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Abstract. This paper proposes a hybrid approach for modeling torsion of blood
vessels that undergo deformation and joining. The proposedmodel takes 3D mesh
of the blood vessel as input. It first fits a generalized cylinder to extract the blood
vessel’s medial axis. Then, it uses rotation minimizing frame as a reference to
model and measure the torsion of blood vessel after deformation. In general, the
proposed approach can incorporate any kind of deformation algorithms. In our ex-
periments, differential geometry method is used as an example. The test results
show that our algorithm can correctly and effectively evaluate the amount of tor-
sion caused by blood vessel deformation. In addition, it canalso determine the
configuration of the blood vessel with minimum torsion.
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Introduction

Operations on 3D tubular models such as deformation, cutting, and joining are essential
for the simulation of surgeries on blood vessels. Traditional approach models blood ves-
sels using parametric models such as splines and generalized cylinders. These paramet-
ric models are easy to manipulate. But they usually lack surface details and assume no
change in cross-sectional shape during deformation. Theseconditions are invalid in op-
erations on the great arteries, where cutting and joining can change their cross-sectional
shapes. Parametric models are thus inappropriate for theseapplications.

An alternative approach is to model blood vessels as 3D meshes. When a blood ves-
sel is operated on, it can undergo stretching, bending, and torsion. In surgical planning,
these deformations should be modeled and measured to assistthe surgeon in evaluating
various surgical options. Stretching and bending are easy to model in 3D mesh, whereas
modeling of torsion is nontrivial.

To overcome the shortcomings of these existing methods, this paper proposes a novel
approach for modeling blood vessels by integrating 3D mesh,generalized cylinder, and
Cosserat rod theory. This hybrid approach allows the model to capture surface details and
to vary cross-sectional shape during deformation. Moreover, torsion of the model can be
computed in a physically correct manner using Cosserat rod theory. Then, the model’s
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Figure 1. Material torsion angleα.

configuration that minimizes torsion can also be determined. This approach is useful for
surgical simulation of blood vessel joining that requires minimum torsion.

1. Modeling Material Torsion

The Cosserat rod model is a well-known approach for modelingtubular objects whose
length is much greater than the diameter [1]. In this approach, the medial axis of a tubu-
lar object is modeled by a parameterized curvem(s), 0≤s≤1. Attached to each point
on the medial axis is thedirector frame {T(s),U(s),V(s)} formed by three orthonor-
mal basis vectors.T(s) is the normal of the tubular object’s cross-sectional planeXs

at s. Assuming the object does not shear,T(s) is tangential to the medial axis, i.e.,
T(s) = m′(s)/‖m′(s)‖. U(s) is in Xs and points towards a material point on the sur-
face of the object.V(s) = T(s) × U(s) points to another material point. The directors
must be differentiable overs such that the material points represented byU andV form
continuous material lines.

Two kinds of torsions can be computed on a tubular object thatundergoes defor-
mation [2]. TheFrenet torsion measures the twisting of the space curve that represents
the medial axis. Thematerial torsion measures the rotation of the material line about
the medial axis, which is the focus of this paper. To measure the rotation angle of the
material line, a reference line on the object’s surface mustbe defined. This reference line
has the same shape as the medial axis.

One way to define the reference line is to use Frenet frame of the medial axis, whose
three axis vectors are the tangent, principle normal and bi-normal ats. However, Frenet
scheme is ill-defined at an inflection point, where the curvature and normal change sign.
This results in the undesirable flipping of the directions ofthe Frenet frames.

Another way to define the reference line is to use rotation minimizing frame (RMF)
of the medial axis [3,4]. An RMF is a moving frame along the medial axis that minimizes
the amount of rotation of the frame. It does not have the undesirable property of the
Frenet frame. So, in this paper, we apply RMF to define the reference line.

It is difficult to compute the exact RMF for a general spline curve [3]. A projection
method [4] and a rotation method [5] can be used to approximate discrete RMF. These
methods have second-order global approximation error [6].Wang et al. [3] presented a
simple and efficient algorithm to approximate RMF, namely double reflection method.
Their method has fourth-order global approximation error,and is thus more accurate than
the first two. Thus, we adopt the double reflection method to compute RMF.

Without loss of generality, we define the initial configuration of the blood vessel such
that the directors at each point are aligned to the corresponding RMF. After deformation,
the directors may be rotated about the medial axis. This rotation angleα(s) is the angle
of rotation between the directors and the medial axis’s RMF (Fig. 1). Then, thematerial
torsion is the first derivative ofα(s), i.e.,α′(s).



2. The Proposed Model

To model a blood vessel’s material torsion due to deformation, we need to first define
its medial axis (Section 2.1). The medial axis is extracted from the 3D mesh by fitting a
generalized cylinder (GC) to the mesh. After fitting, correspondence between mesh ver-
tices and the GC can be established. Each mesh vertex is associated with a position on
the medial axis and an angle representing its cross-sectional orientation (Section 2.2). A
differential geometry method [7] is applied to deform the 3Dmesh model. For any de-
formed configuration, the correspondence between the mesh vertices and the GC is used
to recover the deformed medial axis, and the material torsion can be computed. Based on
the computed torsion energy, an optimization algorithm is then applied to determine the
model’s configuration that minimizes torsion (Section 2.3).

2.1. Medial Axis

Let pi denote a point on the surface of the 3D tubular object, andm(si) denote the
projection ofpi on the medial axis. Then,m(s) would be the centroid of all the surface
points that project to it. In the case of a discrete 3D mesh model of the tubular object,
the pointspi are taken as the mesh vertices, andm(s) is defined in terms of the mesh
verticespi whose projections are close to it:

m(s) =
∑

i

wi(s)pi /
∑

i

wi(s). (1)

The weightswi(s) are inversely related to the distance betweenm(s) andm(si).

2.2. Fitting Generalized Cylinder

The algorithm for fitting a generalized cylinder to the 3D mesh is adapted from [8]. It
consists of two steps: (1) fitting the medial axis and (2) fitting the radius function. The
costCm(m) of fitting the medial axis is derived from Eq. (1):
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The second term is a regularization term andλ is the regularization weight. Differentiat-
ing the cost function yields the gradient decent equation for medial axis fitting:

∆m = −
∑

i

wi(s)(m(s) − pi)

(

∑

i

wi(s)

)

−1

− λ∆sm(s) (3)

where∆sm(s) is the Laplacian ofm(s).
The cost functionCr(r) for fitting the radius functionr(s) is given by:
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(r′(s))2ds (4)



wherepi are the mesh vertices whose projections to the medial axis are close tom(s),
andNs the number of suchpi. Differentiating the cost function yields the gradient de-
scent equation for radius fitting:

∆r = −r(s) +
1

Ns

∑

i

‖m(s) − pi‖ − µ r′′(s). (5)

After fitting the generalized cylinder to the mesh model, theRMFs can be computed
[3], which are regarded as the initial director frames{T(s),U(s),V(s)}. The mesh
vertices can then be parameterized as(s, θ). For mesh vertexpi that projects to the point
m(si) on the medial axis, its parameters = si. Its parameterθ is given by the rotation
angle of the vectorpi − m(s) aboutT(s) measured from theU(s) axis.

2.3. Measurement of Deformation

Deformation of the 3D mesh of tubular object can be achieved using a variety of algo-
rithms such as free-form deformation (FFD), differential geometry (DG) method, mass-
spring model, and Finite Element Method. The latter two methods model forces acting
on the object which are opposed by internal forces. On the other hand, FFD and DG deal
with geometric properties and do not model forces. In particular, geometric constraints
can be easily incorporated into DG formulation. Therefore,a DG method called Lapla-
cian deformation [7] is used in our application to perform mesh deformation. In joining
two blood vessel models, this method requires the user to specify a pair of corresponding
anchor points on the two models. Inappropriate anchor points can lead to torsion of the
blood vessels. In contrast, our torsion modeling techniquecan automatically deduce the
configuration that minimizes torsion without requiring user input of anchor points.

In our formulation, torsion due to deformation is computed as follows. For the 3D
mesh of the tubular object before deformation, the directorframes{T,U,V} are the
same as the RMF. So, the rotation anglesα(s) are equal to 0. That is, the material torsions
α′(s) before deformation are 0, which are the expected values.

After deformation, the medial axis of the deformed mesh is recovered by computing
them(s) that satisfy the following equation:

∑

i

wi(s)[m(s) − pi]

(

∑

i

wi(s)

)

−1

+ λ∆sm(s) = 0, (6)

which is derived by setting∆m in Eq. (3) to0.
With the deformed medial axis, the RMF along the medial axis can also be recovered

using the double reflection method [3]. Now, the mesh vertexpi has a new parameteriza-
tion (si, θi) according to the medial axis and RMF of the deformed mesh. Letus denote
the original parameterization ofpi before deformation as(s0

i , θ
0

i ). Then, the angleα(s)
after deformation can be computed as:

α(s) =
1

Ns

∑

i

(θi − θ0

i ) (7)

wherei refers to the indices of points whose projections to the medial axis,m0(s0

i ) be-
fore deformation andm(si) after deformation, are close tom0(s) andm(s) respectively,
andNs is the number of such pointspi. Then, the torsion energyEτ can be computed:



(a) (b) (c)

(d) (e) (f)

Figure 2. Test case 1: Joining of two relatively straight blood vesselmodels. The left blood vessel is shaded
in color to visualize torsion. (a, c) Large amount of torsion. (b) Initial configuration. (d, f) Medium torsion. (e)
Minimum torsion configuration found by the algorithm.

Eτ =

∫ 1

0

(α′(s))2ds. (8)

Given a deformed 3D mesh, the amount of deformation in terms of torsion can be
measured according to the equations described above. So, a straightforward optimization
algorithm can be devised to determine the configuration of 3Dmesh that satisfies the
user’s inputs and incurs the smallest amount of torsion.

3. Experimental Results

Two test cases of blood vessel joining were performed to evaluate the algorithm’s per-
formance. In the first case, two relatively straight blood vessels were joined (Fig. 2). The
right end of the left blood vessel was free to rotate before joining. The algorithm cor-
rectly computed the amount of torsion and determined the deformed configuration with
minimum torsion (Fig. 2(e)).

The second test case joined the aorta to its root (Fig. 3). Theaorta model was highly
curved at the aortic arch. The descending aorta was fixed while the ascending aorta and
the aortic arch were free to move. The end of the ascending aorta was moved to join with
the aortic root. The algorithm correctly determined the deformed configuration with the
smallest amount of torsion (Fig. 3(e)).

For illustration, Figure 4 plots the torsion energy at various amount of rotation of the
free end with respect to the blood vessels initial configuration. It shows that the torsion
energy behaves as a quadratic function of the rotation angle. The configuration with
minimum torsion is labeled 0, while the others are labeled with + or − sign according
to the rotation angle.

4. Conclusion

This paper presented a hybrid approach for modeling torsionof blood vessels that un-
dergo deformation and joining. Test results show that our algorithm can correctly model
and measure the amount of torsion due to blood vessel deformation. It also determines
the configuration of the blood vessels with minimum torsion.In this way, two blood ves-
sels can be joined with minimum torsion without requiring the user to specify accurate
corresponding anchor points, thus facilitating surgical planning and simulation.
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Figure 3. Test case 2: Joining of aorta to aortic root. Aorta is shaded in color to visualize torsion. (a, c) Large
amount of torsion. (b) Initial configuration. (d, f) Medium torsion. (e) Minimum torsion configuration found
by the algorithm.
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Figure 4. Torsion energy curves. (a) Torsion energy of test case 1. (b)Torsion energy of test case 2.
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