
LETTER Communicated by Klaus Obermayer

An Ensemble of Cooperative Extended Kohonen Maps for
Complex Robot Motion Tasks

Kian Hsiang Low
bryanlow@cs.cmu.edu
Department of Electrical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213-3890, U.S.A.

Wee Kheng Leow
leowwk@comp.nus.edu.sg
Department of Computer Science, National University of Singapore,
Singapore 117543, Singapore

Marcelo H. Ang, Jr.
mpeangh@nus.edu.sg
Department of Mechanical Engineering, National University of Singapore,
Singapore 119260, Singapore

Self-organizing feature maps such as extended Kohonen maps (EKMs)
have been very successful at learning sensorimotor control for mobile
robot tasks. This letter presents a new ensemble approach, coopera-
tive EKMs with indirect mapping, to achieve complex robot motion.
An indirect-mapping EKM self-organizes to map from the sensory in-
put space to the motor control space indirectly via a control parameter
space. Quantitative evaluation reveals that indirect mapping can provide
finer, smoother, and more efficient motion control than does direct map-
ping by operating in a continuous, rather than discrete, motor control
space. It is also shown to outperform basis function neural networks.
Furthermore, training its control parameters with recursive least squares
enables faster convergence and better performance compared to gradi-
ent descent. The cooperation and competition of multiple self-organized
EKMs allow a nonholonomic mobile robot to negotiate unforeseen, con-
cave, closely spaced, and dynamic obstacles. Qualitative and quantitative
comparisons with neural network ensembles employing weighted sum
reveal that our method can achieve more sophisticated motion tasks even
though the weighted-sum ensemble approach also operates in continuous
motor control space.

1 Introduction

Goal-directed, collision-free motion in a complex, dynamic, and unpre-
dictable environment is an important task for an autonomous mobile robot
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operating alone or in a team. In particular, this task is widely employed
in service and field robotics (Shastri, 1999), which includes sewer inspec-
tion (Hertzberg, Christaller, Kirchner, Licht, & Rome, 1998), cleaning and
housekeeping (Fiorini, Kawamura, & Prassler, 2000), surveillance (Rybski,
Stoeter, Gini, Hougen, & Papanikolopoulos, 2002), sensor network coverage
(Howard, Matarić, & Sukhatme, 2002), search and rescue (Davids, 2002), and
tour guides (Burgard et al., 1999). All these applications require the mobile
robot to perform target- or goal-reaching movements while avoiding unde-
sirable and potentially dangerous impact with obstacles or other robots on
its team. The robot motion control problem can be stated succinctly as fol-
lows: Given an initial state described by the sensory input vector u(0) in the
sensory input space U , determine a collision-free sequence of motor control
vectors c(t), t = 0, . . . , T − 1, in the motor control space C that moves the
robot toward a desired goal state described by u(T) ∈ U .

Three general classes of algorithms have been investigated for learning
sensorimotor control, which is required for this task: multivariate regres-
sion, reinforcement learning, and feature mapping. The first approach for-
mulates the problem as a nonlinear multivariate regression problem and
trains a multilayer perceptron (MLP) to perform continuous mapping from
U to C (Pomerleau, 1991; Sharkey, 1998; Tani & Fukumura, 1994). It of-
fers good generalization capability. However, prior to training the network,
training samples have to be collected for every time step t = 0, . . . , T − 1 to
define the quantitative error signals. This sample collection process can be
very difficult and tedious, if not impossible, for a mobile robot.

The reinforcement learning approach (Kaelbling, Littman, & Moore,
1996; Sutton, 1998) circumvents the above difficulty by providing a qual-
itative success or failure feedback only at the end of executing the motor
control sequence. It estimates how well each previously executed motor
control vector c(t) contributes to the overall success or failure of achieving
the desired goal and modifies the algorithm accordingly. The training pro-
cess tends to converge slowly due to sparse reinforcements and imprecise
estimate of each motor control vector’s contribution.

The third approach uses a self-organizing feature Map (SOFM)
(Kohonen, 2000) such as the extended Kohonen map (EKM) (Ritter & Schul-
ten, 1986) that self-organizes to partition the continuous input (or output)
space into localized regions. The generalization capability of the feature
map arises from its self-organization during training such that each neu-
ron is trained to map a localized sensory region to a desired motor control
output. As compared to predefined, uniform partitioning of the feature
space (Kuperstein, 1991; Schaal & Atkeson, 1998; Zalama, Gaudiano, &
Coronado, 1995), self-organization may lead to better performance and
learning efficiency because more neural resources are automatically allo-
cated to frequently encountered sensory regions during learning (Martinetz,
Ritter, & Schulten, 1990; Santamária, Sutton, & Ram, 1998). This approach
increases the resolution of the sensory representation in the frequently
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encountered regions. Such a behavior is reminiscent of biological senso-
rimotor systems where frequently practiced movements become more fluid
and accurate.

This article describes a new feature map approach to learning sensorimo-
tor control: cooperative EKMs with indirect mapping. An indirect-mapping
EKM (Low, Leow, & Ang, 2002) differs from existing direct-mapping meth-
ods (Cameron, Grossberg, & Guenther, 1998; Heikkonen & Koikkalainen,
1997; Rao & Fuentes, 1998; Ritter & Schulten, 1986; Smith, 2002; Touzet, 1997;
Versino & Gambardella, 1995) in two ways:

1. Direct-mapping methods map a sensory input directly to a motor
control command. In contrast, our indirect-mapping approach maps a
sensory input indirectly to a motor control command through control
parameters.

2. As a consequence, the indirect-mapping approach maps continuous
sensory input space to continuous motor control space (see section 3.1
for detailed discussion). On the other hand, direct-mapping methods
map continuous sensory input space to discrete motor control com-
mands.

The motor control space is often discretized into a set of commands to
be used by reinforcement learning algorithms (Millán, Posenato, & Dedieu,
2002; Santamária et al., 1998; Smith, 2002; Touzet, 1997), committee ma-
chines with voting schemes (Battiti & Colla, 1994; Hansen & Salamon, 1990;
Kittler, Hatef, Duin, & Matas, 1998; Sharkey & Sharkey, 1997), and robot
action selection mechanisms (Decugis & Ferber, 1998; Huntsberger & Rose,
1998; Maes, 1995; Rosenblatt, 1997). However, recent autonomous agent re-
search in dynamical systems theory (Beer, 1995; Port & van Gelder, 1995)
and reinforcement learning (Millán et al., 2002; Smart & Kaelbling, 2000)
advocates operating in continuous motor control space, which enables our
indirect-mapping method to provide finer, smoother, and more efficient mo-
tion control than does direct mapping (see section 4.1). Such a high degree
of smoothness, flexibility, and precision in motion control is essential for
efficiently executing complex tasks and interacting with humans.

It is well understood how a SOFM or EKM is used for learning sensorimo-
tor control (Littmann & Ritter, 1996; Walter & Schulten, 1993). However, the
nontrivial problem of combining multiple SOFMs or EKMs for sophisticated
control (e.g., negotiation of unforeseen complex obstacles and cooperative
multirobot tracking of moving targets; Low, Leow, & Ang, 2003) is not well
studied. If solved poorly, the control outputs produced while performing
a complex motion task may be unexpected or undesirable. For example, a
widely used ensemble technique for motion control that combines neural
network outputs via weighted sum (e.g., ensemble averaging and mixture
of experts; Hashem, 1997; Haykin, 1999; Jacobs, 1995) causes the robot to be
trapped easily by unforeseen, complex obstacles. This navigation issue is
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central to the robotics community as it is often encountered during robot mo-
tion in a real-world environment (Kim & Khosla, 1992; Koren & Borenstein,
1991; Rimon & Koditschek, 1992). Note that such a problem will arise even
when SOFMs or EKMs are utilized in the weighted-sum ensemble (see sec-
tion 4.2).

To solve this robot motion problem, we propose a new ensemble ap-
proach called cooperative EKMs. The cooperation and competition of mul-
tiple EKMs (Low, Leow, & Ang, 2003) that self-organize in the same manner
can enable a nonholonomic mobile robot to negotiate unforeseen, concave,
and closely spaced obstacles (see section 4.2). In contrast, a robot controlled
by weighted-sum ensemble (Low, Leow, & Ang, 2002) may fail in such tasks
even though the networks also use continuous motor control space (see sec-
tion 4.2). Before proceeding to the details of cooperative EKMs, we will
discuss some related work.

2 Related Work

In an MLP, all the training data are used to fit a single global model or repre-
sentation. Therefore, during learning, all the network weights are suscepti-
ble to negative interference that may arise due to dynamically changing data
distributions (Schaal & Atkeson, 1998). On the other hand, an EKM fits local-
ized regions of data rather than the entire region of interest into local models
or representations, thus localizing the effects of interference. Consequently,
learning of a single new training datum affects fewer network weights in an
EKM than in a MLP (Atkeson, Moore, & Schaal, 1997; Martinetz et al., 1990).
The cost of training in an EKM is kept small by imposing a topology among
the neurons such that each learning step involves a subset of neighboring
neurons. Initially, the subsets are chosen large, resulting in rapid learning
of the coarse sensorimotor mapping. As learning progresses, the size of
the subsets is gradually reduced to refine the mapping more and more lo-
cally. This strategy allows computationally efficient and accurate training of
many neurons and facilitates scaling up the EKM to a larger number of neu-
rons for improved accuracy. An EKM also uses a smaller proportion of net-
work weights for motor control prediction and has been reported to achieve
more precise robot positioning than an MLP (Gorinevsky & Connolly,
1994; Jansen, van der Smagt, & Groen, 1995; van der Smagt, Groen, & van het
Groenewoud, 1994). However, like other local model networks, an EKM suf-
fers from the curse of dimensionality. That is, the proportion of training data
lying within a fixed-radius neighborhood of a point decreases exponentially
with an increasing number of dimensions of the input space.

Basis function network (BFN) is another type of local model network
like EKM. However, it is architecturally different from EKM in that each
incoming sensory input is reduced to activation strengths by basis func-
tions, which are linearly mapped to a corresponding control output. To
do so, the output weights of all BFN neurons are required in predicting the
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target-reaching motion. In contrast, the EKM uses only the winning neuron’s
output weights to map each sensory input to a control output (see sec-
tion 3.1). During network learning, BFN updates all its output weights with
each training datum. On the other hand, only the output weights of the win-
ning neuron and its neighbors in the EKM are updated (see section 3.5). As
such, BFN may experience much more interference during online learning
than an EKM would.

Our indirect-mapping EKM resembles the EKM models of (Littmann
and Ritter (1996) and Walter and Schulten (1993), which utilize locally lin-
ear mappings. In their models, each neuron stores both the motor control
vector and the matrix of motor control parameters as output weights (see
equation 3.1). On the other hand, each neuron in the indirect-mapping EKM
stores only the matrix of motor control parameters. In the context of our ar-
ticle, their EKM models and indirect-mapping EKM, respectively, use 1800
and 1350 parameters in a network of 15 × 15 neurons (see Table 1). The
extra parameters employed by their models are not necessary in achiev-
ing good target-reaching performance, as demonstrated by the indirect-
mapping EKM in this letter (see section 4.1). Furthermore, we have shown
that training the control parameters with recursive least squares enables
faster convergence and better performance compared to gradient descent.
Their EKM models (Littmann & Ritter, 1996; Walter & Schulten, 1993) have
used gradient descent only to learn the control parameters.

It is typical for a robot to require a very large number of training data
for accurate sensorimotor learning. The collection of these data for off-line
training is a very difficult and tedious, if not impossible, task. Therefore,
online learning is preferred over off-line to eliminate the need to store these
data and avoid running complex batch training algorithms such as support
vector machines (Schaal, Atkeson, & Vijayakumar, 2002). Hence, our focus
in this article is on online learning.

Walter and Ritter (1996) have proposed an ensemble of multiple SOFMs
called hierarchical PSOM (parameterized self-organizing maps) for learn-
ing sensorimotor control of the robot arm under different system contexts.
PSOM is a variant of SOFM that can learn with a small set of training
data and still achieve good accuracy. To be able to do so, PSOM performs
interpolation on a continuous mapping manifold using a small set of pre-
defined, data-independent basis functions and weight vectors constructed
directly from the data samples. To ensure good interpolation, the data sam-
ples have to be topologically ordered to form the weight vectors. Further-
more, the minimization of the distance function in SOFM algorithm (see
equation 3.2) turns into a continuous search problem for PSOM due to its
continuous manifold. For hierarchical PSOM, each PSOM is trained sepa-
rately, resulting in different weight values for different PSOMs. In contrast,
for our cooperative EKMs, all EKMs are trained simultaneously to obtain
the same input weight values (see section 3.5). Moreover, training of our
EKMs is performed online rather than off-line, as is the case for PSOM.
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In the absence of precise quantitative error signals for training, rein-
forcement learning algorithms can be used if qualitative feedback signals
are available. Nevertheless, they suffer from problems of generalization
and continuity. Many reinforcement learning methods encode discrete sen-
sory states and motor commands (Dietterich, 2000; Mahadevan & Connell,
1992; Rohanimanesh & Mahadevan, 2003), which cannot apply directly to
the continuous sensorimotor domains of the real-world control tasks. A
priori discretization of the continuous space may introduce hidden states
and weak generalization, if done poorly. By combining with function ap-
proximators (e.g., MLP or feature map) that are capable of generalizing
across continuous sensory input and motor control output spaces (Baird,
1995; Gross, Stephan, & Krabbes, 1998; Millán et al., 2002; Santamária et al.,
1998; Smart & Kaelbling, 2000; Smith, 2002; Touzet, 1997), this limitation
can be overcome. However, generalizing with function approximators does
not guarantee that the algorithms will learn to produce continuous motor
commands that vary smoothly and accurately in response to continuous
changes in sensory state. In effect, some reinforcement learning algorithms
(Millán et al., 2002; Santamária et al., 1998; Smith, 2002; Touzet, 1997) that
are combined with function approximators map from continuous sensory
input space to discrete motor control commands, which is exactly what the
direct-mapping EKM does (see section 3.1). The drawbacks of such a conti-
nuity problem will be demonstrated in section 4.1. To resolve this problem,
some methods (Baird, 1995; Gross et al., 1998; Smart & Kaelbling, 2000) map
to continuous motor control space but are burdened by very slow iterative
search for the optimal action.

3 Ensemble of Cooperative EKMs

3.1 Overview. An EKM is a neural network that extends Kohonen’s
(2000) SOFM. Its self-organization of the input space is similar to Voronoi
tessellation such that each tessellated region is encoded by the input weights
of an EKM neuron. In addition to encoding a set of input weights that self-
organize the sensory input space, the EKM neurons also produce outputs
that vary with the incoming sensed inputs. The EKMs described in this
article adopt an egocentric representation of the sensory input vector: u(t) =
{α, d}T , where α and d are the direction and the distance of a target location
relative to the robot’s current location and heading. At the goal state at time
T , u(T) = (α, 0)T for any α.

In many proposed EKMs (Cameron et al., 1998; Heikkonen &
Koikkalainen, 1997; Rao & Fuentes, 1998; Ritter & Schulten, 1986; Smith,
2002; Touzet, 1997; Versino & Gambardella, 1995), each sensory input
u is mapped directly to a motor control command c. In such a direct-
mapping EKM (see Figure 1A), each neuron i has a sensory weight vector
wi = (αi , di )T that encodes a tessellated region in U centered at wi . It also
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Figure 1: EKM architectures. (A) Neurons of a direct-mapping EKM map the
sensory input space U directly to discretized points in the motor control space
C. (B) Neurons of an indirect-mapping EKM map the sensory input space U
indirectly to the continuous motor control spaceC through the control parameter
space M. It resembles the EKM model of Walter and Schulten (1993), which
stores both motor control vectors and matrices of control parameters as output
weights. The indirect-mapping EKM stores only matrices of control parameters
as output weights.

has a weight vector ci that encodes the motor control outputs produced
by the neuron. With an incoming sensory input u, the winning neuron s
is determined such that its sensory weight vector ws is nearest to u (see
equation 3.2). This winning neuron s outputs its motor control vector cs to
move the robot (see Figure 1A). Note that any incoming sensory input u
that lies within the tessellated region encoded by ws will produce the same
motor control vector cs .

If sensorimotor control is a linear problem, then the motor control vector
c would be related to the sensory input vector u by the linear equation

c = Mu, (3.1)

where M is a matrix of motor control parameters. The control problem
would be reduced to one of determining M from the training samples.

In practice, however, sensorimotor coordination is typically a nonlinear
problem because a real motor takes a finite but nonzero amount of time to
accelerate or decelerate in order to change speed. This problem is exacer-
bated in nonholonomic robots. A nonholonomic robot has restrictions in the
way it can move due to kinematic or dynamic constraints such as limited
turning abilities or momentum at high velocities (e.g., a car) (Arkin, 1998).
Hence, a nonholonomic robot is much harder to control and to achieve
smooth motion than a holonomic robot (Russell & Norvig, 1995).

To solve the nonlinear problem, our indirect-mapping EKM (Low, Leow,
& Ang, 2002) is trained to partition the sensory input spaceU into locally lin-
ear regions. Each neuron i in the EKM has a sensory weight vector wi similar
to that of a neuron in the direct-mapping EKM. However, unlike the direct-
mapping approach, the output weights of neuron i represent control pa-
rameters Mi in the parameter space M (see Figure 1B) instead of the motor
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Figure 2: Framework of cooperative EKMs.

control vector ci . The control parameter matrix Mi is mapped to the actual
motor control vector c by the linear model of equation 3.1.

To elaborate, the direct-mapping approach maps all the sensory inputs
u in a tessellated region in the sensory input space U , represented by a
neuron s, to the same discrete point cs in the motor output space C, that
is, c = cs . Thus, only a small number of points in C are represented by the
neurons’ outputs (i.e., C is very sparsely sampled). In contrast, our indirect-
mapping approach maps each u in a local region in U to a different point
c in C through equation 3.1. Since this mapping is linear and continuous,
the indirect-mapping approach maps a region in U to a region in C (see
Figure 1B). This method permits finer, smoother, and more efficient sen-
sorimotor control of the robot’s target-reaching motion compared to the
direct-mapping approach (see section 4.1).

Cooperative EKMs (Low, Leow, & Ang, 2003) are implemented by con-
necting an ensemble of EKMs into three modules: target reaching, obstacle
avoidance, and neural integration (see Figure 2). The target localization
EKM in the target-reaching module is activated by the presence of a target
within the robot’s target-sensing range. The EKM receives a sensed target
location and outputs corresponding excitatory signals to the motor control
EKM in the neural integration module at and around the locations of the
sensed target.

The obstacle localization EKMs in the obstacle avoidance module are acti-
vated by the presence of obstacles within the robot’s obstacle-sensing range.
Each EKM receives a sensed obstacle location and outputs corresponding
inhibitory signals to the motor control EKM in the neural integration mod-
ule at and around the locations of the sensed obstacles.

The motor control EKM in the neural integration module serves as the
sensorimotor interface, which integrates the activity signals from the EKMs
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for cooperation and competition to produce an appropriate motor signal
to the actuators. This motor signal allows a robot to approach a target and
negotiate obstacles.

The cooperative EKM’s framework allows the modules to operate asyn-
chronously at different rates, which is the key to preserving reactive capa-
bilities. For example, the target-reaching module operates at about 256 ms
between servo ticks while the obstacle avoidance module can typically op-
erate faster at intervals of 128 ms. The neural integration module is activated
as and when neural activities are received.

3.2 Target Reaching. The target-reaching module uses the target local-
ization EKM to self-organize the sensory input space U . Each neuron i in
the EKM has a sensory weight vector wi = (αi , di )T that encodes a region
in U centered at wi . Based on each incoming sensory input u of the target
location, the target localization EKM outputs excitatory signals to the motor
control EKM in the neural integration module (see section 3.4).

3.2.1 Target Localization. The target localization EKM is activated as fol-
lows. Given a sensory input u of a target location:

1. Determine the winning neuron s in the target localization EKM. The
winning neuron s is the one whose sensory weight vector ws =
(αs, ds)T is nearest to the input u = (α, d)T :

D(u, ws) = min
i∈A(α)

D(u, wi ). (3.2)

The difference D(u, wi ) is a weighted difference between u and wi ,

D(u, wi ) = βα(α − αi )2 + βd (d − di )2, (3.3)

where βα and βd are constant parameters. The minimum in equa-
tion 3.2 is taken over the set A(α) of neurons encoding very similar
angles as α:

|α − αi | ≤ |α − α j |, for each pair i ∈ A(α), j /∈ A(α). (3.4)

In other words, direction has priority over distance in the competi-
tion between EKM neurons. This method allows the robot to quickly
orientate itself to face the target while moving toward it. An EKM
contains a limited set of neurons, each of which has a sensory weight
vector wi that encodes a point in the sensory input spaceU . The region
in U that encloses all the sensory weight vectors of these neurons is
called the local workspace U ′. Even if the target falls outside U ′, the
nearest neuron can still be activated (see Figure 3A).

2. Compute output activity ai of neuron i in the target localization EKM:

ai = Ga (ws, wi ). (3.5)
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Figure 3: Conceptual description of cooperative EKMs. (A) In response to the
target ⊕, the nearest neuron (black dot) in the target localization EKM (ellipse)
of the robot (gray circle) is activated. (B) The activated neuron produces a target
field (dotted region) in the motor control EKM. (C) Three of the robot’s sensors
detect obstacles and activate three neurons (crosses) in the obstacle localization
EKMs, which produce the obstacle fields (dashed ellipses). (D) Subtraction of
the obstacle fields from the target field results in the neuron at � to become
the winner in the motor control EKM, which moves the robot away from the
obstacle.

The function Ga is an elongated gaussian:

Ga (ws, wi ) = exp
(

− (αs − αi )2

2σ 2
aα

− (ds − di )2

2σ 2
ad

)
. (3.6)

Parameter σad is much smaller than σaα , making the gaussian distance
sensitive and angle insensitive. These parameter values elongate the
gaussian along the direction perpendicular to the target direction αs

(see Figure 3B). This elongated gaussian is the target field, which
plays an important role in overcoming concave obstacles. The effects
of these parameters on the robot’s target-reaching capabilities will be
examined in section 4.2.

The output activities of the neurons in the target localization EKM are
aggregated in the motor control EKM to produce a motion that moves the
robot toward the target. This will be explained in section 3.4. In the next
section, we present the obstacle localization EKMs, which are activated in
a similar manner as the target localization EKM.

3.3 Obstacle Avoidance. The obstacle avoidance module uses obstacle
localization EKMs. The robot has h directed distance sensors around its
body for detecting obstacles. Hence, each activated sensor encodes a fixed
direction α j and a variable distance d j of the obstacle relative to the robot’s
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heading and location. Each sensor’s input u j = (α j , d j )T induces an obstacle
localization EKM. Note that each distance sensor (e.g., laser) can only
reflect the nearest obstacle in its sensing direction. Hence, the number
of obstacle localization EKMs that are activated does not depend on the
number of obstacles but, rather, on the number of distance sensors. The
obstacle localization EKMs have the same number of neurons and input
weight values as the target localization EKMs; that is, each neuron i in
the obstacle localization EKM has the same input weight vector wi as
the neuron i in the target localization EKM. The EKM’s output inhibitory
signals to the motor control EKM in the neural integration module (see
section 3.4).

3.3.1 Obstacle Localization. The obstacle localization EKMs are acti-
vated as follows: For each sensory input u j , j = 1, . . . , h (i.e., h distance
sensors):

1. Determine the winning neuron s in the j th obstacle localization EKM.
The obstacle localization EKM is activated in the same manner as
step 1 of target localization (see section 3.2).

2. Compute output activity bi of neuron i in the j th obstacle localization
EKM:

bi = Gb(ws, wi ), (3.7)

where

Gb(ws, wi ) = exp
(

− (αs − αi )2

2σ 2
bα

− (ds − di )2

2σ 2
bd (ds, di )

)

σbd (ds, di ) =
{

2.475 if di ≥ ds

0.02475 otherwise.

(3.8)

The function Gb is a gaussian stretched along the obstacle direction
αs so that motor control EKM neurons beyond the obstacle locations
are also inhibited to indicate inaccessibility (see Figure 3C). If no ob-
stacle is detected, Gb = 0. In the presence of an obstacle, the neurons
in the obstacle localization EKMs at and near the obstacle locations
will be activated to produce obstacle fields. The neurons nearest to
the obstacle locations have the strongest activities. The effects of the
parameters σbd and σbα on the robot’s obstacle avoidance capabilities
will be investigated in section 4.2.

3.4 Neural Integration and Motor Control. The neural integration mod-
ule uses a motor control EKM to integrate the activities from the neurons in
the target and obstacle localization EKMs. The motor control EKM has the
same number of neurons and input weight values as the target and robot
localization EKMs.
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3.4.1 Neural Integration. The neural integration is performed as follows:

1. Compute activity ei of neuron i in the motor control EKM,

ei = ai −
h∑

j=1

b ji , (3.9)

where ai is the excitatory input from neuron i of the target localization
EKM (see section 3.2) and b ji is the inhibitory input from neuron i of
the j th obstacle localization EKM (see section 3.3).

2. Determine the winning neuron k in the motor control EKM. Neuron
k is the one with the largest activity:

ek = max
i

ei . (3.10)

3.4.2 Motor Control. The motor control EKM also has a set of output
weights, which encode the outputs produced by the neuron. However, un-
like existing direct-mapping methods (Cameron et al., 1998; Heikkonen &
Koikkalainen, 1997; Rao & Fuentes, 1998; Ritter & Schulten; 1986; Smith,
2002; Touzet, 1997; Versino & Gambardella, 1995), the output weights of
neuron i of the motor control EKM represent control parameters Mi in the
parameter space M instead of the actual motor control vector (see Figure 1).
The control parameter matrix Mi is mapped to the actual motor control vec-
tor c by a linear model (see equation 3.11).

With indirect-mapping EKM, motor control is performed as follows:
Compute motor control vector c,

c =
{

Mku if |Mku| ≤ c∗ and k = s

Mkwk otherwise,
(3.11)

where s is the winning neuron in the target localization EKM, and Mk and
wk are, respectively, the control parameter matrix and sensory weight vec-
tor of the winning neuron k in the motor control EKM (step 2 of Neural
Integration). The constant vector c∗ denotes the upper limit of physically
realizable motor control signal. For instance, for the Khepera robots, c con-
sists of the motor speeds vl and vr of the robot’s left and right wheels. In
this case, we define c ≤ c∗ if vl ≤ v∗

l and vr ≤ v∗
r . Note that if c is beyond c∗,

simply saturating the wheel speeds does not work. For example, if the target
is far away and not aligned with the robot’s heading, then saturating both
wheel speeds only moves the robot forward. Without correcting the robot’s
heading, the robot will not be able to reach the target. Hence, the winning
neuron’s input weights wk are used to generate the physically realizable
motor control output. This motor control would be the best substitution for
the sensory input u because wk is closest to u compared to other weights
wi , i �= k.
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Figure 4: Output activities of neurons in (A) target localization EKM, (B) obsta-
cle localization EKM activated by distance sensor at −π/6 radian, (C) obstacle
localization EKM activated by distance sensor at 0 radian, (D) obstacle localiza-
tion EKM activated by distance sensor at π/6 radian, (E) obstacle localization
EKMs combined, and (F) localization EKMs combined during neural integra-
tion. Each dot denotes the sensory weights wi = (αi , di )T of a neuron. A darker
dot implies that the neuron has a stronger output activity. A lighter dot implies
the opposite.

In activating the motor control EKM (see Figure 3D), the obstacle fields
are subtracted from the target field (see equation 3.9). If the target lies within
the obstacle fields, the activation of the motor control EKM neurons close
to the target location will be suppressed. Consequently, another neuron at
a location that is not inhibited by the obstacle fields becomes most highly
activated (see Figure 3D). This neuron produces a control parameter that
moves the robot away from the obstacle. While the robot moves around
the obstacle, the target and obstacle localization EKMs are continuously
updated with the current locations and directions of the target and obstacles.
Their interactions with the motor control EKM produce fine, smooth, and
accurate motion control of the robot to negotiate the obstacle and move
toward the target until it reaches the goal state u(T) at time step T .

Figure 4 shows the output activities of the neurons in different EKMs
produced in response to the environment setup depicted in Figure 3. In Fig-
ure 4A, the output activities of the neurons in the target localization EKM
form the target field (see Figure 3B). Since the neuron at d = 0.16 m and
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α = 0.1 radian (darkest dot in Figure 4A) is closest to the target location,
it is most strongly activated and thus produces the highest output activity.
This neuron corresponds to the black dot in Figure 3B. Its neighboring neu-
rons also produce relatively strong output activities to form the target field
used in overcoming the concave obstacle. The obstacle localization EKMs
shown in Figures 4B, 4C, and 4D are activated by distance sensors positioned
at −π/6, 0, and π/6 radian, respectively. For each EKM induced by a sen-
sor, the neuron that is closest to its sensed obstacle becomes most strongly
activated. These activated neurons are at d = 0.132 m and α = −0.4 radian
(darkest dot in Figure 4B), d = 0.165 m and α = 0 radian (darkest dot in Fig-
ure 4C), and d = 0.139 m and α = 0.4 radian (darkest dot in Figure 4D). They
correspond to the three crosses in Figure 3C. Figure 4E shows the combined
output activities of the neurons in the obstacle localization EKMs, which
form the obstacle fields (see Figure 3C). Since the target lies within the ob-
stacle fields, the strong excitatory activities from the target localization EKM
neurons that are close to the target location will be suppressed. As a result,
another neuron at d = 0.098 m and α = 0.9 radian (darkest dot in Figure 4F)
that is not inhibited by the obstacle fields becomes most strongly activated
in the motor control EKM. This neuron corresponds to � in Figure 3D. It
produces a control parameter that enables the robot to negotiate the concave
obstacle.

Recall that the various modules run asynchronously at different rates (see
section 3.1). In particular, the obstacle avoidance module runs at a faster rate
than the target-reaching module. During neural integration, the localization
EKMs remain activated until they are updated asynchronously at the next
sensing cycle. So, the motor control EKM can receive continuous inputs
from the localization EKMs and is always able to produce a motor signal as
and when new inputs are sensed.

3.5 Self-Organization of EKMs. In contrast to most existing off-line
learning methods (Bruske & Sommer, 1995; Gorinevsky & Connolly, 1994;
Karayiannis & Mi, 1997; Moody & Darken, 1989), online learning is adopted
for the EKMs. Initially, the EKMs have not been trained, and the motor
control vectors c generated are inaccurate. Nevertheless, the EKMs self-
organize, using these control vectors c and the corresponding robot dis-
placements v produced by c, to map v to c indirectly. Note that v is used as
the training input rather than sensory input u. Since the untrained EKMs
produce inaccurate motor control vectors c in response to u (i.e., c does not
move the robot to the target location specified by u), the robot will learn
the wrong sensorimotor mapping if u is used as the corresponding train-
ing input. On the other hand, v is the actual displacement that corresponds
to c. Using v as the training input will enable the robot to learn the cor-
rect mapping as it moves around. Hence, its sensorimotor control becomes



Ensemble of Cooperative EKMs for Complex Robot Motion Tasks 1425

more accurate. At this stage, the online learning just fine-tunes the indirect
mapping. The self-organized learning algorithm (in an obstacle-free envi-
ronment) is as follows:

Self-Organized Learning

Repeat

1. Get sensory input u.

2. Execute target-reaching procedure, and move robot.

3. Get new sensory input u′ and compute actual displacement v as a
difference between u′ and u.

4. Use v as the training input to determine the winning neuron k (same
as step 1 of Target Localization except that u is replaced by v).

5. Adjust the weights wi of neurons i in the neighborhood Nk of the
winning neuron k toward v,

�wi = η G(k, i)(v − wi ), (3.12)

where G(k, i) is a gaussian function of the distance between the po-
sitions of neurons k and i in the EKM and η is a constant learning
rate. This step is similar to the self-organization of Kohonen’s self-
organizing map.

6. Update the weights Mi of neurons i in the neighborhood Nk to mini-
mize the error e:

e = 1
2

G(k, i)‖c − Mi v‖2 . (3.13)

That is, apply a recursive stochastic approximation algorithm, which
can be cast into this general form,

�Mi = −η
∂e

∂Mi
Hi , (3.14)

where Hi is a weighting matrix. If Hi = I, a first-order learning
method, gradient descent, is obtained from equation 3.14:

�Mi = −η
∂e

∂Mi
I = η G(k, i)(c − Mi v)vT . (3.15)

In the case of the quadratic error function e (see equation 3.13), learn-
ing can be accelerated by a second-order learning method (Battiti,
1992). This can be achieved by setting Hi to R−1

i where Ri is a
Gauss-Newton approximation of the Hessian ∂2e/∂M2

i . A second-
order learning method, recursive least squares (Glentis, Berberidis,
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& Theodoridis, 1999), is thus derived from equation 3.14 with η = 1
(optimum step size),

�R−1
i = 1

λ


(1 − λ)R−1

i − R−1
i vvT R−1

i
λ

G(k, i)
+ vT R−1

i v


 (3.16)

�Mi = − ∂e
∂Mi

R−1
i = G(k, i)(c − Mi v)vT R−1

i , (3.17)

where λ is a constant forgetting rate and R−1
i is initialized to I. Note

that the recursive online update of R−1
i (see equation 3.16) is obtained

using matrix inversion lemma to avoid the costly matrix inversion
operation (Haykin, 2002). Each update of Mi requires O(n2) computa-
tions and O(n2) additional memory to store R−1

i where n is the number
of dimensions in v. In contrast, gradient descent requires O(n) com-
putations and no additional memory. The performance of these two
learning methods is compared in section 4.1.

The target and obstacle localization EKMs self-organize in the same man-
ner as the motor control EKM except that step 6 is omitted. At each training
cycle, the weights of the winning neuron k and its neighboring neurons i
are modified. The amount of modification is proportional to the distance
G(k, i) between the neurons in the EKM. The input weights wi are updated
toward the actual displacement v, and the control parameters Mi are up-
dated so that they map the displacement v to the corresponding motor
control c. After self-organization has converged, the neurons will stabilize
in a state such that v = wi and c = Mi v = Mi wi . For any winning neu-
ron k, given that u = wk , the neuron will produce a motor control output
c = Mkwk , which yields a desired displacement of v = wk . If u �= wk but
close to wk , the motor output c = Mku produced by neuron k will still yield
the correct displacement if linearity holds within the input region that acti-
vates neuron k. Thus, given enough neurons to produce an approximate lin-
earization of the sensory input spaceU , indirect-mapping EKM can produce
finer and smoother motion control than direct-mapping EKM, as shown in
section 4.1.

4 Experiments and Discussion

4.1 Online Learning of Target-Reaching Motion. This section presents
a quantitative evaluation of the indirect-mapping EKM in online sensori-
motor learning of the robot’s target-reaching motion. For the purpose of
evaluating performance, the following network architectures were com-
pared:
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1. B15: BFN with 15×15 neurons

2. D15: direct-mapping EKM with 15 × 15 neurons

3. G9: indirect-mapping EKM with 9 × 9 neurons trained by gradient
descent

4. G12: indirect-mapping EKM with 12 × 12 neurons trained by gradient
descent

5. G15: indirect-mapping EKM with 15 × 15 neurons trained by gradient
descent

6. R15: indirect-mapping EKM with 15 × 15 neurons trained by recur-
sive least squares

Our implementation of BFN was similar to those proposed by Bruske and
Sommer (1995), Hartman and Keeler (1991), Karayiannis and Mi (1997), and
Moody and Darken (1989), except that it was trained online rather than off-
line. The basis function centers were trained in a similar manner as the input
weights of indirect-mapping EKM (see equation 3.12). Each basis function
width was updated to approach the Euclidean distance between itself and
its nearest neighbor (Hartman & Keeler, 1991; Moody & Darken, 1989; Platt,
1991). The output weights were trained by gradient descent.

We also attempted to train the basis function centers with gradient de-
scent (Ghosh & Nag, 2001; Karayiannis, 1999; Platt, 1991; Poggio & Girosi,
1990; Wettschereck & Dietterich, 1992), but learning was unsuccessful de-
spite extensive tuning of parameters. Although the robot learned to move
toward the target locations successfully, it was not able to come to a stop
at these locations, even after prolonged training. One possible explanation,
as detailed by Moody and Darken (1989), is that gradient descent train-
ing of the basis function centers may lead to unpredictable target-reaching
motions because the centers are sometimes squeezed out of the region of
input space that contain data. Furthermore, learning converges slowly due
to nonlinear optimization. In contrast, the self-organization of the input
space in our implemented BFN is datacentric. More neurons are commit-
ted to input regions with dense sampling of data during online learning,
which improves the resolution in these regions (see section 1). Faster con-
vergence in learning has also been reported in this case (Moody & Darken,
1989).

The tests were performed using Webots (http://www.cyberbotics.com),
a 3D, kinematic, sensor-based simulator for Khepera mobile robots, which
incorporates 10% white noise in its sensors and actuators. The simulator
computes the trajectories and sensory inputs of a robot situated in an envi-
ronment corresponding to a given physical setup. The resulting simulation
allows the controller to be transferred to a real robot without changes
(Michel, 2004). The simulated behaviors are very close to those of a real
robot, as demonstrated in these works (Hayes, Martinoli, & Goodman,

http://www.cyberbotics.com
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2002; Ijspeert, Martinoli, Billard, & Gambardella, 2001; Martinoli, Ijspeert, &
Mondada, 1999).

In the experiments, the neural networks were trained in a 5 m by 5 m
obstacle-free environment. Each training-testing trial took 100,000 time
steps, and each time step for target-reaching motion lasted 1.024 sec. Dur-
ing training, the input weights were initialized to correspond to regularly
spaced locations in the sensory input space U . The robot began its network
training at the center of the environment, and a randomly selected sequence
of targets was presented. The robot’s task was to move to the targets, one
at a time, and weight modification was performed at each time step after
the robot had made a move. At each time interval of 10,000 steps during
training, a fixed testing procedure was conducted. In each test, the robot
began at the center of the environment and was presented with 50 random
target locations in sequence. The robot’s task was to move to each of the
target locations. No training was performed during this testing phase. The
training-testing trial was repeated five times and, testing performance was
averaged over the five trials.

Three testing performance indices are measured in the training-testing
trials. The first index is the mean positioning error E , which measures the
average distance εi between the center of the robot and the ith target location
after it has come to a stop (i.e., motor control c = 0):

E = 1
RN

∑
i

εi , (4.1)

where R is the number of trials and N is the number of testing target loca-
tions. The second index normalized time-to-target T measures how long it
takes the robot to reach the target locations:

T = 1
RN

∑
i

t̃i , t̃i = ti
li

, (4.2)

where ti is the time it takes the robot to reach the ith target, li is the straight-
line distance between targets i − 1 and i , and t̃i is the normalized time taken
to reach target i . That is, normalized time to target measures the average
amount of time the robot takes to travel a distance of 1 m toward a target.
The third index, mean deviation from straight-line trajectory D, measures
how straight or wavy the robot’s trajectory is,

D = 1
RN

∑
i

δ̃i , δ̃i = |di − li |
li

, (4.3)

where di is the distance traveled to reach the target location i and δ̃i is the
deviation from straight-line trajectory for target i .
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Figure 5: Performance comparison between various network architectures in
(A) mean positioning error and (B) normalized time to target.

Figures 5A and 5B show, respectively, how the mean positioning error
and normalized time to target decreased during the self-organized learning
of various network architectures. In Figure 5A, both B15 and D15 stabilized
as early as 10,000 time steps but achieved much poorer E performance
compared to the other networks. G9, G12, G15, and R15 stabilized more
gradually at about 70,000, 60,000, 50,000, and 15,000 time steps, respectively,
but they could all achieve lower E . Notice that the larger indirect-mapping
EKMs stabilized faster. To explain this counter intuitive result, note that the
standard deviations of the gaussian functions in equations 3.12 and 3.15 (see
section 3.5) were the same for all EKMs. That is, the proportion of neurons
requiring weight updates at each time step was greater in smaller EKMs
than in larger EKMs. As such, the neurons in smaller EKMs updated their
weights more frequently, thus stabilizing more slowly.

While the E performance shows the quality of the robot positioning at
the target location, the T and D performance demonstrate the quality of the
robot’s trajectory. We will illustrate only T in Figure 5B; the convergence of D
is similar. The self-organization of D15 stabilized at about 50,000 time steps.
G9, G12, and G15 stabilized at about 90,000, 70,000, and 50,000 time steps,
respectively, which supported the observation that larger EKMs stabilized
more quickly. R15 stabilized at 40,000 time steps, which was faster than
that trained by gradient descent. Therefore, its training-testing process was
stopped at 50,000 time steps, which was sufficient for its self-organized
learning to stabilize. Although B15 stabilized as early as 10,000 time steps,
its poorer performance, relative to the other networks, became obvious with
increasing training time.

Table 1 shows the test results after training. All indirect-mapping
EKMs achieved lower mean positioning errors, normalized time to tar-
get, and mean deviation from straight-line trajectory than D15 and B15.
R15 achieved much lower E and D than G9, G12, and G15. Among the
indirect-mapping EKMs trained by gradient descent, G12 enabled the robot
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Table 1: Performance Comparison Between Networks After Training.

Performance Indices
Total

Network Parameters E (mm) T (m−1) D

B15 1350 10.02 ± 3.81 166.40 ± 28.49 0.11 ± 0.06
D15 900 8.37 ± 2.25 36.78 ± 11.11 0.18 ± 0.15
G9 486 3.40 ± 1.83 15.31 ± 4.64 0.10 ± 0.04
G12 864 3.89 ± 1.61 19.31 ± 8.47 0.06 ± 0.02
G15 1350 3.23 ± 0.66 18.96 ± 4.37 0.07 ± 0.02
R15 1350 1.29 ± 0.14 17.00 ± 2.48 0.04 ± 0.01

to travel the straightest path to stop at the target location. Reducing the
number of neurons to 9×9 caused the path to be more convoluted. Increas-
ing the number of neurons to 15×15 increased, instead of decreased, D
slightly. This phenomenon could be explained by how the neurons self-
organized in the sensory input space U , which is elaborated in the next
paragraph.

Neurons in G15 were self-organized into four clusters: d = 0 m and
α = −3, 0, +3 radian (see Figure 6C). Neurons in G9 and G12 were self-
organized into two clusters only: d = 0 m and α = 0 radian (see Figures. 6A
and 6B). With more neurons, G15 gained the flexibility of backward mo-
tion (α = −3, +3 radian). However, these two regions of input space were
less well sampled by the neurons than the region at α = 0 radian. As such,
if a distant target appeared behind the robot with G15, its backward mo-
tion would produce a wavier path. The robot with G12 would instead turn
around to face the target via the cluster at d = 0 m before moving forward
in a much straighter path. As for G9 (see Figure 6A), since its neurons sam-
pled the input space at α = 0 radian more sparsely than those in G15 at
α = 0, +3, −3 radian (i.e., both forward and backward motion), it would
inevitably produce a more convoluted path than G15 regardless of whether
the target is in front or behind.

Table 1 also shows that smaller mean deviation did not necessarily imply
shorter normalized time to target. During learning, direction had priority
over distance in the competition between EKM neurons (see equation 3.4).
So a larger EKM had more neurons allocated for adjusting orientation with-
out moving long distances (i.e., d = 0 m cluster in Figure 6). Consequently,
the robot might move short motion steps to adjust its orientation first before
moving straight to the target. Therefore, its trajectory deviated less from the
straight-line path.

The advantages of indirect-mapping EKMs over D15 and B15 can also
be assessed from the self-organization results (see Figure 6). The neurons in
the indirect-mapping EKMs cover larger areas in the sensory input space
than those in D15 or B15. Moreover, they sample distances up to 0.16 m,
whereas D15 and B15 neurons sample distances only up to 0.12 m. Note
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Figure 6: Self-organization results of (A) G9, (B) G12, (C) G15, (D) R15, (E) D15,
and (F) B15 taken after one of the training trials. Each dot denotes the weights
wi = (αi , di )T of a neuron.

that 0.16 m is the farthest that a Khepera robot can move in a single time step
of 1 second. That is, indirect-mapping EKMs sample the sensory input space
more completely than do D15 and B15 and thus produce finer, smoother,
and more efficient motor control.

To determine whether there is statistically significant difference between
the test results of different networks, t-tests were performed. In Table 2, a
large value indicates that the test results between two networks are similar,
that is, not significantly different (Mendenhall & Sincich, 1994). The E and
T of indirect-mapping EKMs are significantly different from those of D15
and B15 because the t-test values are less than 0.1. However, the differences
in E and T of G9, G12, and G15 are not significant. This means that G9 is
sufficient for the robot to stop very close to the targets at a rate that is as fast
as G12 or G15. While the difference in E and D between R15 and indirect-
mapping EKMs trained by gradient descent is significant, the difference in
T is not. The low D of G15 is not significantly different from that of B15. The
difference in D of G9 from D15 and B15 is also not significant. This means
that G9 achieves similar D performance as D15 and B15 even though it uses
fewer network weights.

Often a robot is required to move through several checkpoints in a com-
plex environment before stopping at the goal. Given that the radius of the
Khepera robot is 30 mm, it is reasonable to regard the robot to have reached
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Table 2: Significance Levels from t-Tests on Similarity in Performance Between
Networks After Training.

B15 D15 G15 G12 G9

E (mm)
R15 0.00 0.00 0.00 0.00 0.02
G9 0.00 0.00 0.42 0.33
G12 0.01 0.00 0.21
G15 0.00 0.00
D15 0.22

T (m−1)
R15 0.00 0.00 0.20 0.29 0.25
G9 0.00 0.00 0.12 0.19
G12 0.00 0.01 0.47
G15 0.00 0.01
D15 0.00

D
R15 0.01 0.04 0.01 0.04 0.00
G9 0.43 0.16 0.09 0.02
G12 0.04 0.06 0.09
G15 0.12 0.09
D15 0.19

(and touched) a target checkpoint if the distance-to-target ε is less than
30 mm. Figure 7 illustrates the performance comparison that evaluates this
target-reaching criterion after the robot has been trained.

The target-reaching probability P(ε) measures the probability of the
robot’s reaching closer than a distance of ε (with or without stopping) from
the target locations. The normalized time-to-target T(ε) measures how long
it takes the robot to reach closer than a distance of ε (with or without stop-
ping) from the target locations. The mean deviation from straight-line tra-
jectory D(ε) measures how straight or wavy the robot’s trajectory is.

Test results show that with indirect-mapping EKMs, the robot could get
much closer to the targets with higher probability (see Figure 7A) and reach
the targets much faster (see Figure 7B) than with D15 or B15. Moreover, it
could travel in straighter paths (see Figure 7C) than with D15.

Table 3 shows the test results for ε = 5 mm. R15 outperformed G12 and
G15 in P(5) and G9 and G15 in D(5). Among the indirect-mapping EKMs
trained by gradient descent, G9 enabled a robot to reach closer than 5 mm
from target locations with higher probability than G15. This could be be-
cause there were more neurons in G9 than in G15 at very small, nonzero d
and |α| < 1.57 radian in the input space. This set of neurons was responsi-
ble for moving the robot, at less than 10 mm away from the target location,
forward to closer than 5 mm. As a result, a higher P(5) could be achieved.
It was also observed that R15, which achieved the highest P(5), had more



Ensemble of Cooperative EKMs for Complex Robot Motion Tasks 1433

0 5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1
P(ε)

ε (mm)
0 5 10 15 20 25

1

10

100

1000
T(ε)(m-1)

ε (mm)

A B

0 5 10 15 20 25
0.01

0.1

1

D15

G9

G12

G15

D(ε)

ε (mm)

B15

R15

C

Figure 7: Performance comparison between various network architectures in
(A) target-reaching probability, (B) normalized time to target, and (C) mean
deviation from straight-line trajectory after training.

Table 3: Performance Comparison Between Networks.

Performance IndicesTotal
Network Parameters P(5) T(5) (m−1) D(5)

B15 1350 0.84 ± 0.05 144.70 ± 20.16 0.04 ± 0.03
D15 900 0.54 ± 0.07 18.61 ± 1.66 0.18 ± 0.08
G9 486 0.95 ± 0.08 8.83 ± 0.96 0.07 ± 0.02
G12 864 0.92 ± 0.09 8.48 ± 0.74 0.03 ± 0.02
G15 1350 0.86 ± 0.04 8.96 ± 0.47 0.06 ± 0.01
R15 1350 1.00 ± 0.01 8.85 ± 0.35 0.03 ± 0.01

neurons than G9 in this region of the input space. G15 had many more neu-
rons at approximately zero d than at very small, nonzero d . G12 achieved
lower D(5) than G9 and G15. This outcome could be justified, in a similar
manner, by the explanation provided for the previous test results on D. By
comparing the differences in normalized time-to-target and mean devia-
tion between Tables 1 and 3, we could notice a greater amount of time and
distance required for the robot to come to a stop.



1434 K. Low, W. Leow, and M. Ang, Jr.

Table 4: Significance Levels from t-Tests on Similarity in Performance at
ε = 5 mm Between Networks.

B15 D15 G15 G12 G9

P(5)
R15 0.00 0.00 0.00 0.04 0.12
G9 0.02 0.00 0.03 0.29
G12 0.06 0.00 0.11
G15 0.26 0.00
D15 0.00

D(5)
R15 0.12 0.00 0.00 0.19 0.00
G9 0.09 0.01 0.14 0.02
G12 0.31 0.00 0.03
G15 0.20 0.01
D15 0.00

T(5) (m−1)
R15 0.00 0.00 0.35 0.17 0.48
G9 0.00 0.00 0.40 0.27
G12 0.00 0.00 0.13
G15 0.00 0.00
D15 0.00

One other interesting comparison is the total number of parameters or
weights utilized by the various networks (see Tables 1 and 3). G12 uses
fewer weights than both D15 and B15 but still performs better compara-
tively.

Table 4 shows the t-test values at ε = 5 mm. While the difference in P(5)
and D(5) between R15 and indirect-mapping EKMs trained by gradient
descent is significant, the difference in T(5) is not. Among the indirect-
mapping EKMs trained by gradient descent, the t-tests for P(5) show no
significant difference between G9 and G12 and between G12 and G15. The
differences in T(5) between G9, G12, and G15 are also not significant.

To summarize, R15 achieved the best overall performance among the
various networks, in particular, its performance in E , D, P(5), and D(5). Its T
and T(5) performance were not significantly different from those of the other
indirect-mapping EKMs. Among the indirect-mapping EKMs, it stabilized
most quickly. Although B15 stabilized much faster than the other networks,
it produced the poorest performance in E , T , and T(5). D15 offered the
poorest performance in D, D(5), and P(5).

4.2 Neural Network Ensemble for Target-Reaching Motion with
Obstacle Avoidance. This section evaluates qualitatively and quantita-
tively the performance of cooperative EKMs in goal-directed, collision-free
robot motion in complex, unpredictable environments. The experiments
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Figure 8: Negotiating unforeseen concave obstacle that was 34 cm wide and
12 cm deep. (A) The robot using command fusion was trapped, but (B) the one
adopting cooperative EKMs successfully moved around the obstacle.

were also performed using Webots. Twelve directed long-range sensors
were modeled around its body of radius 3 cm. Each sensor had a range
of 17 cm, enabling the detection of obstacles at 20 cm or nearer from the
robot’s center and a resolution of 0.5 cm to simulate noise.

Two tests were performed to compare cooperative EKMs with an-
other ensemble method (Low, Leow, & Ang, 2002). The latter approach,
termed command fusion, linearly combines the motion control outputs, us-
ing weighted sum, of different neural networks implementing different be-
haviors. This is a widely used technique to integrate the motion control
outputs produced by different neural networks (Hashem, 1997; Haykin,
1999; Jacobs, 1995). For our case, the target-reaching motion is produced by
an indirect-mapping EKM while obstacle avoidance is performed using the
method of Braitenberg’s type-3C vehicle (Braitenberg, 1984). To elaborate,
when the robot senses the presence of an obstacle, say, in front and on the
left, the right motor will rotate backward faster than the left motor’s rotation
forward, thus turning the robot away from the obstacle.

For both ensemble methods, the target-reaching and obstacle avoidance
modules ran at intervals of 256 ms and 128 ms, respectively. The robot’s
performance was assessed in an environment under two unforeseen condi-
tions: (1) concave obstacle and (2) narrow doorway between closely spaced
obstacles.

In the first test (see Figure 8), the robot fitted with command fusion got
trapped by the concave obstacle (see Figure 8A). The target-reaching behav-
ior tried to move the robot forward to reach the target while the obstacle
avoidance behavior moved it backward to avoid the obstacle. The combined
output cancelled each other, causing the robot to be trapped by the obstacle.
The robot with cooperative EKMs could overcome the obstacle to reach the
goal successfully (see Figure 8B).
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Figure 9: Maximum width of concave obstacle (see Figure 8B) that a robot with
cooperative EKMs can overcome with different combinations of obstacle depths
and robot-sensing ranges.

It is noted that a robot with cooperative EKMs can still get trapped if the
obstacle is so concave that the obstacle fields cannot completely inhibit the
neurons at or near the target location. Figure 9 shows the maximum obsta-
cle width that a robot with cooperative EKMs can overcome with varying
obstacle depths and robot-sensing ranges. Given a fixed sensing range, the
maximum negotiable obstacle depth decreases with increasing width. When
the sensing range increases, the robot with cooperative EKMs can negotiate
an extremely wide concave obstacle if it is not too deep. Conversely, to be
able to overcome a fairly deep obstacle, its width cannot be too large.

This limitation, however, does not diminish the significance of our
method as it is simpler than many existing reactive robot motion methods
for overcoming unforeseen concave obstacles (Lagoudakis & Maida 1999;
Liu, Ang, Krishnan, & Lim, 2000; Zelek & Levine, 1996). In particular, it
utilizes only local information of the target location and the unforeseen ob-
stacles, as opposed to motion planners (Latombe, 1999) that require global
knowledge of the environment to operate.

In the second test (see Figure 10), the robot endowed with command
fusion could not pass through the narrow doorway between closely spaced
obstacles (see Figure 10A) because its obstacle avoidance behavior counter-
acted the target-reaching behavior. In contrast, the robot with cooperative
EKMs could always traverse through the narrow doorway to the goal suc-
cessfully (see Figure 10B).

These two simple tests show that for command fusion, though each neu-
ral network proposes an action that is optimal by itself, the weighted sum
of these action commands produces a combined action that may not satisfy
the overall task. Cooperative EKMs, however, consider the activity signals
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Figure 10: Passing through an unforeseen narrow doorway between closely
spaced obstacles that was 86 mm wide. (A) The robot using command fusion
was trapped, but (B) the one adopting cooperative EKMs successfully passed
through the narrow doorway to the goal.

of each localization EKM and integrate them to determine an action that can
satisfy each localization EKM to a certain degree. Such tightly coupled in-
teraction between the localization EKMs and the motor control EKM in the
cooperative EKMs framework enables the robot to achieve more complex
tasks.

Recall that the standard deviations σ of the gaussian functions for the
target and obstacle fields play an important role in the robot motion capa-
bilities of cooperative EKMs (see sections 3.2 and 3.3). For the target field
(see Figure 3A), σaα and σad control the elongation of the target field per-
pendicular to and along the target direction, respectively. Parameters σbα

and σbd achieve a similar effect for the obstacle field. For the negotiation of
concave obstacles (e.g., see Figure 8B), the target field has to be consider-
ably elongated perpendicular to the target direction. This requires a large
enough σaα parameter value. However, as this value increases, the tendency
of the robot moving along the shorter path to the goal via the narrow door-
way (see Figure 10B) decreases and the longer detour featured in Figure 8B
is increasingly preferred in the situation of Figure 10B. When σaα is large,
subtraction of the obstacle field from the highly elongated target field (see
Figure 3D) in the motor control EKM, rather than the neuron at the narrow
doorway, may result in the neuron at the edge of the concave obstacle to
be more highly activated. Nonetheless, the above two tests and the subse-
quent ones can be achieved by a single σaα value of 2.475. If σad is too small,
the target field may be totally suppressed by the obstacle field depending
on σaα . This may or may not cause the robot to be trapped in the concave
obstacle since any neuron not inhibited by the obstacle field can be poten-
tially activated. If σad is too large, the robot may get trapped in the concave
obstacle. Superposition of the fields may cause the neuron in the cavity of
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Figure 11: Motion of robot (gray) in an environment with two unforeseen obsta-
cles (black) moving in anticlockwise circular paths. The robot could successfully
negotiate past the extended walls and the dynamic obstacles to reach the goal
(small black dot).

the concave obstacle, rather than the neuron at the edge of the obstacle, to
be more highly activated. In all the tests, σad is set to 0.0495.

The parameter values of σbα and σbd have to be large enough for the robot
to avoid collision with obstacles as well as discriminate whether a doorway
is wide enough to pass through. However, if these values are too large,
the robot cannot move to target locations near the obstacles or detect the
presence of narrow but traversable doorways. In all the tests, σbα is set to
0.495, while σbd uses the values given in equation 3.8. The above evaluation
of the target and obstacle field parameters highlights their significance to the
robot motion capabilities of cooperative EKMs. In our future work, we will
consider using reinforcement learning to train the appropriate parameter
values for negotiating different obstacles when the robot encounters them
during motion.

The next two tests aim to demonstrate the capabilities of cooperative
EKMs in performing more complex motion tasks. The environment for the
first test consisted of three rooms connected by two doorways (see Figure 11).
The middle room contained two obstacles moving in anticlockwise circular
paths. The robot began in the left-most room and was tasked to move to the
right-most room. Test results show that the robot was able to negotiate past
the extended walls and the dynamic obstacles to reach the goal. Note that
this target-reaching motion was completely determined by the cooperation
and competition between the EKMs, and no global planning was used.

The environment for the second test consisted of three rooms connected
by two doorways and some unforeseen static obstacles (see Figure 12). The
robot began in the top corner of the left-most room and was tasked to move
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Figure 12: Motion of robot (dark gray) in a complex environment. The check-
points (small black dots) were located at the doorways and the goal position.
The robot could successfully navigate through the checkpoints to the goal by
traversing between unforeseen narrowly spaced convex obstacles (light gray)
in the first and the last room and overcoming an unforeseen concave obstacle
(light gray) in the middle room.

into the narrow corner of the right-most room via checkpoints plotted by
a planner (Low, Leow, & Ang, 2002). The robot was able to move through
the checkpoints to the goal by traversing between narrowly spaced convex
obstacles in the first and the last room, and overcoming an unforeseen con-
cave obstacle in the middle room. The results of these last two tests further
confirm the effectiveness of cooperative EKMs in handling complex tasks
in complex, unpredictable environments.

5 Conclusion

This article presents a new approach of learning sensorimotor control
for complex robot motion tasks using cooperative EKMs. Quantitative
evaluation reveals that indirect-mapping EKM can produce finer, smoother,
and more efficient robot motion control than other local learning methods
such as direct-mapping EKM and BFN. Furthermore, training the control
parameters of the indirect-mapping EKM with recursive least squares al-
lows faster convergence and better performance than with gradient descent.
The cooperation and competition of multiple EKMs enable the nonholo-
nomic mobile robot to negotiate unforeseen concave, closely spaced, and
dynamic obstacles. These tasks can easily trap robots that are controlled by
neural network ensembles employing command fusion techniques. Coop-
erative EKMs can thus augment the reactive capabilities of an autonomous
mobile robot significantly. Recently, we have enhanced cooperative EKMs
further to achieve multirobot motion tasks such that multiple robots fitted
with cooperative EKMs can coordinate their tracking of moving targets (see
Figure 13). Qualitative and quantitative test results of the improved coop-
erative EKMs for multirobot tasks are presented in Low, Leow, and Ang
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Figure 13: Cooperative tracking of moving targets. When the targets were mov-
ing out of the robots’ sensory range, the two robots moved in opposite directions
to track the targets. In this way, all targets could still be observed by the robots.

(2003) and Low, Leow, and Ang (2004). Our continuing research goal is to
generalize this approach to other sensorimotor control problems such as
those of static and mobile robot manipulators.
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