
Automated Generation of Test Programs From
Closed Specifications of Classes and Test Cases

Wee Kheng Leow, Siau Cheng Khoo, and Yi Sun
Dept. of Computer Science, National University of Singapore

leowwk, khoosc, sunyi@comp.nus.edu.sg

Abstract

Most research on automated specification-based soft-
ware testing has focused on the automated generation of
test cases. Before a software system can be tested, it must be
set up according to the input requirements of the test cases.
This setup process is usually performed manually, espe-
cially when testing complex data structures and databases.
After the system is properly set up, a test execution tool runs
the system according to the test cases and pre-recorded test
scripts to obtain the outputs, which are evaluated by a test
evaluation tool.

This paper complements the current research on auto-
mated specification-based testing by proposing a scheme
that combines the setup process, test execution, and test val-
idation into a single test program for testing the behavior of
object-oriented classes. The test program can be generated
automatically given the the desired test cases and closed
specifications of the classes. With closed specifications, ev-
ery class method is defined in terms of other methods which
are, in turn, defined in their own class specifications. The
core of the test program generator is a partial-order plan-
ner which plans the sequence of instructions required in the
test program. The planner is, in turn, implemented as a tree-
search algorithm. It makes function calls to the Omega Cal-
culator library, which solves the constraints given in the
test cases. A first-cut implementation of the planner has
been completed, which is able to handle simple arithmetics
and existential quantifications in the class specifications. A
soundness and completeness proof sketch of the planner is
also provided in this paper.

1. Introduction

Testing is a very important but expensive and time-
consuming process in software development. It can con-
sume at least 50% of the total costs involved in develop-
ing software [1]. Although there has been steady advance-
ment in formal methods for program verification, testing re-
mains the primary method for discovering faults in software

systems. Automation of the testing process could reduce de-
velopment costs and improve software quality.

Specification-based testing involves three main stages
[16]: (1) test case generation, (2) text case execution, and
(3) test result evaluation. The first stage generates test cases
from a software system’s specification. Before the system
can be tested, it must be properly set up, i.e., prepare the
input variables and data used in the tests according to the
requirements stated in the test cases. This setup process is
usually performed manually, especially when testing com-
plex data structures and databases. After the system is prop-
erly set up, a test execution tool runs the system according
to the test cases and pre-recorded test scripts to obtain the
outputs, which are evaluated by a test evaluation tool.

Test execution and test result evaluation are easy to au-
tomate, and tools for these stages in software testing are
already available. There has also been much research on
automated specification-based software testing focusing on
the automated selection or generation of test cases [16].
This paper complements this trend of research by propos-
ing a scheme that combines the setup process, test execu-
tion, and test validation into asingletest program for test-
ing the behavior of object-oriented classes. The test pro-
gram can be generated automatically given the desired test
cases andclosed specificationsof the object classes (Sec-
tion 3). After compiling and linking with the object classes
under test, it can be executed to perform test case setup,
test execution by invoking the class methods, and valida-
tion of the results returned by the class methods, all in a
single program. This scheme provides great convenience in
automated specification-based testing by removing the need
to perform manual system setup and invoking separate tools
for test execution and test evaluation.

2. Background and Related Work

Most research on automated specification-based test-
ing has focused on the automated generation of test cases
[8, 16, 20]. For example, Donat developed a technique for
generating test cases from specifications that contain quan-

tifications [4]. Offutt and Liu presented a method for gener-
ating test cases from specifications written in SOFL, which
is a kind of formal specification language [14]. Memon et
al. developed a method based on AI planner to generate
test cases for testing GUI [11]. Scheetz et al. also applied
AI planner but it was used to generate test cases from test
objectives derived from UML models [20]. Graves et al.
conducted empirical study to compare the cost and bene-
fit of several techniques for selecting subsets of test cases
for regression testing [5]. Other recent work has focused
on automated testing of specific software properties such as
safety violation in telephone switching systems [10] instead
of general software testing. Chan et al. [2] classified the
various integration testing techniques for object-oriented
programs into state-based, event-based, fault-based, test-
ing against formal specification (aka. algebraic specification
and contract specification [3]), and deterministic and reach-
ability techniques.

In comparison, there is not much research on automated
generation of test programs that combine system setup, test
execution, and test validation into a single framework, ex-
cept for the well-known ADL (Assertion Definition Lan-
guage) system [19] and its successor, ADL2 [13].

ADL provides a framework for specifying the semantics
of a software component such as a function or a module.
Given an ADL specification, the ADL Translator can auto-
matically generate a test program that executes the function
or module under test and checks the test results. To support
the automated generation of test programs, ADL requires
the user to supplyauxiliary functionsthat define the seman-
tics of the function to be tested. We call this type of speci-
fication system anopened specification system. In addition,
the user also needs to provide implementations of thepro-
vide functionsfor constructing the required test data and the
relinquish functionsfor destroying the test data.

The strength of an opened specification system is that it
can be used to specify a single function or to partially spec-
ify a module, and test program can be generated to test the
function or partially specified module. However, an opened
specification system also has the following shortcomings:� An opened specification is incomplete—it does not

contain enough information for generating test data
by itself. In testing complex software components, the
user cannot avoid the need to provide supporting func-
tions such as ADL’sauxiliary, provide, andrelinquish
functions. Additional programming effort is required
to implement these supporting functions, which may
not have any use other than for testing. Consequently,
test programs cannot be generated from the specifica-
tion alone, and test program generation cannot be fully
automated.� Supporting functions for testing complex modules may
be quite complex themselves and should be subjected

to testing also. Although testing of supporting func-
tions can be accomplished by specifying them in ADL,
such a requirement is not enforced by ADL. Moreover,
testing of these supporting functions may, in turn, re-
quire other supporting functions.

The research work described in this paper complements
the current research on automated specification-based soft-
ware testing in two ways: (1) It proposes aclosed specifica-
tion system(Section 3) that can overcome the above short-
comings of opened specification systems. (2) It proposes a
scheme that combines automated test data generation (i.e.,
system setup), test execution, and test validation into asin-
gle test program. The test program is generated automati-
cally given the class specifications and the test cases. When
it is executed, it will perform system setup and test data gen-
eration, test execution, and test validation automatically.

To fulfill these goals, the specification must be defined
for an object class instead of a single function. The seman-
tics of the class methods are specified in terms of other
methods which are, in turn, specified in their own class
specifications. In other words, all the methods used in a
class specification are defined in the same specification or
in other class specifications, and the methods can be defined
mutually recursively. So, a closed specification is a form of
algebraic specification that emphasizes the completeness of
semantic information within the specification itself. The tar-
get programming language is Java because it is a practically
useful language and is simpler to handle than is C++.

Fulfilling the above requirement of the closed specifica-
tion system may, at first glance, appear to be a daunting
task for a software that involves many classes. More care-
ful thought, however, reveals that the effort required is re-
ally not much more than providing theauxiliary, provide,
andrelinquishfunctions for ADL. Once a specification has
been defined for a class, it can be readily reused in the spec-
ifications of many other classes. On the other hand, the sup-
porting functions developed for testing a particular function
or module are less readily reusable for testing other func-
tions or modules. Therefore, in the long run, it is more ben-
eficial to use a closed system than an opened system.

The core of our test program generator is an AI plan-
ner that plans the sequence of instructions required in the
test program (Section 4.2). The AI planner is an appropri-
ate tool since it is able to sequence the instructions, taking
into account the constraints between them [18]. Moreover,
the partial-order plannercan plan a sequence of instruc-
tions that are only partially ordered but not totally ordered
[18]. As discussed above, AI planner has also been applied
to generate test cases from specifications [11, 20]. So, it is
a very useful tool for automated software testing.

Our planner is, in turn, implemented as a tree-search al-
gorithm (Section 5). It makes function calls to the Omega
Calculator library [17], which solves the constraints given

by the test cases and obtains valid variable instances. A
first-cut implementation of the planner has been completed,
which is able to handle simple arithmetics and existential
quantifications in the class specifications. A soundness and
completeness proof sketch of the planner is also provided in
this paper (Section 4.4).

3. Closed Specifications of Classes

In our system, the behavior of the classes are specified
using an ADL-like specification language. The following
example shows the specification of two classes:Student,
which is an atomic class, andCourse, which is an aggre-
gate class.

class Student {
Student(String name)
{ name != null // precondition

--> #name = name // postcondition
}

String name()
{ true --> name() = #name }

}

class Course {
Course(String code, int capacity)
{ code != null && capacity > 0

--> #size = 0 && #code = code &&
#cap = capacity

}

String code()
{ true --> code() = #code }

int capacity()
{ true --> capacity() = #cap }

int size()
{ true --> size() = #size }

void add(Student student)
{ student != null &&

#size < #capacity
--> #size = @#size + 1 &&
exists(#s in Course){#s = student}

}

boolean registered(Student student)
{ true

--> registered(student) =
exists(#s in Course){#s = student}

}
}

In this specification, preconditions are specified before
the arrow symbol ‘-->’ while postconditions are specified
after ‘-->’. Symbols prefixed with ‘#’ such as#name and

#size refer to state labels. They specify the information
that is contained in a class without saying how the infor-
mation is organized and stored in the class. Symbols pre-
fixed with ‘@’ refer to thepre-statesof the objects. For in-
stance,@#size refers to the value of#size at the entry of
theadd method. Therefore,@#size has the same value as
the#size in the precondition, and the#size in the post-
condition is equal to@#size+1. A method argument must
either be bound to a state label (e.g.,name in constructor
Student) or appear in the pre- or postcondition. Other-
wise, it does not carry any useful information and can be
discarded. Note that the semantics of all the methods in the
two classes are completely specified within them. That is,
the specification is closed.

Test generation for closed specifications does possess
difficulties such as thecyclic definition problem—A usesB
in its specification andB usesA in turn. Methods for han-
dling these difficulties are described in Section 5.2.

4. Automated Generation of Test Programs

The IEEE Standard 829 [9] defines a Test Case Specifi-
cation as a document that consists of seven parts:

Part 1 Test case specification identifier
Part 2 Test items: a list of functions that this test case will

exercise
Part 3 Input specifications: inputs to the functions
Part 4 Output specifications: expected results of the func-

tions
Part 5 Environmental needs: special hardware or software

needed
Part 6 Special procedural requirements: constraints on

procedures that exercise this test case
Part 7 Intercase dependencies: a list of test cases that must

be exercised before this test case is exercised

Test case generators usually produce information on Parts
1–4 only. Information in Parts 5–7 are included in other doc-
uments such as test plans or test procedures ([16], Chap. 2).
In our research work, we use Parts 1–4 of a test case to
generate test programs. Moreover, our framework is able to
generate information regarding intercase dependencies (i.e.,
Part 7) automatically given the closed class specifications
and the test cases (Section 5.2).

A test program that exercises a class method according to
a test case consists of three steps: (1) constructs target object
and method arguments that satisfy the conditions in the test
case, (2) applies the method on the object with the method
arguments, (3) checks whether the actual results tally with
the expected results given in the test case. It is straightfor-
ward to automatically generate program codes for steps 2
and 3 but not so for step 1:

� The method arguments of the object constructor of the
target object may be objects as well, and they are re-
quired to satisfy the conditions given in the test case.
Therefore, the object construction algorithm must be
applied recursively to construct the method arguments.� The object constructor may not be able to create an
object that meets the test case conditions (e.g., create
a stack with 10 elements). Additional modifier meth-
ods (e.g., stack push) may need to be invoked to bring
the object to the required state.

In the remainder of this paper, we will focus on the au-
tomated generation of object construction codes. A con-
cise definition of the problem is first defined in Section 4.1,
which leads to a planning algorithm called REBID (REcur-
sive BIDirectional planner) for the generation of object con-
struction codes (Section 4.2).

4.1. Problem Statement

The problem of automated generation of object construc-
tion codes can be specified as follows:

Given the closed specifications of classes, the
classC of a target objectx, and the conditionR
(which does not contain conflicting terms) thatx
must satisfy (as described in a test case), gener-
ate the object construction codes that, when exe-
cuted, will createx that satisfiesx:R, assuming
that such object construction codes exist.

The notationx:R means that the methods inR, if any, are
applied onx. The conditionR is given as a conjunction of
terms of the formxi:Mi() = vi, wherexi:Mi() is the ap-
plication of access methodMi onxi, andvi denotes a free
variable, a string literal, or a constant of primitive data type.
Conditions with more complex forms can be reduced to this
canonical form(see Section 4.2 for details).

Object construction codes consist of three parts: (1)ar-
gument creation: create argumentsu1; : : : ; un of the target
constructorC; (2) object creation: create the target objectx; and (3)object modification: modify the state ofx by ap-
plying modifier methodsM1; : : : ;Mm. For example,C1 u1 = new C1(: : :); // part 1: : :Cn un = new Cn(: : :);C x = new C(u1; : : : ; un); // part 2x:M1(: : :); // part 3: : :x:Mm(: : :);
Because an argument can also be an object, the codes for
creating an argument may also involve three parts, just like

object construction codes. Therefore,recursive planningis
needed to correctly generate the program codes.

A recursive bidirectionalplanner called REBID has been
developed to generate object construction codes. REBID
starts the planning process by generating object creation
code (part 2). This is a good strategy because a class typ-
ically has far fewer constructors than modifier methods.
Many classes may even have only one constructor. REBID
worksbackwardto generate the codes for constructing the
argumentsu1; : : : ; un recursivelybecause the construction
of the arguments may also involve 3-part codes. At the same
time, REBID also worksforward, if necessary, to generate
the codes to bring the the target object to the required state.

To further facilitate the automation of the testing pro-
cess, we adopt Gries’s semantics of method invocation [6]:fPgM fQg. That is, if methodM is invoked in a state sat-
isfying the preconditionP , thenM is guaranteedto termi-
nate in a finite amount of time in a state satisfying the post-
conditionQ. Note that Gries’s notation denotestotal cor-
rectnesswhich is slightly different from Hoare’s notation ofP fSgQ which denotespartial correctness[7].

4.2. Recursive Bidirectional Planner

REBID performs bidirectional plan-space search [18] for
a plan (i.e., a sequence of instructions). A (partial) plan is a
5-tuplehR; I;L;B;Qi whereR is the set of test case con-
ditions that the target object must satisfy,I is a list of in-
structions,L is a list of ordering information of the cor-
responding instructions inI, B contains variable bindings,
andQ contains constraints on the variables (which are de-
rived from methods’ pre- and postconditions).

Each instructionIi in I is a 5-tuplehzk;Mi;ui;Rk; Ski
wherezk refers to an object,Mi is the constructor ofzk or a
method to be applied onzk, ui is a list of arguments ofMi,Rk is a set of conjunctive terms to be satisfied byzk, andSk is the set of conjunctive terms currently satisfied byzk.Rk represents the subgoal that an object must satisfy andSk represents a part of the subgoal that will be satisfied af-
ter instructionIi is executed.

Note that the objectzk and the condition setsRk andSk have the same subscripts because the condition sets are
associated with an object instead of an instruction. On the
other hand,Ii,Mi, andui have the same subscripts because
a method and its arguments are associated with an instruc-
tion. Each piece of ordering informationOi in L is associ-
ated with an instructionIi. It is an ordered list that describes
the sequence of instructions before and afterIi.

For notational convenience, we use both conditionRi
and condition setRi to represent a conjunctive condition.
In particular,Ri = Vrj2Ri rj . Note that, with this nota-
tion,Ri^Rj , Ri[Rj . Moreover, we defineRi � Rj ,

Ri � Rj , andRi = true, Ri = ; (thoughRi = ftrueg
would work just the same).

Before presenting the planner algorithm, let us briefly
describe a procedure that converts the conjunctive terms in
a setR into canonical forms:� Instantiate existential quantifications into unique vari-

ables.� Replace conditions of the formx:A() opy:B(), where
op is a comparator, into two conditionsx:A() opv andv opy:B() by introducing the free variablev.� Replace a multidot method invocation of the
form x:M0():M1(): � � � :Mn() opv by a con-
junction of single-dot method invocationsx:M0() = x1 ^ x1:M1() = x2 ^ � � � ^ xn:Mn() opv
by introducing free variablesx1; : : : ; xn.� Replace access method invocations by appropri-
ate state labels according to class specifications.

After canonization, all the terms inR are of the formx:#l opv for some object variablex, label#l, operatorop,
and valuev. Examples of the application of this procedure
are illustrated in Section 4.3. A setR in canonical form can
be divided into mutually exclusive subsets such that each
subsetR(xi) contains all the terms that refer to a particular
objectxi. That is,R(xi) = frj 2 R j rj � xi:#lj opvjg,R(xi) \ R(xj) = ; for anyxi 6= xj , and

SiR(xi) = R
(i.e.,

Vi R(xi) = R).
REBID can be most succinctly described in terms of the

following nondeterministicalgorithms.1 Note that although
REBID is conceptually a recursive planner, it is easier to de-
scribe the algorithm by implementing recursion as iteration.
Given a canonicalR that a target objectx needs to satisfy,
the instruction sequence for constructingx can be gener-
ated by applyingMakePlan:

MakePlan (x,R)

1. Initialize condition sets:R0 R(x), S0 ;.
2. Create initial instruction:I0 = hz0; nil; nil;R0;S0i.
3. Create initial plan:} hR; I;L;B;Qi whereI =fI0g, L = fO0g, O0 = fI0g, B = fx = z0g, andQ = ;.
4. Repeat

(a) If all conditions inR have been satisfied, i.e.,Sk Sk) R, andMi 6= nil 8Ii 2 I, andQ
is satisfiable, then instantiate unbound variables
such thatQ is satisfied and return plan}.

(b) Else,CreateObject(}) or ModifyObject (}).

CreateObject(hR; I;L;B;Qi)
1 Most AI planner algorithms are described as nondeterministic algo-

rithms, which are then implemented as deterministic tree-search [18].

1. Choosean instructionIi = hzk;Mi;ui;Rk; Ski 2 I,
for somek, such thatMi = nil, ui = nil.

2. Choose a constructor C(a) with semanticsfPgC(a) fQg and argument listu such that the
conditionP au ^ (zk:Qau) zk:R0) is true, for someR0 � Rk, with appropriate bindings of free vari-
ables inR0 to arguments inu or instantiated state
labels ofzk.

3. Set method and arguments of instructionIi: Mi C,ui u.
4. Set the conditions that will be satisfied ifIi is executed:Sk fterms inQaug.
5. Note variable binding:B B [fbindings in Step 2g.
6. Include constraints:Q Q [fterms inP aug [fterms inzk:Qaug.
7. ExpandArguments (hR; I;L;B;Qi, i, P), whereP = fterms inP aug, i.e., create arguments inu that sat-

isfy P .

The keywordChoose means nondeterministic selection.
The notationP au refers to the conditionP with formal argu-
ments ina replaced simultaneously by actual arguments inu [6].

ModifyObject (hR; I;L;B;Qi)
1. Choosean instructionIi = hzk;Mi;ui; Rk; Ski, for

somek, such thatIi is the last instruction inI for ob-
ject zk, Mi 6= nil, andSk 6) Rk , i.e., methodMi has
been identified but conditions have not been fully sat-
isfied.

2. Choose a modifier M(a) with semanticsfPgM(a) fQg and argument list u satisfyingfS0kgM(a)fS0kgzk:P au ^ (zk:Qau) zk:R0)
for someS0k � Sk andR0 such that(S0k ^ R0) � Rk,
with appropriate bindings of free variables inR0 to ar-
guments inu or instantiated state labels ofzk.

3. Update conditions satisfied:Sk S 0k [fterms inQaug.
4. Create instruction:Ij = hzk;M;u;Rk;Ski.
5. Update plan:I I + fIjg, L L + fOjg whereOj = fIjg.
6. Update ordering information:Ol Ol + fIjg, whereIl = hzk; Cl;ul;Rk;Ski is an instruction that createszk andCl is a constructor method. That is,Ij comes

after the instruction that creates objectzk.
7. Note variable binding:B B [fbindings in Step 2g.
8. Update constraints:Q Q [fterms inzk:P aug [fterms inzk:Qaug.
9. ExpandArguments (hR; I;L;B;Qi, j, P), whereP = fterms inP aug.

The ‘+’ operators in steps 5 and 6 denote list concatenation.

ExpandArguments (hR; I;L;B;Qi, j, P)

For eachui 2 uj of instructionIj = hzm;Mj ;uj ;Rm;Smi2 I that is not a string literal and not a constant of primi-
tive data type:

1. Update condition sets:Choose, based on the class
specifications, anxk from the free variables inR that
can be bound toui. UpdateRi R(xk) [P(ui) [fxk = uig, Si ;.

2. Create instruction:Il = hui; nil; nil;Ri;Sii.
3. Update plan:I I + fIlg; L L + fOlg whereOl = fIlg.
4. Update ordering information:Oj fIlg + Oj , i.e.,Il comesbeforethe instructionIj that creates or mod-

ifies objectzm.
5. Update variable binding:B B [fxk = uig.
In the above algorithm, the nondeterministicChoosese-

lects five types of candidates: instructions, class methods,
arguments, free variables, and subsets of conditions. There
are finite and enumerable numbers of instructions, class
methods, free variables, and condition sets. Thus, in the ex-
planatory example in the next section, the correct candidates
can be nondeterministically chosen. Selection of arguments
is more complicated because there is potentially an infinite
number of possible values and they may need to satisfy the
preconditions of several methods (see next section for ex-
ample). If the value of an argument is given in the test case
(which is assumed to satisfy the preconditions), then it can
be assigned the value. Otherwise, the preconditions have to
be collected inQ and the values can only be determined at
the end of the planning process (step 4(a) ofMakePlan) by
proper instantiation of the argument variables.

4.3. A Nondeterministic Example

This section uses the specification example given in Sec-
tion 3 to explain the nondeterministic algorithm presented
in the preceding section. Suppose a test case requires a
Course objectc0? that satisfies the conditionc0?.R �
c0?.size() = 2 && s1?.name() = "Tim" &&
c0?.registered(s1?) = true. For notational clar-
ity, free or unbound variables are postfixed with the ‘?’
symbol. After canonizingc0?.R, we obtain two mu-
tually exclusive subsetsR(c0?) = fR1; R2g andR(s1?) = fR3g:

(R1) c0?.#size? = 2
(R2) c0?.#s? = s1?
(R3) s1?.#name? = "Tim"

Note that the existential quantification of the method
registered has been instantiated with the unbound la-
bel#s? and the unbound variables1?.

Given the test case,MakePlan first identifies the con-
ditions that must be satisfied by the target object (step 1),
which is instantiated asc0. These terms are included in the
condition setR0 of c0 givingR0 = fR1,R2g. In step 2, it
creates the first instructionI0 = hc0, nil, nil, R0, S0i, withS0 initialized to ;. Step 3 creates a plan with one instruc-
tion I0 and the first variable binding inB is c0? = c0.

Next, CreateObject is executed. In step 1, the only in-
struction in the plan,I0, is chosen for expansion. In step 2,
the only constructor available,Course, is chosen forI0.
This constructor’s postcondition does not satisfy any of the
terms inR0. In particular, it says thatsize(), which is the
same as#size, is equal to 0 instead of 2 as required inR0.
Thus,R0 is just taken as true.

At this time, there is insufficient information for instan-
tiating the method arguments. So they are left unbound. To
ensure that instructionI0 can indeed be executed, the argu-
ments must be chosen such that they satisfy the construc-
tor’s preconditionP au . So, terms inP au are collected in the
plan’s constraint setQ (step 6 ofCreateObject).

Now, I0, the instantiated pre- and postconditionsP0 andQ0, and the satisfied condition setS0 at this step are:I0 : hc0, Course, fcode0, cap0g,R0, S0iS0 = ;P0 : code0 != null && cap0 > 0Q0 : c0.#size0 = 0 && c0.#code0 = code0 &&
c0.#cap0 = cap0

Step 6 adds terms inP0 andQ0 into the constraint setQ. The last step ofCreateObject executesExpandAr-
guments on I0. But the arguments ofI0 take values of
primitive data types. So, nothing is done.

Following CreateObject, the method ModifyOb-
ject is executed and it nondeterministically chooses the
add method to modifyc0. With appropriate variable bind-
ings (see below), the postcondition ofadd can satisfy
conditionR2. The conditionfS0kgM(a)fS0kg in step 2, to-
gether with step 3, means that the terms in the currentS0 of object 0 that remain unchanged after apply-
ing add are kept in the newS0. In addition, terms inQau
are satisfied by the application ofadd, and are also in-
cluded into the newS0. A new instructionI1 is created,
and step 6 updates the ordering informationO0 to indi-
cate thatI1 comes afterI0. Step 7 updates the binding
set by addingB1 into B and step 8 updates the con-
straint set by addingP1 and Q1 into Q. Now, we ob-
tain:I1 : hc0, add, fs1g,R0, S0iS0 = fR2gP1 : s1 !=null && c0.#size0 < c0.#cap0Q1 : c0.#size1 = c0.#size0 + 1 = 1 &&

c0.#s1 = s1B1 : s1? = s1, c0?.#s? = c0.#s1
Note that the existential quantification inadd’s post-

condition has been instantiated. The quantified variable#s
which ranges over the aggregate objectCourse is instanti-
ated as a state label#s1 of objectc0. The label#size is
instantiated as#size0 and#size1 to represent the pre-
state and post-state of#size. That is, an ordered sequence
of labels is used to denote the conditions satisfied by an ob-
ject after executing some instructions. The last label in this
sequence would denote the object’s final conditions.

Next,ExpandArguments is executed for creating the ar-
guments1 of I1. Step 1 collects the condition terms inR
andP that should be satisfied bys1? ands1 respectively
givingR1 = fR3 ^ s1 != nullg. Step 2 creates a new
instructionI2 for creatings1. Step 4 updates the order in-
formationO1 of I1 to indicate theI2 precedesI1.

Next, CreateObject nondeterministically chooses in-
struction I2 for expansion, which selectsStudent as
the constructor. The postcondition ofStudent can sat-
isfy condition terms inR1 giving:I2 : hs1, Student, f"Tim"g,R1, S1iS1 = R1P2 : "Tim" != nullQ2 : s1.#name1 = "Tim"B2 : s1? = s1, s1?.#name? = s1.#name1

Next, I1 is selected for expansion again, andadd is se-
lected as the modifier. The process of creating aStudent
object is executed, resulting in new instructionsI3 andI4:I3 : hc0, add, fs2g,R0, S0iS0 = fR1; R2g = R0P3 : s2 != null && c0.#size1 < c0.#cap0Q3 : c0.#size2 = c0.#size1 + 1 = 2 &&

c0.#s2 = s2B3 : c0?.#size? = c0.#size2I4 : hs2, nil, nil, ;; ;i
After creating object forI4, we obtain:I4 : hs2, Student, fname2g, ;; ;iP4 : name2 != nullQ4 : s2.#name2 = name2

At this point,R can be satisfied byS0 [S1 and all the
methods in the instructions have been identified. The re-
maining unbound variables are bound to appropriately cho-
sen values according to the constraints inQ. In particu-
lar, there is no constraint forcode0 andname2. So they
can be bound to any randomly generated strings such as
"cs101" and"Jim" respectively. The argumentcap0 is
bound toc0.#cap0 which is constrained to be larger than
c0.#size1 which is equal to 1. Therefore,cap0 can be
bound to any value larger than 1 such as 2. The instruc-
tion sequence is encoded inL, and the following instruc-
tions can be generated from the plan:

Course c0 = Course("cs101", 2); // I0
Student s1 = Student("Tim"); // I2
c0.add(s1); // I1

Student s2 = Student("Jim"); // I4
c0.add(s2); // I3

4.4. Soundness and Completeness

Theorem 1 REBID is sound and complete.

Proof sketch:(Soundness) To prove that a plan generated by
REBID is correct, we need to show that (1) the sequence of
instructions can be executed successfully, and (2) after exe-
cuting the instructions, the target object satisfies the condi-
tionR specified in the test case.

1. Step 6 ofModifyObject places object modification in-
struction after object creation instruction and step 4
of ExpandArguments places argument creation in-
struction before object creation instruction. That is, a
method is invoked after its arguments are created, and
an object is modified after it is created. In addition,
REBID ensures that the precondition of the method in
each instructionIi is satisfied. Therefore, the sequence
of instructions can be executed successfully.

2. The methods are chosen to satisfy the conditionP au ^(zk:Qau) zk:R0). It follows directly from Gries’s
theorem of procedure call[6] that the constructed ob-
ject or argumentzk will indeed satisfyzk:R0 because
the instruction will terminate successfully (sinceP au is
true) and the postconditionzk:Qau will imply zk:R0.
During the planning process, the condition terms inR
that are satisfied are recorded in the condition setsSk.
When the planner terminates,Sk) Rk for eachzk
and

Sk Sk) R. That is, the arguments satisfy their
respective requirements, and the target object and its
components as a whole satisfyR, if there is no con-
flict in

Sk Sk. But, there can be no conflict because

(a) there is no conflict inR and the setsR(xi) are
mutually exclusive, and

(b) in ModifyObject , only the conditions that are
unchanged (i.e.,S 0k) and those that are satisfied
by the modifier (i.e.,Qau) are placed inSk.

(Completeness) To prove that REBID is complete, we need
to show that REBID can generate a correct sequence of in-
structions if one exists.

1. A class has a finite number of constructors. So, step 2
of CreateObjectcan enumerate all possible choices of
constructors.

2. A class has a finite number of modifiers. So, step 2 of
ModifyObject can enumerate all possible choices of
modifiers. In addition, the length of a correct instruc-
tion sequence is finite. So, step 4(b) ofMakePlan can
enumerate all possible sequences of modifiers.

3. A method has a finite number of arguments. So, we
only need to show that REBID can find the correct ar-
guments.

R ::= � j :� j 9v:� j 8v:� j �1 _ �2 j �1 ^ �2� ::= True j False j a1 = a2 j a1 6= a2j a1 < a2 j a1 > a2 j a1 � a2 j a1 � a2a ::= n j v j n � v j a1 + a2 j � an 2 Integer Constantsv 2 Variables

Figure 1. Syntax of Presburger formulae.� If a method argument is an object instance of
a class, thenExpandArgument is invoked for
each argument, which creates subproblems that
REBID can solve recursively.� If a method argument is a primitive constant or
string literal that is specified in target conditionR, then REBID can use the value specified.� For the case that a method argument is not spec-
ified, REBID collects inQ the preconditions of
the methods used in the entire plan. These condi-
tions are used to instantiate unbound arguments
in step 4(a) ofMakePlanafter all the instructions
are found. Since a correct instruction sequence
exists (assumed in the problem statement), then
it must be possible to instantiate the arguments
for the correct sequence.

Therefore, REBID can enumerate all possible sequences of
instructions whose method arguments can be instantiated,
and they include the correct instruction sequence. 2
5. Implementation

5.1. Deterministic Tree-Search

A prototype of the REBID algorithm has been developed
as a proof of concept. The non-deterministic aspect of the
algorithm has been realized by adeterministic tree-search
algorithm in depth-first manner. The tree nodes represent
partial plans for potential solutions. Depth-first search is
chosen for its simplicity, and it works well for the sample
specifications that we have tested so far. It is noted that,
in general, a more intelligent search algorithm is needed to
avoid searching the entire tree for a solution.

In the prototype, we restrict the description of program
specification toaffine relations. Specifically, the pre- and
post-conditions of methods, as well as the condition setsRk
andSk are expressed usingPresburger formulae. Its syn-
tax is defined in Figure 1. Consequently, the satisfiability of
the conditions is known to be decidable. The current imple-
mentation uses the Omega Calculator [17] for satisfiability
check, as well as instantiation of unbound variables in the fi-
nal step of the algorithm (Step 4(a) ofMakePlan).

Moreover, addition and subtraction are restricted to
adding and subtracting a constant from a variable. In this
case, the search algorithm can terminate even if a plan
does not exist because it can decide that further addi-
tions or subtractions will cause the plan to deviate further
from the requirement. For example, if anadd method in-
crements thesize of an aggregate class by 2 instead
of 1, then no plan exists for creating an empty aggre-
gate object and then adding elements to the object to get
odd-numbered size.

Figure 2 illustrates a screen-shot of the execution of
the REBID planner. The top-right pane shows an internal
representation of the class specification. The middle pane
shows some of the test case conditions that must be satis-
fied by aStudent object. The bottom pane shows the se-
quence of instructions generated for creating the required
Student object. This example illustrates the construction
of theStudent object, followed by modification of the ob-
ject’s attributes. The modifier methodsetCont requires
another object as its input argument, which is created as
obj0 before thesetCont method is invoked. In sum-
mary, this example illustrates that the REBID planner can
correctly sequence the instructions that invoke the correct
methods.

5.2. Test Sequencing

In testing several or all the methods of a class, the vari-
ous test cases for the class need to be sequenced in an ap-
propriate order. This is not necessary for software testing
systems such as ADL that test single function specifica-
tion. On the other hand, it is important for testing an en-
tire class defined by a closed specification. For example,
to test the methodCourse.add at the boundary value
of size() = capacity(), it is necessary to first add
enough instances ofStudent into aCourse object using
the methodCourse.addwhich is under test. To make the
test meaningful and useful for locating program bugs,add
should first be tested withsize() = 0, which is satis-
fied by a freshly constructedCourse object. Subsequently,
add can be tested withsize() greater than 0 but smaller
thancapacity(), and finally withsize() = capac-
ity().

Test sequencing consists of three steps. The first step
identifies thedependencybetween the methods in a class.
A methodA is said todepend onanother methodB if one
of the followings is satisfied:

1. B is a constructor of the class in whichA is defined.

2. A’s postcondition contains a call to methodB, i.e.,B(b).

3. A’s postcondition contains a state label#l or an ex-
istentially quantified expressionE, and B’s post-

condition contains a matching assertion of the formB(b) = #l orB(b) = E.

4. As in 3 but withA andB swapped.

Case (1) is obvious: testing of a class method is possible
only after an instance of the class has been constructed.
Case (2) is also obvious: the test program for methodA
needs to call methodB to check the test result. Cases (3)
and (4) refer to the case ofcyclic definition, i.e.,A usesB
in its specification and vice versa. Methods involved in a
cyclic definition depend on each other and have to be tested
as a group called thecyclic group.

Typically, a cyclic group consists of a constructor or
modifier and some access methods. For example, the con-
structor Student of classStudent and the accessor
name form a cyclic group. If an accessor appears in more
than one cyclic group, then it can be removed from all ex-
cept one of the groups, sayG, because it needs to be tested
only once together with the other methods in groupG.

The second step establishes apartial ordering between
test cases. A test caseT is said toprecede(i.e., tested be-
fore) a test caseT 0 if one of the followings is satisfied:

1. T tests methodA, T 0 tests a different methodB not in
the same cyclic group asA, andB depends onA.

2. Both T andT 0 test the same methodA and the ob-
ject under test inT has a shorter construction sequence
than that inT 0.

As discussed in previous paragraphs, a test of a method, say,
add on aCourse object with fewer elements should pre-
cede the test on an object with more elements.

The final step of test sequencing sorts the class meth-
ods according to the partial-ordering of the test cases. A test
caseT that precedes another test caseT 0 should be tested
beforeT 0.
6. Discussions and Conclusion

This paper presented a closed specification system such
that every class method is defined in terms of other meth-
ods which are, in turn, defined in their own class specifica-
tions. With closed specifications, it is possible to automat-
ically generate a test program for testing the behavior of
object-oriented classes given their closed specificationsand
the desired test cases. The test program combines the setup
process, test execution, and test validation into a single pro-
gram so that all three stages of software testing can be exe-
cuted automatically.

This paper also presented a method for automated gener-
ation of the test program. The core of the generator is a AI
planner. A first-cut implementation has been completed. In
addition, a soundness and completeness proof of REBID is
also provided.

We are now working on the following extensions to the
current implementation. REBID can be easily extended to
generate program codes for testing a method’s exception

handling. This can be achieved by including the exception
handling semanticsf:PgM fEg whereE is the condi-
tions that must be satisfied when the preconditionP is vi-
olated. Single inheritance of a class can also be easily han-
dled by inheriting the closed specification of the class.

The current REBID implementation does not han-
dle universal quantifications. Universal quantifications
can be eliminated through a technique calledgeneraliza-
tion, originally introduced by Suzuki and Ishihata [21].
Given a universally-quantified formula8x f(x), we com-
pute :eliminate(:f(x)). The functioneliminate uses
the Fourier-Motzkin variable-elimination method to elim-
inatex from :f(x). This results in a simplified formula
with the same integer solutions as the original formula,
and is used in place of the universally-quantified for-
mula.

To handle more complex specifications and test cases,
a measure of thelikelihood of successof an instruction is
needed to allow REBID to search for a plan efficiently. The
likelihood can be defined in terms of thedistancebetween
the conjunctive terms in the subgoalRi and the currently
satisfied condition setSi. Symbolic labels in the terms can
be compared syntactically whereas numerical values can
be compared numerically. In addition, we require more so-
phisticated constraint solving tools, in place of Omega Cal-
culator, to handle more expressive specification than Pres-
burger formulae. Some theorem-proving tools, such as Is-
abelle [12], PVS [15] etc., can be employed here.

The object construction codes generated by REBID can
be executed to construct objects that satisfy known condi-
tions. Therefore, they can be reused in other test programs
that require objects that satisfy the same conditions. This
will reduce the need to run REBID again to generate the
same object construction codes.

References

[1] B. Beizer.Software Testing Techniques. Thomson Computer
Press, 2nd edition, 1990.

[2] W. K. Chan, T. Y. Chen, and T. H. Tse. An overview of in-
tegration testing techniques for object-oriented programs. In
Proc. of 2nd ACIS Annual Int. Conf. on Computer and Infor-
mation Science (ICIS), pages 696–701, 2002.

[3] H. Y. Chen, T. H. Tse, and T. Y. Chen. TACCLE: a methodol-
ogy for object-oriented software testing at the class and clus-
ter levels.ACM Trans. on Software Engineering and Method-
ology, 10(1):56–109, 2001.

[4] M. Donat. Automating formal specification based testing.
In Proc. Conf. on Theory and Practice of Software Develop-
ment, volume 1214, pages 833–847, 1997.

[5] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An empirical study of regression test selec-
tion techniques.ACM Trans. on Software Engineering and
Methodology, 10(2):184–208, 2001.

[6] D. Gries. The Science of Programming. Springer-Verlag,
1981.

[7] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Comm. of ACM, 12:576–583, 1969.

[8] H. Hong, I. Lee, O. Sokolsky, and S. Cha. Automatic test
generation from statecharts using model checking. Technical
Report MS-CIS-01-07, Dept. of Computer and Information
Science, U. of Pennsylvania, 2001.

[9] IEEE. IEEE Standard 829-1991: Standard for Software Test
Documentation. IEEE Press, New York, 1991.

[10] L. J. Jagadeesan, A. A. Porter, C. Puchol, J. C. Ramming,
and L. G. Votta. Specification-based testing of reactive soft-
ware: Tools and experiments. InInt. Conf. on Software En-
gineering, pages 525–535, 1997.

[11] A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a goal-
driven approach to generate test cases for guis. InInt. Conf.
Software Engineering, 1999.

[12] T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL
— A Proof Assistant for Higher-Order Logic (LNCS 2283).
Springer, 2002.

[13] M. Obayashi, H. Kubota, S. P. McCarron, and L. Mallet. The
assertion based testing tool for OOP: ADL2. InProc. Int.
Conf. Software Engineering, 1998.

[14] A. J. Offutt and S. Liu. Generating test data from SOFL spec-
ifications.J. of Systems and Software, 49(1):49–62, 1999.

[15] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas.
PVS: Combining specification, proof checking, and model
checking. In R. Alur and T. A. Henzinger, editors,Computer-
Aided Verification, CAV ’96 (LNCS 1102), pages 411–414.
Springer-Verlag, 1996.

[16] R. M. Poston. Automating Specification-Based Software
Testing. IEEE Computer Society Press, 1996.

[17] W. Pugh. The Omega Test: A fast practical integer program-
ming algorithm for dependence analysis.Comm. of ACM,
8:102–114, 1992.

[18] S. Russell and P. Norvig.Artificial Intelligence: A Modern
Approach. Prentice-Hall, 1995.

[19] S. Sankar and R. Hayes. Specifying and testing software
components using ADL. Technical Report TR-94-23, Sun
Microsystems Labs, 1994.

[20] M. Scheetz, A. von Mayrhauser, R. France, E. Dahlman, and
A. E. Howe. Generating test cases from an OO model with
an ai planning system. InProc. 10th Int. Symp. on Software
Reliability Engineering, 1999.

[21] N. Suzuki and K. Ishihata. Implementation of array bound
checker. InACM Principles of Programming Languages,
pages 132–143, 1977.

