤ τ (1)

whereui anduj denote two neighbors on a closed contourC

of mesh modelM , vi andvj denote their respective corre-
sponding points on the targetT , andτ ∈ [0, 1) is a predefined
threshold. This condition essentially states that the orienta-
tion of uiuj andvivj should not differ significantly. Note
that each vertexui is an intersection of two closed contours
onM . As a result, it will undergo two rounds of flip detection
checks as the algorithm iterates.

Once flipping is detected along certain contour, corre-
spondence for consecutive vertices causing flipping will be
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Fig. 4. Volume rendering of two sample CT volumes by set-
ting the abdominal wall to transparent (a,c). Volume render-
ing of organs after removing the abdominal walls (c,d). Some
of the organs such as colons and blood vessels that cannot be
visualized in the former can be clearly visualized in the latter.
Best viewed in color.

set to null except the middle one of them. The vertices
without proper corresponding points initially may get their
correspondence later on by means of interpolation.

This step creates valid correspondence without flipping
for most of the vertices on the mesh. For vertices with-
out valid correspondence, their displacements are solved by
Laplacian deformation [8]. For details of the flipping-free3D
deformation, please refer to our previous work in [7].

Laplacian deformation. During deformation, non-
flipping mesh vertices together with their corresponding
points are regarded as positional constraints. The other
mesh vertices are displaced according to the generic shape
constraints incorporated into Laplacian deformation. These
shape constraints include Laplacian preservation, surface
smoothness, and uniform vertex distribution.

In deforming the mesh, instead of moving the mesh vertex
from ui to vi in one time step, the algorithm can also move
ui by a fraction of the distance tovi, for instance

ui ← (1− λ)ui + λvi, (2)

whereλ ∈ (0, 1) is the step size. In general, choosing a
smallerλ may help keep the deformed mesh smoother, and
to distribute vertices on the surface of the mesh better.

4. EXPERIMENTS AND APPLICATIONS

Our abdominal wall removal algorithm was tested on 10 ab-
dominal CT volumes, each containing around 200 slices of
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Fig. 5. Segmentation results of the snake algorithm with (a)
and without (b) the abdominal wall.

DICOM images of thickness 1mm. The algorithm was ini-
tialized by placing a quadrilateral spherical mesh (Fig. 3(a,d))
with appropriate size inside the body. In the feature extraction
stage, around 30k sample points were collected. Construction
of their intensity GMM took about 5 seconds. The deforma-
tion of the quadrilateral mesh containing around 10k vertices
took 15 iterations with a step size ofλ = 0.4 in 25 sec-
onds. The experiment was performed on an Intel Xeon 2GHz
computer with 4G memory. The extracted inner boundary of
the abdominal wall is represented as a surface mesh. Sam-
ple results of the extracted inner boundaries of the abdominal
walls for two input CT volumes are shown in Fig. 3(b,e) and
Fig 3(c,f) respectively, in both 3D view and 2D axial view.

Once the surface of the abdominal wall is extracted, the
wall voxels can be easily removed since they are all located
outside of the surface. Abdominal wall removal can be ap-
plied to visualization and segmentation of the organs.

4.1. Visualization of Inner Organs

Two examples for the volume rendering of CT images are
shown in Fig. 4. In Fig. 4(a) and (c), the opacity transfer
functions were adjusted so that the abdominal walls appear
transparent and some of the organs can be observed. Since
the opacity transfer functions were applied globally across
the whole input volume, other inner organs which have sim-
ilar voxel intensities such as colons and blood vessels also
became transparent and cannot be observed. In contrast, af-
ter removing the abdominal walls by the proposed algorithm,
they can be clearly visualized as shown in Fig. 4(b) and (d).

4.2. Segmentation of Organs

Removal of the abdominal wall reduces the search space for
an algorithm segmenting organs, leading to higher efficiency
and accuracy of the algorithm in general. It also removes un-
desired features which may mislead the segmentation algo-
rithm. To demonstrate, we compared 2D liver segmentation
results using the snake algorithm before and after removing
the abdominal wall. The snake algorithm for both cases had
exactly the same parameters and converged in 20 iterations.

The initial snake was initialized with the manually segmented
liver contour. As shown in Fig. 5(a), before removing the ab-
dominal wall, even though the algorithm was initialized with
the ground truth, it was still attracted to the edges produced
by the wall. In contrast, Fig. 5(b) shows a good segmentation
result after removing the wall. Essentially, removal of theab-
dominal wall can help not only the snake algorithm, but also
all the other algorithms to segment the inner organs. Similar
facilitations were obtained for other segmentation algorithms
such as the level set method.

5. CONCLUSIONS

This paper presented an abdominal wall removal algorithm to
help to visualize and segment inner organs in the CT volume.
The proposed algorithm is based on the estimation of inten-
sity distribution of voxels inside the body wall, followed by
the flipping-free 3D deformation of a quadrilateral spherical
mesh. By removing the wall in the 3D volume, the organs in
the abdomen can be exposed and visualized directly. It also
makes segmentation more accurate and efficient by reducing
the search space of the segmentation algorithm.
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