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Abstract. This paper proposes a hybrid approach for modeling torsfdamd
vessels that undergo deformation and joining. The proposadkl takes 3D mesh
of the blood vessel as input. It first fits a generalized c@mid extract the blood
vessel's medial axis. Then, it uses rotation minimizingrfeaas a reference to
model and measure the torsion of blood vessel after defaman general, the
proposed approach can incorporate any kind of deformatgorithms. In our ex-
periments, differential geometry method is used as an elarie test results
show that our algorithm can correctly and effectively eatduthe amount of tor-
sion caused by blood vessel deformation. In addition, it @0 determine the
configuration of the blood vessel with minimum torsion.
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Introduction

Operations on 3D tubular models such as deformation, gytiind joining are essential
for the simulation of surgeries on blood vessels. Trad#&l@pproach models blood ves-
sels using parametric models such as splines and generaliieders. These paramet-
ric models are easy to manipulate. But they usually lackaserfietails and assume no
change in cross-sectional shape during deformation. T¢msditions are invalid in op-
erations on the great arteries, where cutting and joinimgetenge their cross-sectional
shapes. Parametric models are thus inappropriate for épgdieations.

An alternative approach is to model blood vessels as 3D rsegtiieen a blood ves-
sel is operated on, it can undergo stretching, bending,@swn. In surgical planning,
these deformations should be modeled and measured totagsgirgeon in evaluating
various surgical options. Stretching and bending are easydel in 3D mesh, whereas
modeling of torsion is nontrivial.

To overcome the shortcomings of these existing methodsptper proposes a novel
approach for modeling blood vessels by integrating 3D mgsheralized cylinder, and
Cosserat rod theory. This hybrid approach allows the mad=spture surface details and
to vary cross-sectional shape during deformation. Moredeesion of the model can be
computed in a physically correct manner using Cosserathredry. Then, the model's
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Figure 1. Material torsion anglev.

configuration that minimizes torsion can also be determifis approach is useful for
surgical simulation of blood vessel joining that requiréaimum torsion.

1. Modeling Material Torsion

The Cosserat rod model is a well-known approach for modelibglar objects whose
length is much greater than the diameter [1]. In this apgrpte medial axis of a tubu-
lar object is modeled by a parameterized cumvés), 0<s<1. Attached to each point
on the medial axis is thdirector frame {T(s), U(s), V(s)} formed by three orthonor-
mal basis vectorsT(s) is the normal of the tubular object’s cross-sectional plahe
at s. Assuming the object does not she@ls) is tangential to the medial axis, i.e.,
T(s) = m’'(s)/||m’(s)]]. U(s) is in X and points towards a material point on the sur-
face of the objectV (s) = T(s) x U(s) points to another material point. The directors
must be differentiable oversuch that the material points representedbgndV form
continuous material lines.

Two kinds of torsions can be computed on a tubular objectuhdergoes defor-
mation [2]. TheFrenet torsion measures the twisting of the space curve that represents
the medial axis. Thenaterial torsion measures the rotation of the material line about
the medial axis, which is the focus of this paper. To measweadtation angle of the
material line, a reference line on the object’s surface meastefined. This reference line
has the same shape as the medial axis.

One way to define the reference line is to use Frenet frameeaghtdial axis, whose
three axis vectors are the tangent, principle normal ambhiral ats. However, Frenet
scheme is ill-defined at an inflection point, where the cumeaaind normal change sign.
This results in the undesirable flipping of the directionshaf Frenet frames.

Another way to define the reference line is to use rotatiorimmzing frame (RMF)
of the medial axis [3,4]. An RMF is a moving frame along the mkalxis that minimizes
the amount of rotation of the frame. It does not have the uralge property of the
Frenet frame. So, in this paper, we apply RMF to define theeate line.

It is difficult to compute the exact RMF for a general splineve[3]. A projection
method [4] and a rotation method [5] can be used to approemiatrete RMF. These
methods have second-order global approximation erroM@hg et al. [3] presented a
simple and efficient algorithm to approximate RMF, namelylale reflection method.
Their method has fourth-order global approximation eanod is thus more accurate than
the first two. Thus, we adopt the double reflection method tomude RMF.

Without loss of generality, we define the initial configuositdf the blood vessel such
that the directors at each point are aligned to the corretipgfRMF. After deformation,
the directors may be rotated about the medial axis. Thigiootanglex(s) is the angle
of rotation between the directors and the medial axis’s RM§.(1). Then, thenaterial
torsion is the first derivative of(s), i.e.,a/(s).



2. The Proposed Model

To model a blood vessel's material torsion due to deformatice need to first define
its medial axis (Section 2.1). The medial axis is extractethfthe 3D mesh by fitting a
generalized cylinder (GC) to the mesh. After fitting, cop@sdence between mesh ver-
tices and the GC can be established. Each mesh vertex iSaesowith a position on
the medial axis and an angle representing its cross-settivientation (Section 2.2). A
differential geometry method [7] is applied to deform the 8iBsh model. For any de-
formed configuration, the correspondence between the negtibas and the GC is used
to recover the deformed medial axis, and the material torsém be computed. Based on
the computed torsion energy, an optimization algorithnméntapplied to determine the
model’s configuration that minimizes torsion (Section 2.3)

2.1. Medial Axis

Let p; denote a point on the surface of the 3D tubular object, ar{d;) denote the
projection ofp; on the medial axis. Themn(s) would be the centroid of all the surface
points that project to it. In the case of a discrete 3D meshahofithe tubular object,
the pointsp; are taken as the mesh vertices, ans) is defined in terms of the mesh
verticesp; whose projections are close to it:

m(s) = Zwi(s)pi/ Zwi(s)- 1)
The weightsw; (s) are inversely related to the distance betwag(s) andm(s;).
2.2. Fitting Generalized Cylinder
The algorithm for fitting a generalized cylinder to the 3D imés adapted from [8]. It

consists of two steps: (1) fitting the medial axis and (2)fitthe radius function. The
costC,, (m) of fitting the medial axis is derived from Eq. (1):

Zwi(s)pi ’
B Zwi(S)

The second term is a regularization term and the regularization weight. Differentiat-
ing the cost function yields the gradient decent equatiomfedial axis fitting:

1 1
C(m) = %/0 m(s) ds + %/0 [Vm(s)||*ds. ()

Am = — Zwi(s)(m(s) - Pi) <Z wi(s)> — AA,m(s) 3)

whereA,m(s) is the Laplacian ofn(s).
The cost functiorC,.(r) for fitting the radius functiom(s) is given by:

cin =3[ [r<s> - X Im(s) i

2

1
ds + g/o (r'(s))%ds (4)




wherep; are the mesh vertices whose projections to the medial agislase tom(s),
and N, the number of suclp;. Differentiating the cost function yields the gradient de-
scent equation for radius fitting:

Ar==r(s) & 3 3 m(s) ~ pill = v (9). ©

After fitting the generalized cylinder to the mesh model,RiMFs can be computed
[3], which are regarded as the initial director fram{¢B(s), U(s), V(s)}. The mesh
vertices can then be parameterizeda#). For mesh verteyp; that projects to the point
m(s;) on the medial axis, its parameter= s;. Its paramete#é is given by the rotation
angle of the vectop; — m(s) aboutT(s) measured from th®(s) axis.

2.3. Measurement of Deformation

Deformation of the 3D mesh of tubular object can be achies#dgua variety of algo-
rithms such as free-form deformation (FFD), differentiebgetry (DG) method, mass-
spring model, and Finite Element Method. The latter two rméthmodel forces acting
on the object which are opposed by internal forces. On therdthnd, FFD and DG deal
with geometric properties and do not model forces. In paldic geometric constraints
can be easily incorporated into DG formulation. Therefar®G method called Lapla-
cian deformation [7] is used in our application to performsimeeformation. In joining
two blood vessel models, this method requires the user wfg@epair of corresponding
anchor points on the two models. Inappropriate anchor paiam lead to torsion of the
blood vessels. In contrast, our torsion modeling techn@greautomatically deduce the
configuration that minimizes torsion without requiring uggut of anchor points.

In our formulation, torsion due to deformation is computsdalows. For the 3D
mesh of the tubular object before deformation, the direframes{T, U, V} are the
same as the RMF. So, the rotation anglés) are equal to 0. That is, the material torsions
o/ (s) before deformation are 0, which are the expected values.

After deformation, the medial axis of the deformed meshdsvered by computing
them(s) that satisfy the following equation:

sz(s)[m(s) - pi <Z wi(s)> +AA;m(s) =0, (6)

which is derived by settindm in Eg. (3) to0.

With the deformed medial axis, the RMF along the medial aaisalso be recovered
using the double reflection method [3]. Now, the mesh vastexas a new parameteriza-
tion (s;, 8;) according to the medial axis and RMF of the deformed meshug efenote
the original parameterization gf; before deformation a&?, 69). Then, the angle(s)
after deformation can be computed as:

a(s) = 5 (6 - 69) )

wherei refers to the indices of points whose projections to the mdetis, m°(s?) be-
fore deformation aneh(s;) after deformation, are close tn®(s) andm(s) respectively,
and N, is the number of such points. Then, the torsion energy, can be computed:
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Figure 2. Test case 1: Joining of two relatively straight blood vessetlels. The left blood vessel is shaded

in color to visualize torsion. (a, ¢) Large amount of torsifi) Initial configuration. (d, f) Medium torsion. (e)
Minimum torsion configuration found by the algorithm.

E, :/0 (a/(s))?ds. (8)

Given a deformed 3D mesh, the amount of deformation in teritgrsion can be
measured according to the equations described above. Baighforward optimization
algorithm can be devised to determine the configuration ol8&h that satisfies the
user’s inputs and incurs the smallest amount of torsion.

3. Experimental Results

Two test cases of blood vessel joining were performed touewalthe algorithm’s per-
formance. In the first case, two relatively straight bloodsgds were joined (Fig. 2). The
right end of the left blood vessel was free to rotate befongijg. The algorithm cor-
rectly computed the amount of torsion and determined therdefd configuration with
minimum torsion (Fig. 2(e)).

The second test case joined the aorta to its root (Fig. 3)abhta model was highly
curved at the aortic arch. The descending aorta was fixee sl ascending aorta and
the aortic arch were free to move. The end of the ascendirig aas moved to join with
the aortic root. The algorithm correctly determined theodefed configuration with the
smallest amount of torsion (Fig. 3(e)).

For illustration, Figure 4 plots the torsion energy at vas@amount of rotation of the
free end with respect to the blood vessels initial configonatt shows that the torsion
energy behaves as a quadratic function of the rotation afidle configuration with
minimum torsion is labeled 0, while the others are labeletth wi or — sign according
to the rotation angle.

4. Conclusion

This paper presented a hybrid approach for modeling torsidriood vessels that un-
dergo deformation and joining. Test results show that aywrdhm can correctly model

and measure the amount of torsion due to blood vessel defiormé also determines

the configuration of the blood vessels with minimum torsiarthis way, two blood ves-

sels can be joined with minimum torsion without requiring tser to specify accurate
corresponding anchor points, thus facilitating surgi¢ahping and simulation.
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Figure 3. Test case 2: Joining of aorta to aortic root. Aorta is shademblor to visualize torsion. (a, c) Large
amount of torsion. (b) Initial configuration. (d, f) Mediurarsion. (e) Minimum torsion configuration found
by the algorithm.
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Figure 4. Torsion energy curves. (a) Torsion energy of test case Igiision energy of test case 2.
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