
Feature Combination and Relevance Feedback for 3D Model Retrieval

Indriyati Atmosukarto, Wee Kheng Leow, Zhiyong Huang
Dept. of Computer Science, National University of Singapore

3 Science Drive 2, Singapore 117543
indri, leowwk, huangzy@comp.nus.edu.sg

Abstract

Retrieval of 3D models have attracted much research
interest, and many types of shape features have been pro-
posed. In this paper, we describe a novel approach of com-
bining the feature types for 3D model retrieval and rele-
vance feedback processing.Our approach performs query
processing using pre-computed pairwise distances between
objects measured according to various feature types. Exper-
imental tests show that this approach performs better than
retrieval by individual feature type.

1. Introduction
Retrieval of 3D models have attracted much research in-

terest. Many shape features have been proposed for match-
ing 3D objects [1, 5, 6, 7, 11, 13, 14, 18]. Different features
are good for retrieving different objects under different con-
texts, and no one feature performs well under all situations.
A natural approach to improve retrieval performance is to
combine various feature types. This paper will show that
feature combination for 3D model retrieval is non-trivial.

This paper introduces a novel approach of combining
various feature types for 3D model retrieval and relevance
feedback processing. It distinguishes itself from existing
methods in the following way:� Unlike most traditional image or video retrieval meth-

ods, a query is defined in terms of a set of at least one
object instead of some shape features.� Concatenating the values of various feature types into
a long feature vector or computing the weighted sum
of the distances measured by various feature types are
not appropriate for 3D model retrieval. Our query pro-
cessing is based on pairwise rankings of the objects,
which are monotonically related to the pairwise dis-
tances.� Shape features that are individually effective for ob-
ject retrieval have very high dimensionality and oc-
cupy large amounts of storage space. Dimensionality
reduction is not appropriate because it may corrupt the

spatial information captured in the features. By com-
puting with pairwise rankings of objects instead of fea-
ture vectors, we avoid explicit computation in high-
dimensional feature spaces.� Storing pairwise distances (or rankings) between the
objects actually uses less space than storing various
features of the objects (section 6). In this way, query
processing becomes more efficient because there is no
need to compute the distances between objects during
query processing.� Unlike existing methods, the contributions of known
relevant and irrelevant objects are not combined using
weighted sum ,instead, our method ensures that known
relevant objects always rank at the top and known ir-
relevant objects always rank at the bottom.� The weights of various feature types are computed by
approximating the probability that the feature type is
effective in retrieving relevant objects.

Extensive tests show that this approach can retrieve many
relevant objects in just a small number of relevance feed-
back iterations, similar to the method proposed by Chang
et al. for image retrieval [3, 15]. Furthermore, it has a bet-
ter performance than retrieval by individual feature type.

2. Related Work
Existing methods for 3D model retrieval extract features

from the 3D objects and represent the objects in one of four
main schemes: (1) histograms, (2) 2D maps, (3) 3D grids,
and (4) abstract representations.

Abstract representations encode objects as the coeffi-
cients of specialized functions or transforms of the objects’
points. Examples include parabolic and trigonometric func-
tions [7], Fourier transform [18], spherical harmonics [5],
and rotation invariant spherical harmonics [6].

Most works on relevance feedback have been done for
content-based image retrieval. The methods of Rui et al.
[12], Elad et al. [4], and Nakazato et al. [10] all computed
variations of the quadratic-form distance measure of fea-
tures. The weights were updated according to the inverse
of the variance of each feature among the query examples.



In particular, [4] used distance thresholds to create a mar-
gin between relevant and irrelevant objects, and the weights
were adapted to bring the relevant objects closer and to push
the irrelevant objects further. [10] allowed the user to indi-
cate multiple groups of positive and negative image exam-
ples. It then clustered each positive classes while scattering
the negative examples away from the positive classes.

Muller et al. [9] focused on negative example feedback in
image retrieval. They showed that too much negative feed-
back can destroy a query. Hence, positive and negative com-
ponents were weighted differently.

The method of Chang et al. [3, 15] chose the most infor-
mative instances for learning by employing MEGA (Max-
imizing Expected Generalization Algorithm) and SVMAc-
tive algorithms. In addition, dimensionality reduction was
employed to reduce the number of low-level features.

Yin et al. [17] proposed a reinforcement learning
model for integrating existing relevance feedback tech-
niques. They showed that the integration of multiple
relevance feedback approaches gives better retrieval per-
formance than single relevance feedback technique alone,
and that the sharing of relevance knowledge between mul-
tiple query sessions significantly improves retrieval perfor-
mance.

All the above query and feedback processing methods
work in the feature space, which has a high dimensionality.
In contrast, our method does not perform query and feed-
back processing explicitly in the high-dimensional feature
space. Another shortcoming of most of the above methods
is that the positive and negative components of the rele-
vant and irrelevant objects are combined using variations
of weighted sum of features. Our test results show that this
method is not reliable because weighting of the feature di-
mensions does not make sense for the features that we have
explored (section 4).

3. Object Matching Criteria

Consider two objectsO andO0 represented by point-setsfpig andfp0jg, respectively, with possibly different num-
ber of points. One criterion of 3D shape similarity can be
expressed succinctly by the well-known principle ofrigid
object registration [2]. The registration of these objects in-
volves a rigid-body transformationT of the 3D points of ob-
jectO to the transformed points. The transformationT in-
cludes scaling, rotation, and translation. Since the two ob-
jects can have different number of 3D points sampled at dif-
ferent locations, the correspondence or mappingf from the
transformed points to the 3D points of objectO0 must be de-
termined. Then, the error of registrationE(O;O0jT; f) un-
derT andf can be defined asE(O;O0jT; f) = 1jOjXi kf(T (pi))� T (pi)k2 : (1)

The best registration between the objects is obtained by
finding the transformationT and mappingf that minimize
the errorE(O;O0jT; f). The minimum registration error
can then be regarded as thedissimilarity between the ob-
jects. This criterion applies to the matching of the 3D shapes
of rigid objects, disregarding the difference in scale, posi-
tion, and orientation.

The standard method of normalizing the difference in po-
sition and scale is to move the objects’ centroids to the ori-
gin of the 3D coordinate system, and scale the objects by
the mean of the distances of the points from the origin or
the square-root of the squared distances.

4. 3D Object Representation Schemes
There are two aspects in the representation of objects by

shape features: (1) the shape feature and (2) the method of
representing objects using shape feature. This section will
first discuss three common methods of representing objects
for 3D model retrieval. The issues of shape features will be
discussed in section 5.

4.1. 3D Grids

3D-grid representation of an object is obtained by quan-
tizing the minimum bounding cube of a 3D object into
rectangular cellsC(x; y; z) at fixed, quantized locations(x; y; z). Feature valueG(x; y; z) of cell C(x; y; z) is ob-
tained by averaging the feature valuesfi of 3D pointspi
within the cell:G(x; y; z) = 1jC(x; y; z)j Xfi2C(x;y;x)fi : (2)

Given two objectsO andO0 with grid cell valuesG(x; y; z)
andG0(x; y; z), their difference can be computed as the nor-
malized (squared) Euclidean distance which has a bounded
range of values:d(O;O0) = Xx;y;z(G(x; y; z)�G0(x; y; z))2 (3)

whereG andG0 are the values ofG andG0, respectively,
normalized over the whole 3D-grid representation.

4.2. 2D Spherical Maps

The 3D points of a 3D objects can also be represented
in spherical coordinates(�; �; �). Then, the angles� and�
are quantized into discrete intervals, thus dividing the ob-
ject’s bounding sphere into pyramidal sectionsS(�; �) at
quantized angles(�; �). Feature valueM(�; �) in sectionS(�; �) can be derived as:M(�; �) = 1jS(�; �)j Xfi2S(�;�)fi (4)

wherefi is the feature value of pointpi in sectionS(�; �).



One easy way to handle rotation in� and� angles is to
perform Fourier Transform (FT) of the 2D map. The differ-
ence between objectsO andO0 can be computed as:d(O;O0) =X�;� (M(�; �)�M0(�; �))2 (5)

whereM andM0 are the normalized values of the magni-
tudes ofM andM0.
4.3. Histograms

The object’s feature values can also be discretized into
intervalsIj to derive the frequency or probability distribu-
tion of the feature values:H(j) = 1jOj Xfi2Ij 1 : (6)

In general, histogram representations are invariant to rota-
tions of objects. However, they loss all spatial information
about the objects’ features.

5. 3D Shape Features

This section describes some 3D shape features that are
useful for object retrieval. LetN (pi) denote the set that
contains the 3D pointpi and its connected neighbors in the
mesh that forms the surface of an object.

1. Distance of the points from the object’s centroidkpik.
2. Local elongation:

Perform PCA on the points inN (pi) to obtain the
eigenvalues�i, i = 1; 2; 3, in decreasing order. The ra-
tio �2=�1 is inversely related to the local elongation atpi.

3. Bumpiness:
The ratio�3=�1 gives a measure of the bumpiness atpi.

4. Total curvature [8]:
Denote the connected neighbors ofpi by q1; : : : ;qm
in sequence, withqm+1 = q1. Also denote by!j the
angle subtended by the edge connectingqj andpi and
the edge connectingqj+1 andpi. Then, the total cur-
vatureT (pi) can be approximated by the angle deficit:T (pi) = 2� �Xj !j : (7)

5. Gaussian curvature [8]:
Let Aj denote the area of the triangle made by pointspi, qj , andqj+1. Then, the Gaussian curvatureK(pi)
can be approximated by:K(pi) = T (pi)=Xj Aj : (8)

6. Random distance [11]:
The distance between two randomly selected points on
the object’s surface.

7. Random angle [11]:
The angle between three randomly selected points on
the object’s surface.

8. Random area [11]:
The square-root of the area of the triangle formed by
three randomly selected points on the object’s surface.

All the features can be captured in 3D grids, 2D maps,
and histograms to represent objects in different forms. Var-
ious combinations of object representations and feature
types have been used in existing methods� [1] used histograms of number of points; and [11] used

histograms of random distance, angle, and area.� [6] used 2D maps of mean, standard deviation, and
maximum distance of points to the object’s centroid,
surface normal, and surface area; and [18] used 2D
maps of number of surfaces and mean distance of
points from bounding sphere.� [13] used 3D grids of point density; [14] used 3D
grids of Gaussian curvature, normal variation, and mid
point; and [6] used 3D grids of area.

6. Retrieval by Feature Combination
We have discussed eight 3D shape features, each of

which can be captured in the three object representation
schemes. In total, there are 24 different combinations. Our
preliminary tests show that not all combinations work well.
Out of the 24 combinations, 13 yield average or good re-
trieval performance:� Histograms of random distance (RDH), random angle

(RAH), random area (RRH), and Gaussian curvature
(KH). Each histogram has 200 bins.� 2D spherical maps of distance (DM), elongation (EM),
bumpiness (BM), total curvature (TM), Gaussian cur-
vature (KM), and random distance (RDM). Each map
contains64�64 entries.� 3D grids of elongation (EG), bumpiness (BG), and
Gaussian curvature (KG). Each 3D grid contains25�25�25 entries.

The memory space required to store these 13 feature rep-
resentations of an object is4�200+6�64�64+3�25�25 =72:3�103 units. The total memory space for storing the fea-
ture representations ofN objects would beN�72:3�103
units. Suppose we pre-compute the pairwise distances be-
tween two objects measured according to each of the fea-
ture representations, then the total memory space required
is13N2. The break-even point is then5:5�103. That is, stor-
ing the pairwise distances of up to 5500 objects actually re-
quires less memory space than storing the 13 feature repre-



sentations of the objects. Query processing time is also sig-
nificantly reduced because there is no need to compute the
distances and to fiddle with high-dimensional feature spaces
during retrieval.

A simple approach for combining the distances mea-
sured by different feature representations is to compute the
weighted sum of the distances. However, this is not a good
approach. Our test results show that combining the feature
representations by any form of weighted sum of distances
do not yield good retrieval performance.

Our method of handling the above problem is to com-
pute the integer rankrk(OijOj) of objectOi with respect
to objectOj in increasing order of the distancedk(Oi; Oj)
between the objects measured according to representationk. The rank of an object with respect to itself is defined as
0: rk(OijOi) = 0. The largest rank is equal to the num-
ber N of objects in the database. In this way, the ranksrk measured by different feature representations can be di-
rectly compared. For each objectOj , the ranksrk(OijOj)
of other objectsOi with respect toOj are stored.

A queryQ is defined in terms of a set of at least one rel-
evant objectR = fRjg and a set of zero or more irrelevant
objectI = fIjg specified by the user. The query process-
ing task is to determine the similarity between an objectOi
in the database and the queryQ.

First, let us consider the case in which no irrelevant ob-
ject is specified, i.e.,I = ;. In this case, the similaritysik
betweenOi and the queryQ measured according to feature
representationk is defined assik = 1� 1N minj rk(OijRj) : (9)

Equation 9 is a reasonable similarity measure. In particular,
the similarity between any relevant objectRi and the queryQ is always equal to 1. So, relevant objects in the query
set are always retrieved and placed at the top of the list of
retrieved objects. Furthermore, an object that is very simi-
lar to any relevant object will have a small rank and, thus,
a large similarity, and is also retrieved. This allows the sys-
tem to retrieve other relevant objects in the database that are
not in the current query set. So, the number of relevant ob-
jects retrieved is guaranteed to increase monotonically with
the number of feedback iterations.

The similaritysik with respect to each representationk
can be combined to obtained an overall similaritysi:si = 1CXk wksik ; C =Xk wk (10)

wherewk is the weight of feature representationk.
The weightwk should reflect the probability that repre-

sentationk is effective in retrieving objects that match the
query set. The probability can be estimated as the ratio of
the number of known relevant objects over the number of

objects within the hypersphere in the feature space spanned
by the known relevant objects. The larger the ratio, the more
effective is a representation in retrieving the desired objects.

The probability is estimated as follows. For each rele-
vant objectRj 2 Q, the furthest known relevant object has
the largest rank with respect toRj measured according to
representationk, which is equal to the numbernjk of ob-
jects whose distances are smaller than or equal to the fur-
thest relevant object:njk = maxi rk(RijRj) : (11)

So, the ratio with respect to each relevant objectOj in fea-
ture spacek is jRj=njk. Then, the probability or weightwk
can be estimated as the mean ratio:wk =Xj jRj=njk : (12)

Consider the case in which the query set contains one
or more irrelevant object, i.e.,I 6= ;. Our method deter-
mines the possibly irrelevant objects based on the known ir-
relevant objectsIj in the query set. These objects are near
to the known irrelevant objects, which are accumulated over
successive feedback iterations. The radius�jk of the hyper-
sphere that contains possibly irrelevant objects can be esti-
mated as a ratio� of the distance between a known irrele-
vant objectIj and its nearest known relevant object:�jk = �mini rk(RijIj) : (13)

Then, an objectOi is possibly irrelevant if it is contained in
the hypersphere of its nearest known irrelevant object. The
set�k that contains the possibly irrelevant objects is called
theexclusion set:�k = fOi j rk(OijIj) � �jk; j = argmint rk(OijIt)g :

(14)
The exclusion sets are defined as empty sets if no irrelevant
object is specified by the user. Now, we only have to modify
Eq. 9 to take into account the exclusion sets:sik = 8<: 0 if Oi 2 �k1� 1N minj rk(OijRj) otherwise.

(15)

Equation 10, together with Eq. 15, guarantees that a
known relevant objectRj always has a similaritysj of 1 and
a known irrelevant objectIj always has a similaritysj of 0.
Furthermore, an object that is regarded as near to a known
irrelevant object by many feature representation types will
havesik = 0 for manyk. So, they will also have close to 0
similarity. By moving these possibly irrelevant objects away
from the known relevant objects, the possibly relevant ob-
jects in the database are moved closer to the known rele-
vant objects. Therefore, provided the ratio� is not so large



that relevant objects are included in�k, this approach (us-
ing Eq. 15) can always retrieve more relevant objects than
the one with empty irrelevant setI (using Eq. 9).

7. Experiments and Discussions

7.1. Test Database

The database used to performed the tests was created by
merging three existing sets of objects. The first dataset con-
tained 52 objects from 34 categories. Among these 52 ob-
jects, 6 of them were manually articulated with the help of
3D Studio Max to produce a total of 110 articulated objects.

The second set, theUtrecht Database, contained 512 air-
crafts in six categories: delta jets, conventional airplanes,
multifuselages, biplanes, helicopters, and other aircrafts.
The third set is a subset of thePrinceton Database. It
contained 1236 objects in 52 categories. In total, our test
database contained 1910 objects.

The scale, position, and orientation of the objects were
normalized using the method described in section 3. Various
features were extracted from the objects, which were then
represented in histograms, 2D maps, and 3D grids. Each
object was represented using 13 different feature represen-
tations. Pairwise distances between the objects were com-
puted. Then, the ranks of the objects with respect to each
other were computed and stored in the database.

7.2. Test Procedure and Results

The tests were conducted as follows. First, a user se-
lected one relevant object to form the query set. Next, the
system retrieved and displayed the top 48 objects, and the
user selected the relevant objects. Then, this retrieval and
feedback process was repeated until no new relevant ob-
ject was retrieved. For retrieval by single features, no irrel-
evant object were selected. These tests were used to obtain
the baseline results. For the feature combination method,
two types of tests were performed: with and without irrele-
vant objects. In the tests where irrelevant objects were used,
all objects displayed on the GUI that were not marked as
relevant by the user were regarded as irrelevant.

The type of selected relevant objects reflects the user’s
query context (Table 1). For example, retrieving humans
in a fixed posture (fHu) requires rigid object matching cri-
terion, whereas retrieving humans in any posture (Hu) re-
quires articulated object matching criterion. Other rigidob-
jects include head (He), guitar (Gu), computer monitor
(Mo), rifle (Ri), and pistol (Pi). Other articulated objectsin-
clude hand (Ha), ant (An), eagle (Ea), and shark (Sh).

The total number of relevant objects in the database for
each query is shown in Table 1. Some queries have more
than 48 relevant objects in the database. In these cases, the
total number of relevant objects are taken as 48 since only
48 objects are displayed in the GUI.

The above retrieval test was performed using each of
the 13 feature representations as well as the feature com-
bination method. Nine versions of the feature combina-
tion method were tested: I;: without irrelevant objects, and
In.nn: with irrelevant objects and� = n.nn.

Table 1 shows the percentage of relevant objects in the
database retrieved at the last feedback iteration. The indi-
vidual feature representations are effective in some but not
all queries. The 3D grids capture the most complete spatial
information. So, they are generally better for retrieving rigid
objects. The histograms and 2D maps can match articulated
versions of objects and are, thus, better for retrieving artic-
ulated objects. The feature combination method without ir-
relevant objects I; yields better overall performance than
individual feature representations. Retrieval performance is
improved significantly with irrelevant objects. In particular,
the one with� = 0:06 has the best overall retrieval perfor-
mance. When� is too large, the retrieval performance de-
creases for some of the queries.

8. Conclusion

This paper presented a novel method of combining var-
ious feature representations for 3D model retrieval and rel-
evance feedback processing. It performs query processing
based on known relevant and irrelevant objects in the query,
and computes the similarity of an object with the query
using pre-computed rankings of the objects without com-
puting in high-dimensional feature spaces. Storing the pre-
computed rankings uses less space than storing the feature
representations of the objects. Query processing is very ef-
ficient because there is no need to compute the distances of
the objects during query processing. Extensive test results
show that the feature combination method significantly im-
proves the retrieval performance of individual feature types.
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