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Abstract 
 

Artificial neural networks have been successfully applied to solve a variety of business applications 
involving classification and function approximation. In many such applications, it is desirable to extract 
knowledge from trained neural networks so that the users can gain a better understanding of the solution. 
Existing research works have focused primarily on extracting symbolic rules for classification problems 
with few methods devised for function approximation problems. In order to fill this gap, we propose an 
approach to extract rules from neural networks that have been trained to solve function approximation 
problems. The extracted rules divide the data samples into groups. For all samples within a group, a linear 
function of the relevant input attributes of the data approximates the network output. Experimental results 
show that the proposed approach generates rules that are more accurate than the existing methods based on 
decision trees and regression.  
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1. INTRODUCTION 
 
Artificial neural networks are powerful tools for business decision making (Coakley and Brown, 1993; Dutta, Shekhar and 
Wong, 1994; Kim and McLeod, 1999; Salchenberger, Cinar and Lash, 1992; Tam and Kiang, 1992; Tana and Koh, 1992; 
Trippi and Turban, 1993, Walczak, 1999; Wilson and Sharda, 1994). They work particularly well for problems involving 
classification and data fitting/function approximation. Neural networks often predict with higher accuracy than other 
techniques because of the networks’ capability of fitting any continuous function. The main drawback of applying neural 
networks to solve these problems is the lack of explanation power in the trained networks due to the complex structure of the 
networks. In many applications, it is desirable to extract knowledge from trained neural networks for the users to gain better 
understanding of the problems in hand. The extracted knowledge is usually expressed as symbolic rules of the form  
 

if condition, then consequence. 
 
In order to generate rules from neural networks that are easy for a human user to understand, the rules must be sufficiently 
simple yet accurate. The conditions of the rules describe a subregion of the input space, while the consequences of the rules 
for function approximation are of the form Y = f(X), where f(X) is either a constant or a linear function of X, the attributes of 
the data. This type of rules is easy to understand because of their similarity to the traditional statistical approach of parametric 
regression. Since a single rule will not approximate the nonlinear mapping of the network well, one possible solution is to 



divide the input space of the data into subregions. Prediction for all samples in the same subregion will be performed by a 
single linear equation whose coefficients are determined by the weights of the network connections. With finer division of 
the input space, more rules are produced and each rule can approximate the network output more accurately. However, in 
general, too many rules − with each rule applying to only a small number of samples − do not provide meaningful or useful 
knowledge to the user. Hence, a balance must be achieved between rule accuracy and rule simplicity. 
 
Most existing research works have focused on extracting symbolic rules for solving classification problems where the 
network outputs are discrete. A function approximation problem, on the other hand, has continuous output. The existing 
literature shows that only a few methods have been devised to extract rules from trained neural networks for function 
approximation (Tickle, Andrews, Golea and Diederich, 1998). To address this deficiency in research, this article proposes a 
new method called REFANN. 
 
The REFANN (Rule Extraction from Function Approximating Neural Networks) method produces rules that are almost as 
accurate as the networks from which the rules are extracted. For some problems, there are sufficiently few rules that useful 
knowledge about the problem domain can be gained. REFANN works on a network with a single hidden layer and one linear 
output unit. To reduce the number of rules and to simplify the rule conditions, redundant network input units and hidden units 
are removed by pruning. The continuous activation function of each hidden unit is then approximated by a 3-piece linear 
function. The various combinations of the approximating linear functions divide the input space into subregions such that the 
function values for all inputs in the same subregion can be computed by a predicting linear function of the inputs. Extensive 
experiments have been performed and the results show that REFANN’s accuracy in function approximation is better than 
those of existing methods based on decision trees and regression. 
 
This article is organized as follows. Section 2 describes the network architecture and the training algorithm. Section 3 
describes how the nonlinear activation function of a hidden unit is approximated by a piecewise linear function. Illustrative 
examples and results from our experiments are presented in Sections 4 and 5. Finally, in Section 6, we discuss future works 
and conclude the article. 
 
 
2. NEURAL NETWORK ARCHITECTURE AND TRAINING 
 
The neural network consists of one layer of N input units, a layer of H nonlinear hidden units and one output unit 
(Pendharkar and Rodger, 1999). Given an N-dimensional input pattern p, p = 1, 2,..., P, the network’s hidden unit activation 
value ipA and output unit value py~  are computed as follows:  
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where Ijp is the value of input unit j of pattern p, wij is the weight of the connection from input unit j to hidden unit i, vi is the 
weight of the connection from hidden unit i to the output unit, and h(x) is the hyperbolic tangent function tanh(x) = (ex - e-x)/ 
(ex + e-x). Let yp be the target function value for input pattern p. We train a network such that the following augmented error 
function is minimized:  
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where ε is a small positive penalty parameter. The penalty term θ(w,v) is added to the usual sum of squared errors function so 
that unnecessary network connections will have small weights. 
 
After training the network, a pruning algorithm (Hertz, Krogh and Palmer, 1991) is applied to remove redundant hidden units 
and irrelevant input attributes. The pruning algorithm removes an input or a hidden unit from the network if the removal does 
not deteriorate the network’s prediction accuracy on the training samples. Removal of excessive units is crucial in obtaining a 
concise set of extracted rules. It should be noted that the rule extraction algorithm described in this article works on networks 
that have been pruned by any network pruning algorithm as well as unpruned networks. 
 
Once a network that predicts the training samples with satisfactory accuracy has been obtained, its hidden unit activation 
function tanh(x) is approximated by a 3-piece linear function. The next section describes how this approximation is 
computed. 
 
 
3. APPROXIMATING HIDDEN UNIT ACTIVATION FUNCTION 
 
Since the hidden unit activation function h(x) = tanh(x) is antisymmetric, it is sufficient to illustrate how the approximation is 
done just for the nonnegative values of x. The function h(x) can be approximated by a piecewise linear function as follows. 
Suppose that the input x ranges from 0 to xm. A simple and convenient approximation of h(x) is to over-estimate it by a 
piecewise linear function L(x) as shown in Figure 1. 

 

Figure 1. The function tanh(x) (solid curve) for x ∈∈∈∈ [0,xm] is approximated by the 
piecewise linear function L(x) (dashed lines) 

 
To ensure that L(x) is larger than h(x) everywhere between 0 to xm, the line on the left should intersect the coordinate (0, 0) 
with a gradient of h'(0) = 1, and the line on the right should intersect the coordinate (xm, h(xm)) with a gradient of h'(xm) = 1 - 
h2(xm). Thus, L(x) can be written as  

if 0 ≤ x ≤ x0  
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The point of intersection x0 of the two lines is given by  
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The total error E of estimating h(x) by L(x) is given by  
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That is, the total error is bounded by a constant value.  
 
 
4. RULE GENERATION 
 
REFANN generates rules from a neural network as follows:  

1. Train and prune a network with one hidden layer and one output unit.  
2. For each hidden unit i = 1, 2,... , H:  

a. Determine xim from the training samples and compute xi0 (Eqn. 6).  
b. Define the 3-piece approximating linear function Li(x) as:  

if x < -xi0 
if –xi0 ≤  x ≤  xi0 
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3. Using the pair of points - xi0 and xi0 of function Li(x), divide the input space into 3H subregions.  
4. For each non-empty subregion, generate a rule as follows:  

a. Define a linear equation that approximates the network’s output for input sample p in this subregion as the 
consequence of the extracted rule:  
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b. Generate the rule condition: ( C1 and C2 and ··· CH), where Ci is either sip < -xi0, - xi0 ≤ sip ≤ xi0, or sip > xi0.  
5. (Optional step) Apply C4.5 (Quinlan, 1993) to simplify the rule conditions.  

 
In general, a rule condition Ci is defined in terms of the weighted sum of the inputs sip (Eqn. 9) which corresponds to an 
oblique hyperplane in the input space. This kind of rule condition can be difficult for the users to understand. In many cases, 
the oblique hyperplanes can be replaced by hyperplanes that are parallel to the axes without affecting the prediction accuracy 
of the rules on the data set. Consequently, the hyperplanes can be defined in terms of only the inputs and are easier to 
understand. Such replacements of the rule conditions are achieved using C4.5. C4.5 is an induction algorithm which 
generates decision trees and decision rules for classification problems (Quinlan, 1993). 
 
The following examples of applying REFANN on two different data sets illustrate the working of REFANN in more details. 
The input attributes of the first data set are continuous, while those of the second data set are mixed, discrete and continuous. 
Both data sets are publicly available from the University of California, Irvine repository (Blake and Merz, 1998). These two 
problems are selected because the pruned networks have few hidden units. The networks and extracted rules are also more 
accurate than other methods reported in the literature.  
 
 



4.1 Example 1: CPU-Performance 
 
The data set has 6 continuous attributes: (1) MYCT: machine cycle time, (2) MMIN: minimum main memory, (3) MMAX: 
maximum main memory, (4) CACH: cache memory, (5) CHMIN: minimum channels, and (6) CHMAX: maximum channels. 
The goal is to predict the CPU’s relative performance based on the other computer characteristics (Ein-Dor and Feldmesser, 
1987). There are 209 samples in the data set. The samples were randomly divided into a set consisting of 167 samples, a 
cross-validation set consisting of 21 samples, and a test set consisting of 21 samples. The input values are normalized so that 
they range in the interval [0,1]. A network with 8 hidden units is trained. After pruning, only one hidden unit remains. The 
connections from input MYCT and CHMIN are also removed, indicating that these input attributes are irrelevant. The 
weighted inputs ∑j w1jIjp for all samples p in the training data set are computed. The largest value among these weighted 
inputs is assigned as the value of xm (Step 2(a)) and the value of x0 is computed according to Eqn. 6. Approximation of the 
hidden unit activation function separates the samples into 2 groups, those with weighted inputs of less than x0 = -0.7354 and 
those with weighted inputs greater than or equal to -0.7354. Hence, we approximate the activation function by a piecewise 
linear function:  

if s1p < -0.7354  
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Since there is only one hidden unit, the predicted output for pattern p is simply set to py~  = v1 L1(s1p) (Eqn. 8). After rescaling 
the inputs back to their original values, we obtain the following set of rules: 
 
Rule set 1:  
Rule 1: if Region 1, then y~  = Y1.  
Rule 2: if Region 2, then y~  = Y2.  
The division of the input data is as follows:  

• Region 1: s1p < -0.7354 ⇔ 3.00 MMIN + 2.69 MMAX + 258.10 CACH + 281.53 CHMAX < 111189.41  
• Region 2: s1p ≥ -0.7354 ⇔ 3.00 MMIN + 2.69 MMAX + 258.10 CACH + 281.53 CHMAX ≥ 111189.41  

 
and the rule consequences are linear equations Y1 and Y2:  

Y1 = 4.9616 + 0.0036 MMIN + 0.0032 MMAX + 0.3086 CACH + 0.3366 CHMAX 
Y2 = -453.0270 + 0.0159 MMIN + 0.0143 MMAX + 1.3662 CACH + 1.4903 CHMAX 

 
The boundary between Region 1 and Region 2 can be approximated by rule conditions from C4.5 (Step 5) which do not 
involve any network weights. All training samples p with a weighted sum s1p less than -0.7354 are labeled “Region 1”, while 
all others are labeled “Region 2”. C4.5 generates the following rules: 
 
Rule set 1a:  
Rule 1: if MMAX ≤ 24000 and CACH ≤ 142, then “Region 1” 
Rule 2: if MMIN ≤ 2300 and CHMAX ≤ 38, then “Region 2” 
Rule 3: if MMAX > 2300, then “Region 2” 
Rule 4: if CACH > 142, then “Region 2”  
Default Rule: “Region 1” 
 

Table 1. Error Rates for CPU-Performance Data 
 
  RMSE RRMSE MAE RMAE 
Pruned network 15.82 15.76 11.52 16.03 
Rule set 1 21.52 21.44 13.02 18.11 
Rule set 1a 21.52 21.44 13.02 18.11 
Linear regression 42.54 42.39 35.44 49.29 
Note: RMSE: Root Mean Squared Errors, RRMSE: Relative Root Mean Squared Errors, MAE: Mean Absolute Error, 
RMAE: Relative Mean Absolute Error.  



 
The error rates of the network and the rule sets are shown in Table 1. In addition to the Root Mean Squared Errors (RMSE), 
the table also shows the errors of each model in terms of the Relative Root Mean Squared Errors (RRMSE), Mean Absolute 
Error (MAE), and Relative Mean Absolute Error (RMAE):  
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where py~  and y  are the predicted value for sample p and the average value of all samples, respectively. 
 
We also fit the data using multiple linear regression for comparison. Using the backward regression option of SAS, all 
attributes except CHMIN are found to contribute significantly to the regression model with the default confidence level of α 
= 0.10. This example clearly illustrates the effectiveness of the neural network approach in generating predicting linear 
equations. Compared to the traditional linear regression approach, the RMSE and MAE of the rules extracted by REFANN 
are 49% and 63% lower, respectively. 
 
 
4.2 Example 2: AutoMpg Data Set 
 
The target to be predicted in this problem is the city-cycle fuel consumption of different car models in miles per gallon 
(Kilpatrick and Cameron-Jones, 1998). The 3 discrete attributes of the data are (1) cylinders with possible values of 3, 4, 5, 6, 
and 8; (2) model with possible values of 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, and 82; and (3) origin with possible 
values of 1, 2, and 3. The 4 continuous attributes are (1) displacement, (2) horsepower, (3) weight, and (4) acceleration. 
 
The training data set contains 318 samples, while the cross validation and test sets contain 40 samples each. The binary-
coded data required the neural network to have 26 input units. One network input is needed for each possible value of the 
discrete attributes. The two ordinal discrete attributes cylinders and model are encoded using the thermometer scheme. Using 
this scheme, the first five network inputs I1, I2, I3, I4, I5 are assigned the binary input values of (0,0,0,0,1), (0,0,0,1,1), 
(0,0,1,1,1), (0,1,1,1,1) and (1,1,1,1,1) if the number of cylinders is 3, 4, 5, 6, or 8, respectively. The attribute model requires 
13 network inputs, I6, ..., I18. The network inputs I19, I20, and I21 are used for the nominal discrete attribute origin. Their input 
values are (0,0,1), (0,1,0) and (1,0,0), if origin of the car is 1, 2, or 3, respectively. The ranges of the 4 continuous attributes 
are normalized to [0,1] and 4 network input units I22, I23, I24, I25 are assigned these normalized input values. Finally, input I26 
is assigned a constant input value of one for all data samples for the hidden unit bias. With a hidden unit bias, the hyperplane 
defined by sip (Eqn. 9) does not necessarily pass through the origin. 
 
One of the smallest pruned networks has only one hidden unit and 7 input units left. The relevant network inputs and their 
corresponding attributes in the original data set are the following: (1) I4 = 1, iff cylinders is greater than 3, (2) I9 = 1, iff 
model is later than 78, (3) I11 = 1, iff model is later than 76, (4) I14 = 1, iff model is later than 73, (5) I21 = 1, iff origin is 1, (6) 
I23 is the continuous attribute horsepower, and (7) I24 is the continuous attribute weight. 
 
After approximating the hidden unit activation function by the piecewise linear function, a rule set consisting of just 2 rules is 
obtained: 



 
Rule set 2:  
Rule 1: if Region 1, then y~  = Y1.  
Rule 2: if Region 2, then y~  = Y2.  
The two subregions of the input space are defined as follows:  

• Region 1: s1p < -0.8873 ⇔ 0.082 I4 + 0.214 I9 + 0.0134 I11 + 0.0104 I14 - 0.00164 I21 - 0.003 I23 - 0.0004 I24< -1.7198  
• Region 2: s1p ≥ -0.8873 ⇔ 0.082 I4 + 0.214 I9 + 0.0134 I11 + 0.0104 I14 - 0.00164 I21 - 0.003 I23 - 0.0004 I24≥ -1.7198 
 

and the two corresponding linear equations are  
Y1 = 16.26 + 0.11 I4 + 0.28 I9 + 0.18 I11 + 0.14 I14 - 0.11 I21 - 0.005 I23 - 0.001 I24 
Y2 = 46.73 + 1.57 I4 + 4.06 I9 + 2.54 I11 + 1.99 I14 - 1.55 I21 - 0.066 I23 - 0.008 I24 

 
We obtain the following rule set after running C4.5:  
Rule set 2a:  
Rule 1: if (I9 = 0) and (I23 > 115) and (I24 > 3432), then y~  = Y1.  
Rule 2: if (I11 = 0) and (I24 > 3574), then y~  = Y1.  
Rule 3: if (I11 = 0) and (I23 > 130), then y~  = Y1.  
Rule 4: if (I23 ≤ 98), then y~  = Y2.  
Rule 5: if (I23 ≤ 130) and (I24 ≤ 3432), then y~  = Y2.  
Rule 6: if (I11 = 1) and (I24 ≤ 3432), then y~  = Y2.  
Rule 7: if (I11 = 1) and (I23 ≤ 115), then y~  = Y2.  
Rule 8: if (I9 = 1), then y~  = Y2.  
Default rule: y~  = Y2.  
 
We can rewrite the conditions of Rule set 2a in terms of the original attributes of the data and obtain the following equivalent 
set of rules: 
 
Rule set 2b:  
Rule 1: if (model is 78 or earlier) and (horsepower is greater than 115) and (weight is greater than 3432), then y~ =Y1.  
Rule 2: if (model is 76 or earlier) and (weight is greater than 3574), then y~ = Y1.  
Rule 3: if (model is 76 or earlier) and (horsepower is greater than 130), then y~ = Y1.  
Rule 4: if (horsepower is less than or equal to 98), then y~ = Y2. 
Rule 5: if (horsepower is less than or equal to 130) and (weight is less than or equal to 3432), then y~ = Y2.  
Rule 6: if (model is later than 76) and (weight is less than or equal to 3432), then y~ = Y2.  
Rule 7: if (model is later than 76) and (horsepower is less than or equal to 115), then y~ = Y2.  
Rule 8: if (model is later than 78), then y~ = Y2.  
Default rule: y~ = Y2.  

Table 2. Error Rates for the AutoMpg Data 
 

  RMSE RRMSE MAE RMAE 
Pruned network 2.91 35.31 2.03 29.62 
Rule set 2 3.00 36.33 2.07 30.10 
Rule sets 2a/2b 3.00 36.36 2.07 30.18 
Linear regression 3.65 44.25 2.85 41.53 
Note. RMSE: Root Mean Squared Errors, RRMSE: Relative Root Mean Squared Errors, MAE: Mean Absolute Error, 
RMAE: Relative Mean Absolute Error.  



 
Table 2 shows the error rates of the network and the rule sets. The errors of Rule set 2 are higher than those of the network 
due to the approximation of the hidden unit activation function. One of the samples in the test data set that falls in Region 1 is 
misclassified by Rule sets 2a/2b. This explains the small difference in the errors of Rule set 2 and those of Rule sets 2a/2b. 
The results from linear regression are also shown in Table 2 for comparison. The multiple linear regression model has 14 
parameters that are significant at α = 0.10. Fitting the data with more input attributes, however, does not give a better model 
as shown by the root mean squared error (RMSE) and mean absolute error of this model (MAE). By using a pruned neural 
network to divide the input space into two regions and having a linear equation in each of these regions for prediction, the 
RMSE and MAE are reduced by 18% and 27%, respectively. 
 
 
5.   EXPERIMENTAL RESULTS 
 
The REFANN method has been tested on 10 function approximation problems from various domains. The data sets (see 
Table 3) are downloaded from http://www.ncc.up.pt/~ltorgo/Research/. These data sets are also available from the UCI 
repository (Blake and Merz, 1998). 
 

Table 3. Data Sets Used in the Experiments 
 

Name No. of samples Attributes Prediction task 
Abalone 4177 1 D, 7 C age of abalone specimens 
Artificial1 5000 10 C artificially created data set 
Artificial2 5000 10 C artificially created data set 
Auto-loss 164 11 D, 14 C average loss payment per insured vehicle year 
Auto-mpg 392 3 D, 4 C car fuel consumption 
Auto-price 159 14 C car price 
CPU-performance 209 6 C relative CPU performance 
Housing 506 1 D, 12 C median value of homes in Boston suburbs 
Servo 167 4 D response time of a servomechanism 
Wpbc 194 32 C recurrence time of breast cancer 
Note: D = discrete attribute, C = continuous attribute. 

 
A ten-fold cross validation evaluation was conducted on each data set. The data were randomly divided into 10 subsets of 
equal size. Eight subsets were used for network training, one subset for deciding when network pruning should terminate, and 
one subset for measuring the predictive accuracy of the pruned network and the rules. This procedure was repeated 10 times 
so that each subset was tested once. 
 
The same experimental settings were used for all the 10 problems. The networks started with 8 hidden units and the penalty 
parameter ε was set to 0.5. Network pruning was terminated if removal of a hidden unit or an input unit caused the accuracy 
of the resulting network on the cross-validation samples to drop by more than 5%. The coding scheme for the input data was 
as follows. One input unit was assigned to each continuous attribute in the data set. The values of the continuous attributes 
were normalized so that they ranged in the interval [0,1]. Discrete attributes were binary-coded. A discrete attribute with D 
possible values was assigned D network inputs, except when D = 2, where 1 input unit was sufficient. 
 
The results are summarized in Table 4. The average MAEs of the unpruned neural networks (NN), pruned networks (PNN), 
and the extracted rules (Rules) are shown. The table also shows the average number of hidden units in the pruned networks. 
Since the hyperbolic tangent activation function is approximated by a 3-piece linear function, a pruned network with H 
hidden units may generate up to 3H combinations of linearized activations. The last column of Table 4 shows the number of 
combinations that are actually represented by the data. This figure corresponds to the average number of linear equations 
generated to approximate the network output. 
 



Table 4. Experimental Results of REFANN 
 

NN PNN Rules Hidden units No. of rules  
Data Set Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
Abalone 1.4802 (0.0598) 1.5184 (0.0759) 1.6208 (0.0770) 5.60 (0.84) 22.40 (7.82) 
Artificial1 0.8203 (0.0280) 0.8303 (0.0297) 0.8453 (0.0263) 2.00 (0.00) 2.50 (0.52) 
Artificial2 1.0166 (0.0220) 1.0293 (0.0237) 1.2434 (0.0419) 5.00 (0.00) 34.80 (0.42) 
Auto-loss 12.560 (3.55) 12.030 (3.50) 13.005 (3.72) 3.90 (0.99) 28.90 (14.07) 
Auto-mpg 1.7893 (0.3550) 1.8026 (0.3673) 2.1146 (0.3855) 3.30 (0.67) 10.70 (4.40) 
Auto-price 1369.04 (439.7) 1379.19 (395.23) 1581.02 (442.06) 3.40 (1.26) 12.30 (7.04) 
CPU-performance 26.869 (9.87) 27.386 (10.98) 30.034 (11.17) 2.00 (1.15) 5.10 (1.73) 
Housing 2.2596 (0.2446) 2.2699 (0.2583) 2.5619 (0.3120) 6.80 (1.13) 67.50 (26.09) 
Servo 0.2383 (0.0647) 0.2234 (0.0542) 0.2502 (0.0607) 2.90 (1.10) 8.10 (4.58) 
Wpbc 24.782 (3.93) 25.518 (4.329) 25.540 (4.284) 1.00 (0.00) 2.30 (0.48) 
Note. NN: The average MAE’s of unpruned neural networks, PNN: The average MAE’s of pruned neural networks, Rules: 
The average MAE’s of extracted rules, Hidden units: The average number of hidden units of the pruned networks, No. of 
rules: The average number of extracted rules. 
 
The figures in Table 4 suggest that approximation of the hyperbolic tangent activation function by the 3-piece linear function 
is not appropriate for data sets with highly nonlinear relationship between the inputs and the outputs. The large number of 
rules and the relatively large difference between the accuracies of the pruned networks and the extracted rules (e.g., 
Artificial2) indicate such a problem. For these data sets, the networks should be employed when predicting the outputs of 
new samples. 
 
Comparisons of REFANN with other methods designed to learn continuous target variables are presented in Table 5. The 
predictive accuracies of three variants of a regression tree generating algorithm called HTL are taken from a paper by Torgo 
(1997). These methods grow a binary tree by adding nodes to minimize the mean squared errors of the patterns in the leaf 
nodes. Prediction error is computed as the difference between the actual target value and the average target value of all 
training samples in the leaf node. Once the tree is fully-grown, predictions are made using different methods. The KR method 
employs kernel regression with a gaussian kernel function to compute the weights to be assigned to selected samples in a leaf 
node. The kNN prediction for a sample is computed as the average value of its k nearest neighbors. Each leaf node of the 
Linear Trees method is associated with a linear regression equation which is used for the prediction for all the samples in the 
node. Hence, among these three methods, the Linear Trees method is the most similar to REFANN in terms of how the 
predictions are computed. 
 

Table 5. Comparison of REFANN Performance with Tree Regression Methods 
 

REFANN KR Trees kNN Trees Linear Trees 
Data Set  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
Abalone 1.6 (0.1) 1.7 (0.1) 1.7 (0.1) 1.8 (0.1) 
Artificial1 0.8 (0.03) 0.9 (0.0) 0.9 (0.0) 0.8 (0.0) 
Artificial2 1.2 (0.04) 1.1 (0.0) 1.1 (0.0) 1.3 (0.1) 
Auto-loss 13.0 (3.7) 12.3 (4.5) 13.7 (4.4) 105.2 (34.9) 
Auto-mpg 2.1 (0.4) 2.4 (0.4) 2.3 (0.4) 18.0 (5.6) 
Auto-price 1581 (442) 1637 (570) 1662 (581) 2463 (518) 
CPU-performance 30.0 (11.2) 31.2 (15.1) 31.5 (14.7) 35.7 (11.7) 
Housing 2.6 (0.3) 2.8 (0.5) 2.9 (0.4) 3.9 (2.7) 
Servo 0.25 (0.06) 0.4 (0.2) 0.4 (0.2) 0.9 (0.2) 
Wpbc 25.5 (4.3) 28.5 (5.6) 28.5 (5.6) 28.2 (5.6) 
Note: The figures shown are the average MAEs and their standard deviations in parentheses. 



 
From Table 5, we can see that REFANN gives better predictions than the tree regression methods for most of the problems 
tested. REFANN is as good as or better than Linear Trees for all the problems tested. Large differences in the accuracies of 
these two methods are found for all problems except Abalone and the two artificial data sets. Compared to KR and kNN, 
REFANN’s error rates are slightly higher on only two of the ten data sets, Artificial2 and Auto-loss. 
 
 
6. CONCLUSION AND FUTURE WORKS 
 
This article has presented an approach for extracting rules from function approximating neural networks. It is easier to 
explain the prediction of a data-fitting model in terms of linear equations than the nonlinear mapping of a neural network. 
Using the weights of a trained network, REFANN attempts to divide the input space of the data into a small number of 
subregions such that the prediction for the samples in the same subregion can be computed by a single linear equation. 
REFANN approximates the nonlinear hyperbolic tangent activation function of the hidden units using a simple 3-piece linear 
function. It then generates rules in the form of linear equations from the trained network. The conditions in these rules divide 
the input space into one or more subregions. In each subregion, a linear equation approximates the network output. 
Experiments performed on 10 function approximation problems show that REFANN has very encouraging performance. 
 
By adopting a more sophisticated piecewise linear approximation of the hidden unit activation function, it should be possible 
to improve REFANN’s prediction accuracy. For example, instead of over-estimating the hidden unit activation function, a 
more accurate approximation would minimize the total absolute error (or total squared errors) between the actual and the 
approximated activation values. 
 
A second direction for improvement is to reduce the number of extracted rules. In the current implementation, REFANN 
approximates the activation of a hidden unit independently from those of the other units. A clustering algorithm may be 
employed to cluster the hidden unit activation values in the H-dimensional space. Experiments will be conducted to see if this 
approach generates fewer rules than does the current approach. 
 
Finally, we note that neural networks have been known to predict with higher accuracy than other data fitting methods such 
as classical regression, nearest neighbor methods, and regression tree methods. The results from our experiment show that 
even with the hidden unit activation functions of the networks approximated by piecewise linear functions, the resulting 
networks still outperform other methods on most of the problems tested. 
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