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Abstract: 13% of men and 30%–40% of women suf-
fer from osteoporotic bone fractures worldwide. In large
hospitals, doctors need to visually inspect a large number
of x-ray images to identify the fracture cases, which typ-
ically constitute a small fraction of all the x-ray images
examined. After looking through many images contain-
ing healthy bones, a tired radiologist has been found to
miss a fractured case among the many healthy ones. Au-
tomated fracture detection can help the doctors by screen-
ing for obvious cases and flagging suspicious cases for
closer examinations. Since bone fractures can occur in
many ways, no one single algorithm can detect all the
possible fractures accurately. This paper describes an ap-
proach in detecting fractures of the femur and the radius
by combining various detection methods. These meth-
ods extract different kinds of features for fracture detec-
tion. They include neck-shaft angle, which is specifi-
cally extracted for femur fracture detection, and Gabor
texture, Markov Random Field texture, and intensity gra-
dient, which are general features that can be applied to
detecting fractures of various bones. Two types of classi-
fiers are tested, namely, Bayesian classifier and Support
Vector Machine. Test results show that the combined ap-
proach can improve both the fracture detection rate and
the classification accuracy significantly compared to any
single method.

Keywords: image analysis, image interpretation and un-
derstanding, x-ray fracture detection, femur fractures, ra-
dius fractures.

INTRODUCTION

Many people suffer from bone fractures worldwide. The
International Osteoporosis Foundation [10] reported that,
worldwide, women has a 30%–40% lifetime risk of get-
ting osteoporotic fractures while men has a lower risk of
13%. The number of hip fractures could rise from 1.7
million worldwide in 1990 to 6.3 million by 2050. The
most dramatic increase is expected to occur in Asia dur-
ing the next decades. World Health Organization con-
firms that osteoporosis is second only to cardiovascular
disease as a leading health care problem [10].

In clinical practice, doctors and radiologists in large
hospitals have to visually inspect x-ray images to deter-

mine the occurrence and the precise nature of fractures.
Typically, only a small fraction of the images contain
fractures. For example, in the x-ray images that we col-
lected from a local public hospital, only about 12% of
the femurs are fractured. After looking through many
images containing healthy bones, a tired radiologist has
been found to miss a fractured case among the many
healthy ones. A computer vision system can assist the
doctors by screening the x-ray images for obvious cases
and flagging suspicious cases for closer examinations.
Automated screening of x-ray images can thus help to re-
duce the radiologists’ workload and direct the doctors’
attention to suspicious cases to improve the timeliness
and accuracy of their diagnosis. Therefore, such a com-
puter vision system is extremely useful for clinicians and
is now feasible because all clinical radiology is going dig-
ital. Digital x-ray images are now routinely captured us-
ing digital x-ray machines.

Fractures of a bone can occur in many ways. As
such, no one single method can accurately detect all kinds
of bone fractures. Our approach is to develop a suite
of methods, each designed to complement the others by
looking for different features that characterize different
kinds of fractures. This paper presents our current re-
search work on the detection of bone fractures. We will
focus mainly on the detection of femur fractures since
they are the most common type of fractures. Some pre-
liminary results on the detection of fractures of the radius
near the wrist will also be reported.

RELATED WORK

Our first published work on the detection of fractures in
x-ray images is that of Tian et al. [22]. The method de-
tects femur fractures by computing the angle between the
neck axis and shaft axis. Apparently, this method can
only detect severe fractures that cause significant changes
in the neck-shaft angles (Fig. 1(a)). Some fractures may
crack the neck without rotating or displacing the femoral
head significantly. They result in only local disruptions
of the trabecular patterns (Fig. 1(b)).

Following the first attempt, Yap et al. [26] developed
a complementary method for detecting femur fractures
by analyzing the disruption of trabecular pattern at the
femoral neck. This was done by extracting and analyz-
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Fig. 1: (a) Severe fracture that changes the shape of the
femur. (b) Fracture that does not change the femur’s
shape significantly.

ing the orientations of the trabeculae using Gabor filters
[1]. Test results showed that this method complemented
the neck-shaft angle method. Hence, combing the two
methods improved the performance of fracture detection.

Other related methods used non-visual techniques to
detect fractures. For example, Ryder et al. analyzed
acoustic pulses to determine whether a fracture had oc-
curred [19]. Kaufman et al. analyzed mechanical vibra-
tion using a neural network model [11] whereas Singh
and Chauhan measured electrical conductivity [21].

Most research effort on the analysis of orthopaedic
x-ray images has been focused on the detection of osteo-
porosis by methods of texture analysis and fractal analy-
sis. For example, [8, 13, 18] computed first order statis-
tics of texture including mean and standard deviation, and
[17, 25] computed second order statistics of texture such
as the co-occurrence matrix. On the other hand, [2, 3, 12]
applied techniques such as semi-variance, surface area,
and power spectral methods to derive the fractal dimen-
sion and geometry for detecting osteoporosis. Caligiuri
et al. [3] showed that their method appeared promising in
discriminating between healthy and fractured bones. [16]
applied a multiresolution wavelet technique on the micro
x-ray CT images of rats’ lumbar vertebrae, and [14] ap-
plied fractal analysis on the micro x-ray images of human
knees. Both these works analyzed trabecular structures
of bones in high-resolution micro x-ray images instead of
normal x-ray images. A good review of the application
of fractal analysis for the assessment of trabecular bone
structure is given in [15].

There is a substantial amount of work on the analy-
sis of tubular structures such as blood vessels and lung
bronchi. The analysis of these small structures typically
assume certain relationship between image intensity and
the position on the structure. For example, the cores
method [7] and the ridge detection method [9] have been
applied to 2D images to find intensity ridges which cor-
respond to the medial lines of vessels. However, the fe-
mur and radius are large structures with complex inter-
nal structure of trabeculae (Figs. 1, 7), which show up as
complex texture patterns in x-ray images. So, standard
methods for analyzing tubular structures cannot work on
femur and radius x-ray images.

FRACTURE DETECTION

Our method of detecting fractures can be divided into 3
stages: (1) extraction of approximate contour of the bone
of interest, (2) extraction of features from the x-ray im-
age, and (3) classification of the bone based on the ex-
tracted features. The extraction of bone contour in stage
1 is performed using active shape model, supplemented
by active appearance models [4] at distinct feature points.
These are well known methods that have already been re-
ported in the literature. So, this paper will focus on stages
2 and 3.

Four different types of image features are extracted
for fracture detection: (1) femoral neck-shaft angle, (2)
Gabor filters [1], (3) Markov Random Field (MRF) [6],
and (4) intensity gradient. The first feature is specifically
extracted for detecting the distortion of shape due to se-
vere femur fracture. The other features can potentially by
applied to detecting fractures of various bones. So far, we
have applied all of them to detecting femur fractures and
MRF to detecting radius fractures.

Computation of neck-shaft angle has been reported
in [22]. Here, we shall give a summary of the method.
Given the contour of the femur, it computes lines that
are normal to both sides of the shaft contour, which we
called thelevel lines. The line that passes through the mid
points of the shaft level lines gives a good approxima-
tion of the shaft axis. The level lines at the femoral head
and neck are clustered into bundles. The mean direction
of the level lines in the largest bundle that contains long
level lines gives an initial approximation of the neck axis.
Then, taking note of the symmetry of the femoral head,
the best axis of symmetry is determined, starting with the
initial approximation, to obtain the best approximation of
the shaft axis. Finally, the angle between the neck and
the shaft axes is computed. Classification is based on
a threshold of the neck-shaft angle that is learned from
training samples.

The extraction of the other three features share a com-
mon theme:adaptive sampling. The shapes and sizes of
the bones are not identical in the x-ray images. Even
among healthy bones, there are still differences in the
appearance because they are naturally-occurring objects.
Age and gender also contribute to the difference in the ap-
pearance of the bones. One standard method of dealing
with size variation is to normalize the size of the bones in
the images. This method is, however, unsatisfactory be-
cause it can either remove important texture information
(if the image is shrunken) or introduce noise and artifacts
(if the image is enlarged). Instead of scaling the x-ray im-
ages, adaptive sampling is used to sample the features so
that the sampled locations in different images correspond
to consistent locations in a normalized sampling grid.

Adaptive Sampling

Let W andH denote the width and height of the bound-
ing box that contains the bone of interest, e.g., the fe-
mur’s upper extremity. This bounding box is automat-



Table 1: Number of sampling locations for various fea-
ture types. MRF: Markov Random Field model, IG: in-
tensity gradient. Gabor and IG are extracted only from
femur images.

Gabor IG MRF (femur) MRF (radius)
nx 12 28 16 8
ny 14 32 24 15

(a) (b)

Fig. 2: Adaptive sampling grid. (a) Without overlap. (b)
With overlaps.

ically derived from the approximate bone contour ex-
tracted in Stage 1 of the algorithm. Letnx andny de-
note the number of sampling locations along thex- and
y-directions, which means the sampling method divides
the whole bounding box intonx×ny regions. To improve
the coverage of the grids on the image, the sampling grids
are arranged in such a way that neighboring regions over-
lap by 50% of their width and height. So each region is
of width Sx and heightSy given by:

Sx = 2

⌊

W

nx + 1

⌋

, Sy = 2

⌊

H

ny + 1

⌋

. (1)

The advantage of this adaptive sampling method is that
it requires the extraction of only approximate bone con-
tours. Therefore, it can also tolerate slight variation of
shape over different patients, and does not require very
accurate extraction of the bone contours.

The number of sampling locations differ for differ-
ent feature types. Texture features extracted using Ga-
bor filtering requires a larger sampling region and thus
fewer sampling locations. On the other hand, extrac-
tion of intensity gradient requires very small sampling
region. Thus, sampling can be performed at more loca-
tions. Markov Random Field (MRF) texture model ex-
tracts features from moderate-sized sampling regions. In
the current implementation, the number of sampling lo-
cations is set as shown in Table 1. Figure 2 illustrates an
example of adaptive sampling at the femoral neck.

Feature Extraction

The trabeculae in the bones are oriented at specific ori-
entations to support the forces acting on them. A frac-
ture of the bone causes a disruption of the trabecular pat-

(a) (b)

Fig. 3: Gabor texture orientation maps of (a) healthy fe-
mur and (b) fractured femur. The short lines indicate tra-
becular orientations.

tern, which can be detected by extracting various feature
types. In our implementation, features are extracted from
each sampling region determined using adaptive sam-
pling method. Extraction of Gabor textures has already
been reported in [26]. The result is aGabor texture ori-
entation map MG = [uij ] whereuij is a unit vector that
represents the Gabor texture orientation at grid location
(i, j). Figure 3 illustrates examples of Gabor texture ori-
entation maps. In this paper, we shall focus on the extrac-
tion of intensity gradient direction and Markov Random
Field features.

Before extracting intensity gradient feature, the x-ray
images are first normalized so that their mean intensities
and contrasts are similar. A general method of computing
the intensity gradient at a pointp is to fit a curve surface
on the intensity profile at and aroundp. Then, the inten-
sity gradient can be computed from analytical geometry.
However, this approach is too computationally expensive
for our application. Instead, an approximation method
is applied as follows. Given a regionR(p) centered at
p, search within the region for a pointq whose intensity
differencedm is the largest:

dm(p) = max
q′∈R(p)

|I(p) − I(q′)| . (2)

Then, the intensity gradient directiong(p) is computed
as the vector difference

g(p) = sgn(I(p) − I(q))
q− p

dm(p)
(3)

where sgn(.) is the sign function. So, the direction ofg

is defined to point from higher intensity location to lower
intensity location (Fig. 4). Intensity gradient directionis
computed at each location(i, j) within the bone contour
to form theintensity gradient direction map Mg = [uij ].
Gradient direction outside the contour is defined to be the
null vector. Figure 5 illustrates examples of intensity gra-
dient direction maps.

Intensity normalization is also performed before ex-
tracting Markov Random Field texture. Markov Random
Field texture model describes the intensity of a pixelp as
a linear combination of those of its neighborsq [6]:

I(p) =
∑

q∈R(p)

(θ(p,q)I(p + q) + ǫ(q)) (4)



Fig. 4: Intensity gradient directions at different locations.

(a) (b)

(c) (d)

Fig. 5: Intensity gradient direction maps of (a, b) healthy
femurs and (c) fractured femur. The colors indicate the
directions as depicted in (d) the color circle.

whereθ(p,q) are model parameters andǫ(q) represents
noise, which is usually assumed to be Gaussian noise of
zero mean and constant variance. The model parameters
θ(p,q) at locationp is then computed by minimizing the
errorE:

E =



I(p) −
∑

q∈R(p)

(θ(p,q)I(p + q) + ǫ(q))





2

.

(5)
The model parametersθ(p,q) are then normalized to unit
vectorsuij to form the MRF texture mapMm = [uij ],
wherep = (i, j). As for the other feature maps, entries
outside the bone contour are assigned the null vectors.

Map Processing

The feature maps described in the previous sections are
vector maps, which are not convenient for classification.
So they are converted into adifference maps, which are
scalar maps. For each feature type, the mean feature map
of all the healthy training samples,M = [mij], is first
computed. The entrymij is the mean feature vector at
position(i, j) in M and it is given by:

mij =



















n
∑

k=1

ukij

∥

∥

∥

∥

∥

n
∑

k=1

ukij

∥

∥

∥

∥

∥

−1

if cij > n/2

0 otherwise

(6)

wheren is the number of training samples,ukij is the
unit feature vector of samplek at position(i, j), andcij

is the number of samples with non-null feature vectors at
position(i, j).

For a particular position(i, j), if more than half of the
training samples’ feature maps have null values at this po-
sition, it will be considered as an insignificant position,
which means this position does not contain significant
information for classification. Then, the corresponding
entry in the mean feature map will be assigned the null
vector0. This situation usually occurs near the bound-
ary contour of the bone because of slight shape variation
among different images. By setting the map entries at
these positions to0, the effect of slight shape variation
on classification can be removed.

Now, the difference mapV = [vij ] for all the training
samples can be computed. Each entryvij indicates the
difference between the image’s feature map and the mean
feature map at position(i, j) and it is given by:

vij =

{

0 if uij = mij = 0

1 − |uij ·mij | otherwise.
(7)

A vij value that is close to 0 indicates a slight differ-
ence, and a largevij indicates a large difference. As the
mean feature map is computed over all the healthy train-
ing samples, an image of a healthy bone should yield a
feature map that is very similar to the mean feature map.
So this image’s difference map is expected to have mostly



small values. On the other hand, in an image of a frac-
tured bone, there will be some disruption of the trabecu-
lar pattern caused by the fracture. So its feature map will
be very different from the mean feature map at some po-
sitions and its difference map is expected to have some
large values. Our classification of the bones will be based
on the difference map.

Classification

Two classifiers are applied on the difference maps to clas-
sify the test samples: Bayesian and Support Vector Ma-
chine (SVM).

For the first method, the sets of healthy and frac-
ture training samples’ difference maps are each modeled
by a multivariate Gaussian function, which are used to
estimate the conditional probabilitiesP (x| healthy) and
P (x| fracture), wherex denotes a sample’s difference
map. We found that, in practice, thea priori probabil-
ities P (healthy) andP (fracture) are not identical. For
example,P (healthy) is roughly 0.88 andP (fracture) is
0.12 for the femur images in our collection. Applying
Bayes’ rule, we obtain

P (class|x) =
P (x| class)P (class)

P (x)
(8)

where class is either healthy or fractured. The de-
nominatorP (x) is the same for bothP (healthy|x) and
P (fracture|x) and so can be ignored. Thus, samplex can
be classified as fractured ifP (healthy|x) is smaller than
P (fracture|x).

It is noted that the fractured samples are most likely
not well clustered in the feature space. Ideally, one would
cluster them into various clusters based on their similar-
ity, and then model each cluster using a different mul-
tivariate Gaussian. However, we find that this approach
is not appropriate because each cluster contains too few
samples for accurate estimation of the multivariate Gaus-
sian.

For the second method, Support Vector Machine [5,
23, 24] is used for classification. The objective of SVM
can be stated succinctly as follows:

Given the training set{(xi, di)}
n
i=1, where

di is the class of feature vectorxi, find the
optimal hyperplane, in terms of weightsw
and biasb, that satisfies

di (wTxi + b) ≥ 1 for i = 1, . . . , n (9)

and minimizesΦ(w) = wTw/2.

The optimal weightsw are given by a set of Lagrange
multipliersαi:

w =
∑

i

αidixi . (10)

The training vectorsxi with non-zeroαi are the support
vectors.

For practical applications, which are typically non-
linearly separable, it is preferred to solve the classifica-
tion problem in a high-dimensional space where there is

a better chance of achieving linear separation. This is
accomplished by applying a nonlinear functionφ(x) to
map the vectorx in ann-dimensional input space to an
m-dimensional feature space,m > n. Then, the optimal
hyperplane in them-dimensional feature space is given
by:

wT φ(x) + b = 0 . (11)

The nonlinear functionφ(x) is a kernel function of the
form Ki(x) = K(x,xi) wherexi are the support vec-
tors. Then, the optimal hyperplane in the feature space
becomes:

∑

i

αidiK(x,xi) + b = 0 (12)

and the decision functionf(x) becomes

f(x) =
∑

i

αidiK(x,xi) + b . (13)

For efficient computation, the kernel functions must
satisfy the so-calledMercer’s Theorem [23, 24]. These
kernel functions include:

1. polynomial:

K(x,xi) = (xT xi + 1)p (14)

wherep is a constant.

2. Gaussian or Radial Basis Function:

K(x,xi) = exp

(

−
‖x− xi‖

2

nσ2

)

(15)

whereσ is the standard deviation of the Gaussian
andn is the number of training samples.

3. hyperbolic tangent:

K(x,xi) = tanh(β0x
Txi + β1) (16)

whereβ0 andβ1 are constants. Note that Mercer’s
theorem is satisfied only for some values ofβ0 and
β1.

In the tests, the SVM Toolbox for Matlab imple-
mented by Schwaighofer [20] was applied to perform the
classification. The Radial Basis Function (RBF) with pa-
rameterσ = 2 was chosen as the kernel function be-
cause RBF kernel was found to yield better classifica-
tion results. The SVM toolbox allows different weighting
factors to be assigned to the errors associated with the
training samples. This is useful for encoding different
significance levels of the training samples, and for han-
dling imbalanced number of positive and negative train-
ing samples. The weighting factor of the healthy femurs
was set as 15, whereas that of the fractured femurs was
100. The weighting factor of the fractured femurs was
set to a higher value because there were much fewer frac-
tured samples than healthy samples. Empirical test veri-
fied that this approach allowed SVM to classify the sam-
ples more accurately. The RBF parameter and weighting
factors were determined by experimentation on the train-
ing samples.



EXPERIMENTS AND DISCUSSION

Femur Fracture Detection

432 femur images were obtained from a local public hos-
pital, and were divided randomly into 324 training and
108 testing images. The percentage of fractured images
in the training and testing sets were kept approximately
the same (12%). In the training set, 39 femurs were frac-
tured, and in the testing set, 13 were fractured.

Six different classifiers were trained: neck-shaft angle
with thresholding, Gabor texture with Bayesian classi-
fier and SVM, intensity gradient direction with Bayesian
classifier and SVM, and Markov Random Field texture
with SVM. After training, they were applied on the test-
ing samples and three performance measures were com-
puted:

• fracture detection rate:
the number of correctly detected fractured samples
over the number of fractured samples,

• false alarm rate:
the number of wrongly classified healthy samples
over the number of healthy samples,

• classification accuracy:
the number of correctly classified samples over the
total number of samples.

Table 2 shows that individual classifiers have rather
low fracture detection rate, particularly IGD with
Bayesian classifier and MRF with SVM. However, each
of them can detect some fractures that are missed by the
other classifiers. So, by combining the classifiers, both
the fracture detection rate and classification accuracy can
be improved significantly. We have experimented with
many different combinations of classifiers and find the
following combinations to yield good performance (Ta-
ble 2):

• 1 of 5:
A femur is classified as fractured if any one of the
five classifiers, except MRF with SVM, classifies it
as fractured.

• 1 of 6:
A femur is classified as fractured if any one of the
six classifiers classifies it as fractured.

• 2 of 6:
A femur is classified as fractured if any two of the
six classifiers classify it as fractured.

• 2 of 4:
A femur is classified as fractured if any two of
the following four classifiers classify it as frac-
tured: neck-shaft angle method, Gabor texture with
Bayesian classifier, Gabor texture with SVM, and
intensity gradient direction with SVM.

The 1-of-5 method has the highest fracture detection
rate of 100%, which means every fracture can be detected

Fig. 6: Subtle fractures at femoral neck (in white ellipse).

Fig. 7: Sample radius fractures near the wrist.

by at least one of the classifiers. These detected frac-
tures include very subtle fractures (Fig. 6). The test re-
sults show that these classifiers can indeed complement
each other. The 1-of-6 method also has a fracture detec-
tion rate of 100% but a slightly higher false alarm rate of
11.4%, resulting in a slightly lower overall classification
accuracy of 88.9%. This is due to the lower classifica-
tion accuracy of MRF with SVM compared to most of
the other methods. The 2-of-6 method has the best overall
performance of high fracture detection rate (92.2%), low
false alarm rate (1.0%), and high classification accuracy
(98.2%). The 2-of-4 method has no false alarm at all, at
the expense of lower fracture detection rate (76.9%) and
slightly lower classification accuracy (97.2%)

Radius Fracture Detection

A preliminary test on detecting fractures of the radius
near the wrist was also performed using MRF texture
model together with SVM classifier. 145 wrist images
were obtained from the same local public hospital, and
were divided randomly into 71 training and 74 testing im-
ages. In the training set, 21 radius bones were fractured
whereas 23 were fractured in the testing set. Figure 7
shows examples of radius fractures.

Table 3 shows the performance of the classifier on
the testing samples. Interestingly, MRF with SVM per-
formed quite well in detecting radius fractures although it
did not perform as well in detecting femur fractures. The
reason could be that the fractures of the radius near the
wrist are visually more obvious than those at the femoral
neck, which can be very subtle (e.g., Fig. 6). So, we ex-
pect other feature-classifier combinations to be able to
complement MRF with SVM for detecting radius frac-
tures as well.



Table 2: Comparison of performance on femur fracture detection. NSA: neck-shaft angle method, IGD: intensity gradient
direction, MRF: Markov Random Field.

Gabor IGD MRF Combined
NSA Bayes SVM Bayes SVM SVM 1 of 5 1 of 6 2 of 6 2 of 4

fracture detection rate 61.5% 53.9% 69.2% 38.5% 53.9% 14.3% 100% 100% 92.2% 76.9%
false alarm rate 1.9% 0.0% 2.9% 4.8% 1.0% 1.8% 10.5% 11.4% 1.0% 0.0%

classification accuracy 93.5% 94.4% 93.5% 88.0% 93.5% 89.5% 89.8% 88.9% 98.2% 97.2%

Table 3: Test results on radius fracture detection.

left right overall
fracture detection rate 80.0% 84.6% 82.6%

false alarm rate 15.2% 19.5% 17.6%
classification accuracy 78.8% 75.6% 77.0%

CONCLUSION

This paper presented our research work on the detection
of bone fractures in x-ray images. A suite of methods that
combine different features and classification techniques
have been developed and tested on detecting femur frac-
tures. Although the fracture detection rate of individual
classifier is not very high, they can complement each
other in fracture detection. As a result, by combining
the individual classifiers, both fracture detection rate and
classification accuracy are improved significantly. Pre-
liminary test results are also reported on the detection of
radius fractures near the wrist, with encouraging results.
We expect the combined approach to be applicable and
useful for improving the fracture detection rate and clas-
sification accuracy of radius fractures as well.

In extracting the features for classification, adaptive
sampling is used, which can adapt to the variation of size
over different images. Another advantage of this adap-
tive sampling method is that it requires the extraction of
only approximate bone contours. Therefore, it can also
tolerate slight variation of shape over different patients,
and does not require very accurate extraction of the bone
contours.

Our continuing research objective is to study how
strongly the presence of growth plates of the radius bone
(Fig. 8) affects fracture detection and classification per-
formance. Growth plates are a feature of the natural
growing process of the radius, which should not be clas-
sified as fractures. Nevertheless, in some cases, growth
plates can be presence together with fractures of the ra-
dius further away from the wrist (Fig. 9). These types of
fractures are, however, easy to detect especially from the
x-ray images of the side view of the wrist.

Our next target is to develop a prototype system for
field test in the hospital. Although our laboratory tests
indicate that the combined approach can detect all the
fractures in the test set with only 10% false alarm rate,
it will be interesting to see how well the system performs
in field test.

Fig. 8: Healthy radius with growth plate.

Fig. 9: Fractured radius with growth plate.
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