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ABSTRACT 

In recent years more and more computer aided diagnosis (CAD) systems are being used routinely in hospitals. Image-
based knowledge discovery plays important roles in many CAD applications, which have great potential to be integrated 
into the next-generation picture archiving and communication systems (PACS). Robust medical image segmentation 
tools are essentials for such discovery in many CAD applications. In this paper we present a platform with necessary 
tools for performance benchmarking for algorithms of liver segmentation and volume estimation used for liver 
transplantation planning. It includes an abdominal computer tomography (CT) image database (DB), annotation tools, a 
ground truth DB, and performance measure protocols. The proposed architecture is generic and can be used for other 
organs and imaging modalities. In the current study, approximately 70 sets of abdominal CT images with normal livers 
have been collected and a user-friendly annotation tool is developed to generate ground truth data for a variety of organs, 
including 2D contours of liver, two kidneys, spleen, aorta and spinal canal. Abdominal organ segmentation algorithms 
using 2D atlases and 3D probabilistic atlases can be evaluated on the platform. Preliminary benchmark results from the 
liver segmentation algorithms which make use of statistical knowledge extracted from the abdominal CT image DB are 
also reported. We target to increase the CT scans to about 300 sets in the near future and plan to make the DBs built 
available to medical imaging research community for performance benchmarking of liver segmentation algorithms. 

Keywords: PACS, Abdominal CT imaging, Liver Segmentation, Performance Benchmark, Knowledge Extraction, 
Probabilistic Atlas, CAD 

1. INTRODUCTION
In recent years more and more computer aided diagnosis (CAD) systems are being used routinely in many hospitals and 
specialist centers. Image-based knowledge discovery plays important roles in many CAD applications, which have great 
potential to be integrated into the next-generation picture archiving and communication systems (PCAS)1,2. In order to 
extract knowledge from large volumes of medical images stored in PACS systems, medical image databases (DBs) have 
to be constructed based on needs from specific applications and diseases. During the past years, research efforts have 
been devoted to build medical image DBs for CAD and content based medical image retrieval (CBMIR), such as the 
Lung Imaging Database Consortium (LIDC) for lung cancer diagnosis in USA3 and imageCLEF for CBMIR in Europe. 
4,5 Such DBs have been greatly supporting the research community. 

In general, a typical image-based CAD procedure includes the isolation of region of interest (ROI), feature 
extraction, pattern analysis and interpretation, and decision-making. Hence, efficient and robust medical image 
segmentation tools are essential in many CAD applications. With established DBs for specific applications, medical 
images will be processed and segmented for low-level feature extraction and ground truth data will be prepared. High-
level organ knowledge, such as 2D / 3D atlases as well as pathological features, can be computed based on the medical 
image data and the ground truth built. Once these collections of data and knowledge are available, they can then be used 
to benchmark various tools and systems for medical image segmentation, classification and retrieval. 

Research efforts have been put into liver segmentation and volume estimation during the past decade. 6-9 In order to 
meet clinical needs, accurate and robust abdominal organ segmentation is still very challenging due to 1) complex 
anatomic layouts and very similar densities for different organs in abdominal region, and 2) large variations in shape and 
locations of the same organs among humans. Due of the limited amount of liver CT data sets used for each study and the 

Medical Imaging 2008: PACS and Imaging Informatics, edited by Katherine P. Andriole, Khan M. Siddiqui,
Proc. of SPIE Vol. 6919, 69190N, (2008) · 1605-7422/08/$18 · doi: 10.1117/12.770858

Proc. of SPIE Vol. 6919  69190N-1



CAD applicatious
I

Segmeutatiou aud I Output
other tools, to be I

beuch'narked I

fact that they are not available to other researchers, it is hard to compare performance among different liver segmentation 
algorithms. Hence it is well-expected to have open source of medical image DBs with associated ground truth and 
common platforms for the community to benchmark various segmentation algorithms, applied to various organs and 
imaging modalities. A workshop was organized in MICCAI 2007 for the competition of caudate and liver segmentations. 
10 In this workshop, a small MRI brain image DB and a small CT liver image DB containing both normal and 
pathological cases, were provided for training (with reference segmentations), testing and validation. Currently, however, 
there is still no publicly available large DB of abdominal CT images for the research community. 

The purpose of the present work is to propose knowledge-extraction architecture from medical images for 3D 
abdominal organ segmentation and volume estimation in the context of CAD towards the next generation PCAS systems. 
With such architecture, algorithms will be benchmarked for 3D liver segmentation and volume estimation. The proposed 
architecture is however generic and can be used for other organs such as kidney, pancreas, etc.  

The organization of this paper is as follows: Section 2 gives an overview of this architecture platform with briefing 
and figure illustration. Necessary steps in constructing the architecture including data recruitment, data labeling and 
statistical knowledge extraction are introduced in Section 3. In Section 4 the performance benchmarking of liver 
segmentation algorithms using the constructed abdominal CT image DB is presented. Results and discussion are 
described in Section 5 and the paper is concluded lastly. 

2. PLATFORM OVERVIEW 
A generic platform for benchmarking liver image segmentation algorithms and volume estimation is shown in Fig. 1, It 
includes following components: an abdominal CT image DB, a ground truth DB, annotation tools, performance measure 
protocols, and finally, statistical models extracted from image and ground truth DBs, such as 2D/3D atlases for 
individual and multiple organs. There are two phases involved to construct the platform and the DBs. Phase 1 consists of 
establishing an abdominal CT image DB; preparing ground truth from medical images for individual organs; and 
computing statistical models such as probabilistic atlas for liver, kidneys and spleen, etc., based on images and the 
ground truth DBs. This procedure is associated with different registration and alignment algorithms and the computed 
statistical atlas will be used as the prior knowledge to facilitate further organ segmentation. Phase 2 involves testing 
various segmentation algorithms against the CT image DB; comparing obtained results with the ground truth data; and 
calculating performance indexes based on given performance protocols. Phase 1 is considered as a learning phase while 
Phase 2 is considered as a testing phase. 

Figure 1. The proposed generic platform with image-based knowledge extraction 
tools and the application in 3D liver CT image segmentation and volume 
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3. DATABASE CONSTRUCTION AND KNOWLEDGE EXTRACTION 

3.1 Image Recruitment and Ground Truth Labeling 
We have been granted by a local ethics committee to access human abdominal CT images for our research purpose. In 
the first stage, 70 sets of scans imaged by a spiral scanner (Volume Zoom, Siemens, Germany) are collected from the 
Department of Diagnostic Imaging, National University Hospital, Singapore. The image recruitment criteria are as 
follows: 1). Axial images were acquired using a standard clinical abdominal protocol from upper abdomen to pelvic 
sections, 5 mm slice thickness without inter-slice gap; 2). Non-ionic contrast enhanced scan at the arterial phase; 3). No 
focal lesion is seen in liver, spleen and kidneys but fatty liver is allowed. Eventually about 300 abdominal CT scans 
including normal and pathological cases will be collected into the DB. 

After data recruitment, 2D ground truth contours of liver, kidneys, spleen, aorta and spinal canal in each data set 
were manually traced on the basis of each slice by using an interactive pen-display (DTI520, Wacom, Japan) and a user-
friendly annotation tool developed by this group, as shown in Fig. 2. The annotation process was carried out by one 
radiologist and one imaging scientist and the boundaries traced were under their mutual agreement. Fig. 3 shows a CT 
image with traced ground truths for organs and structures, and Fig. 4 shows a 3D view of a traced liver. 

Figure 2. The image annotation tool 
with an interactive pen-display 

Figure 3. A CT image with traced and 
labeled organs and structures  

Figure 4. 3D visualization 
of a traced liver 

3.2 Construction of 2D Contour Atlases of Abdominal Organs 
2D contour atlases are constructed from the ground truth data, and they will be used as the initialization of two liver 
segmentation algorithms to be benchmarked. We construct a simple 2D atlas from only one slice of abdominal CT image 
by extract its contour. This is show in Fig. 5 where the annotated liver CT image (the left) is thresholded to obtain the 
region containing the liver (the middle) and traced contour (the right). We call this atlas as a single-2D atlas. We have 
also constructed a composite 2D contour atlas from multiple slices of images. Fig. 6 shows three gray-level CT images 
(the 3 left images) used to construct a single probabilistic atlas. The three images are firstly thresholded and then their 
logic OR is applied to obtained a region containing possible locations where a liver pixel can occur (the 4th from left). Its 
contour is then considered as a composite-2D atlas (the right). 

Figure 5. Construction of a single 2D atlas using single slice of annotated image
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Figure 6. Construction of a composite 2D atlas from multiple annotated 2D images 

3.3 Construction of a Probabilistic Atlas of Abdominal Organs 
Probabilistic atlas refers to a set of maps showing “the complete spatial distribution of probabilities that a voxel belongs 
to one or more organs”. 11 Each voxel is a vector whose cardinality depends on the number of organs. It is believed that 
probabilistic atlas can introduce more possible spatial information than single and deterministic atlas to the definition of 
complex and deformable organs. The basic idea to construct this atlas is to choose one common target set from some 
labeled abdominal data sets, register other sets to this target, and count, for each class of organs, how many voxels in 
these sets will be mapped to each voxel in the target. 12 Once a set of corresponding landmarks are chosen in both the 
reference and the target sets, the warping transform maps each voxel in the reference set to the target set and an objective 
function is computed to measure the goodness of the set of landmarks. An optimization approach will move the 
landmarks in the reference set to initialize an iterative procedure to map the reference set and compute the objective 
function again till the function is minimized. The warping transform used here is the thin-plate splines (TPS).13 The 
objective function is based on the mutual information (MI) between the target set and its reference set; and the 
multivariate nonlinear optimization algorithm to optimize the registration is a downhill simplex method.14

3.3.1 Thin-plate splines and MI-based registration 
The warping method using thin-plate splines interpolates surfaces over irregular spacing data by minimizing a physical 
bending energy functional of a thin metal plate using landmark point constraints. The two-dimensional interpolation 
applications of TPS were pioneered by Bookstein13 and here we adapt an extension to three dimensions.15

Given  pairs of landmarks  and n 1{ , , }n
i i i ix y z 1{ ' , ' , ' }n

i i i ix y z  in the reference set and the target set respectively, the 
thin plate spline maps any point ( , , )x y zx  in the reference space to ( ', ', ')x y zx'  in its target space: 
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2( , ) ( , ) log ( ( , ) /( ( )( ( )))
A B

MI A B p A B p A B p A p B . (2) 

Note that the summations are over all possible feature values. The dissimilarity between them can be defined as 
( , )MI A B . We use the Nelder-Mead downhill simplex method14 for our multivariate nonlinear optimization. As we are 

handling 3D volumetric data, the dimension for the optimization problem is 3  for  landmarks. n n

3.3.2 Construction of a multiple-organ probabilistic atlas 
We register a group of labeled reference sets to one common labeled target set. Four landmarks are labeled in each set of 
volume data: two in the liver, one in the left kidney and one in the right kidney. For each registration, the optimizer 
drives the four points in the reference set so that a local minimum of objective function is achieved. A TPS model is then 
found using these optimized landmarks and using this model the whole set of points are mapped to the targets set. 

During this warping transform, at each voxel ( ', ', ')x y zx'  in the target space, every occurrence of organ class 
, is counted, yielding a vector C components. For class , let  be its conditional probability and 

its certain attribute, then the attribute for the final warped volumes at  will be 
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Once all voxels in the target space are determined, the probabilistic atlas is constructed.Suppose, at x' , the number of 
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3.3.3 Constructed probabilistic atlas 
We have chosen 23 sets of abdominal CT data with different numbers of slices with a typical 40 slices. The slice spacing 
is 5mm and each slice is digitized into 512-by-512 pixels. The physical pixel intervals within a slice range from 0.5mm 
to 0.75mm for different sets. These sets of data are first scaled and translated to form isotropic data and all warping 
transforms are based on such isotropic data sets.  We consider six organs, i.e., liver, right/left kidney, spleen, abdominal 
aorta and spinal canal. As a preliminary attempt, only four pairs of landmarks are used for all warping transforms and in 
the optimization. In Fig. 7, the left illustrates the quantity G  and the right is the probabilistic atlas  for the slice. The 
organs can be observed from the resulted atlas. However, the quality of the constructed atlas is relatively worse than a 
previous work

ˆ G

11 as we only use four landmarks instead of 36-point TPS. 

Figure 7. Two abdominal probabilistic atlases constructed using four pairs of landmarks 
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4. PERFORMANCE BENCHMARKING OF LIVER SEGMENTATION ALGORITHMS 
Performance benchmarking of liver segmentation algorithms was performed in this study using 10 data sets selected 
from the constructed abdominal CT image DB and the corresponding ground truths. 2D contour atlases were constructed 
from data set No. 7 presented in Table 1. Two quantitative measure, sensitivity ( ) and Jaccard similarity measure 
(

SEN
JSM )16 were calculated to assess the similarity between the computed and manually defined liver areas: 

#
#
TPsSEN
GT

    and    #
# #

TPsJSM
GT FPs

, (4) 

where # is the cardinality of a set, TP  are true positives, s FPs  are false positives and GT is ground truth. Higher 
value means that results contain more TPs and higher 

SEN
JSM  indicates that results contain more TP  or with less s FPs .

We have experimented two automatic liver segmentation algorithms: the active contour method9 and the level-set 
method17. The first one is a revised version as reported in reference 9, which is  based on single 2D atlas. The second one 
is based on a variational level set17 while using the composite 2D contour atlas in initialization. In both methods we 
make use of 2D atlases as the initialization contours.   

4.1 Algorithm 1: Multiple 2D Atlases-Based Active Contours  
An automatic liver segmentation algorithm which originates from a previously developed active contour with one single 
2D atlas9 was tested on the collected data set. Multiple 2D atlases are used to accommodate the large liver shape changes 
from the top to the bottom sections. The original algorithm consists of three stages. Firstly, a global transformation 
combining outer body contour extraction and iterative closest point algorithm is conducted to register the atlas to the 
target image. Then a local transformation is applied iteratively to bring the atlas contour of each organ closer to the target 
contour, followed by an active contour model (snake) with gradient vector flow to refine the segmentation. For the 
revised algorithm, multiple 2D atlases instead of one single atlas are used and its implementation is as follows: Firstly, 
manual segmentation results of three slices in one data set (No. 7 in Table 1 below) were chosen as 2D atlases. Note that 
these atlases should be able to indicate the shape changes of the liver from top to bottom sections. Then after the global 
and local transformations, a 2D atlas-based snake algorithm is performed on each data set and every slice in the data set 
is segmented by the initialization from one of the atlases. In this procedure, which atlas is chosen depends on the 
difference between the atlas and the target images. If the difference is less, the result would be better. This makes the 
method semi-automatic in initialization for the whole set. 

4.2 Algorithm 2: Variational Level-Set Method Based on a Composite 2D Atlas 
Level set based methods have been popular for medical image segmentation in recent years. In comparison with the 
active contour method level set based methods have many advantages in handling objects with complex shapes. In our 
experiments we make use of the composite 2D atlas as the initialization contour. Therefore only one 2D atlas is used to 
segment all slides, which makes the liver segmentation fully automatic after the initialization. 

In traditional level set methods, the level set function can develop shocks, very sharp shape during the evolution, which 
makes further computation highly inaccurate. A common numerical scheme to avoid these problems is to initialize the 
level set function as a signed distance function before the evolution, and then re-initialize the level set function as the 
signed distance function periodically during the evolution. The re-initialization process is very complicated and 
expensive.  Here we implemented a variational level set method for the detection of liver boundaries proposed in.17 It can 
force the level set function to be close to the signed distance function, and thus eliminates the need of the re-initialization
procedure. This formulation consists of an internal energy term which penalizes the deviation of the level set function 
from a signed distance function and an external energy which drives the motion of the zero level set towards the object 
boundaries. The resulted the level set function is the gradient flow that minimizes the overall energy. 
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5. RESULTS AND DISCUSSION 

5.1 Benchmarking Results 
We extract all the 2D atlases from the data set No.7 shown in Table 1. Figs. 8 and 11 show the segmentation results of 
the two algorithms with segmented contours are overlaid on corresponding CT images. For some slices, the algorithm 
can find satisfying liver boundaries. However when certain situations are met such as low gradient to neighboring organs 
(slice 7), two unconnected component in 2D presentation (slice 7) and large shape changes (slice 19), its performance is 
poor. The  and SEN JSM  curves over each sequential slice in this set are shown in Fig. 9. It can be observed that major 
segmentation errors occur at the sections where liver has in connection with heart, liver appears to be two parts without 
connection in 2D and liver shapes have large change among neighboring slices.  

In experiments using the level-set method, the same set is used as the sample to generate a universal initial contour. In 
the beginning, three images (slice 7, 13 and 30) are chosen from the set to construct a multi-2D atlas (described above). 
This contour of the atlas is then used to initialize level sets in segmentation experiments for all other data sets. Similarly,
Fig.11 shows selected segmentation results from the same data set as that for the previous method. The level set method 
can find more than one objects and shrink to multiple close contours as seen from the result for slice 3 where one region 
in the right is wrongly segmented. We use all regions enclosed in the possibly multiple contour(s) as the segmented liver 
and evaluate the algorithm performance.   

Figure 8. Selected segmentation results for Algorithm 1 for data set 7. 

From left, top row: slice 3,7,11,15;  bottom: slice 19,23,27,31 
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Figure 9. SEN and JSM curves over each sequential slice 
data set 7 for Algorithm 1 

Figure 10. SEN and JSM curves over each sequential 
slice in data set 7 for Algorithm 2 
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The  and SEN JSM  curves over each sequential slice in this set are shown in Fig. 10. The segmentation results are not 
very good for some slices. For example, for slice 7, it also includes the heart part. For some slices, there are no overlap 
regions and hence yield zeros for  and SEN JSM . This may be due to wrong choices of objects since the largest object 
found may not be the liver. However, we also find that, for some slices, it can perform pretty well, like the previous 
method. Table 1 shows the quantitative measures for performance benchmarking of liver segmentation algorithms for the 
same 10 data sets. The level-set method normally has a higher sensitivity while a lower JSM  thus including more false 
positive segmentation. 

Figure 11. Selected segmentation results using a level-set method for data set 7: 

From left, top row: slice 3,7,11,15;  bottom: slice 19,23,27,31 

Table 1 Quantitative measures for performance benchmarking of liver segmentation algorithms 

Data
No.

1 2 3 4 5 6 7 8 9 10 Ave. 

SEN 0.83 0.94 0.86 0.94 0.85 0.81 0.88 0.88 0.74 0.78 0.85 A. 1 

JSM 0.71 0.79 0.68 0.78 0.71 0.75 0.83 0.81 0.65 0.69 0.74 

SEN 0.95 0.97 0.96 0.96 0.95 0.93 0.93 0.91 0.93 0.95 0.94 A. 2 

JSM 0.38 0.44 0.43 0.34 0.48 0.37 0.73 0.41 0.32 0.46 0.43 

5.2 Discussion 
Preliminary experimental results from the two algorithms  which make use of the 2D contour atlas have shown 
comparable performances in liver segmentation as reported in the recent international medical image segmentation 
workshop held in MICCAI0710.  So far we have only used 2D contour atlases in our experiments, much more work to be 
done in the future in which various types of knowledge about the livers can be extracted from various levels, including 
voxels, curves and surfaces, and incorporate the extracted knowledge into liver segmentation algorithm to make 
segmentation more robust. 

Results using single atlas and an active contour method can be found in reference.9 We have also experimented in 
this way and found the same conclusion: for slices near the slice where the atlas is taken, the segmentation results are 
much better than those far away. The contour of the atlas we used to initialize the level-set algorithm is shown in Fig. 5. 
This motivates us using more atlases. In the above experiments, we have tested two ways to use three different atlases.  
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Figure 12. Applying the level-set method, using a single 
composite 2D atlas produces better results than using a 
single 2D atlas: From left, original image, ground truth 
of liver, result using a single 2D atlas and that using a 

composite 2D atlas. 

Figure 13.  Performance comparison: level-set method using 
single 2D atlas and using single composite atlas generated from 

data set 7 

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SEN-M
JSM-M
SEN-1
JSM-1

In the experiments applying the active contours, the three atlases are extracted from slices in the beginning, the 
middle and the end positions, respectively. Each atlas covers separately about 10 slices around the position where it was 
extracted. In the experiments applying the level-set method, the three slices are chosen in the same way as before 
however used differently. A single composite 2D atlas is constructed and covers all slices in the scan set. The later 
method has higher sensitivity but significantly lower similarity due to obvious over segmentation, as shown in Table 1. 
The logic OR operation includes more region which is irrelevant to liver for most of slices for the initialization of 
evolution of level sets. Since the intensities and gradient properties of the liver and neighboring organs, such as the heart 
and the stomach, are very similar, the level-set method can not converge properly to the correct liver region resulting in 
many false alarms. The active contour method, on the other hand, has lower sensitivity.

Since we extract all the 2D atlases from the data set No.7 shown in Table 1, the similarity measure of this set is 
much higher than others for either method. Studying Figs. 9, 10 and 13, one can also observe that, the performance for 
the slices used to construct the atlas is better than those not-used slices. These observations remind us of the 
representativeness of the constructed atlas. If the atlas does not represent certain types of abdominal data, then the 
segmentation results will have low similarity. 

To compare the performance using a single composite 2D atlas and that using single atlas, we have applied them in 
two further experiments using the level set method. We can achieve better results using a multi-2D atlas (shown in Fig, 6) 
than using single atlas, as illustrated in Fig. 12. Comparing with the ground truth presented in the same figure, the single 
atlas method includes a part of the stomach. Such a false inclusion may be due to a wrong atlas used. Fig. 13 shows the 
sensitivity and the similarity measures of the level-set method applying both methods on the same scan set of 34 slices, 
where “SEN-M” and “JSM-M” are sensitivity and similarity measures for the multi-2D atlas and “SEN-1” and “JSM-1” 
are for the single atlas method.  On average over the whole set, the single-atlas method has sensitivity 0.965 and 
similarity 0.583, respectively, whereas the multi-2D-atlas method achieves sensitivity 0.934 and a higher similarity 0.728, 
respectively. The later method captures more true positive segmentation. 

The definitions of liver volume and performance measure protocols are also important issues. In clinical practice for 
the calculation of effective liver volume, major vascular structures with sinuses inside the liver such as artery and portal 
vein are excluded from liver volume. This protocol was adopted in our organ ground truth tracing procedure. While for 
edge detection-based methods such as active contour and level set, these internal hollow structures cannot be detected 
and the whole outline with the enclosed area was considered as the resultant target object. It can partially explain the 
large false positives we met in our experiments. In some other investigations, scans without contrast enhancement or at 
delayed phase were performed, therefore due to the weak difference in densities between liver tissue and vessels, liver 
ground truth was traced without excluding major vascular structures and sinuses. Under this definition for liver volume, 
some methods may achieve better performance. For the liver segmentation contest workshop in MICCAI 2007, liver 
contour ground truth was defined as the liver outer boundary without the exclusion of major vascular structures and 

 10sinuses.  Although overlap ratio (sensitivity) is the most common indicator to measure the segmentation performance, 
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research efforts have been devoted in this filed and a set of complicated performance measures, including volumetric 
overlap, relative absolute volume difference, average symmetric absolute surface distance, symmetric RMS surface 
distance and maximum symmetric absolute surface distance, have been proposed for 3D object segmentation. 18 In the 
present study, considering that we still worked on a 2D slice by slice basis, sensitivity and JSM were used as the 
evaluation measures. 

The purpose of construction of a probabilistic atlas is to automate the segmentation and volume quantification of 
abd

it is essential to make use of knowledge 
extr

6. CONCLUSION AND FUTURE WORK 
We have built up a generic platfo ithms and volume estimation.  It 

ACKNOWLEDGEMENT 

The research work is supported by the Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and 

REFERENCES 

1. K. Doi and H.K. Huang, “Computer-aided diagnosis (CAD) and image guided decision support,” Computerized 

2. : historical review, current status and future potential,” 

3. age Database Consortium: Developing a 

4. e”, Proceedings of the 

5. EF medical image retrieval 

6. zation 

7. iver CT image processing: a short introduction of the technical 

8. ccurate liver segmentation in CT images using a 

ominal organs including the liver. We plan to further explore this aspect.  

Finally, we believe in order to achieve robust segmentation performance
acted from collections of liver image databases and associated ground truth databases; the knowledge can be 

represented at many levels such as pixel/voxel density’s statistical distributions, single or multiple statistical 2D contour 
atlases and statistical 3D surface atlases for liver, and multi-organ probabilistic atlases for abdominal organs. These 
atlases can be constructed for both normal and pathological livers, depending applications’ needs of liver segmentations, 
such as liver transplantation or liver tumor detection for radiation planning, etc.  

rm for benchmarking liver image segmentation algor
contains an abdominal CT image DB, a ground truth DB, some annotation tools, performance measure protocols, and  
preliminary statistical models such as 2D/3D atlases for individual and multiple organs. We have also benchmarked two 
liver segmentation methods, with preliminary results. The experimental results have shown that, using multiple 2D 
contour atlases can achieve significantly better results than using single atlas. We plan to improve the atlas models and 
extract more knowledge from liver image databases and other ground truth databases and incorporate them into liver 
segmentation algorithms. We also plan to develop more integrated tools to facilitate the benchmarking. We target to 
increase the CT scans to about 300 sets in the near future and plan to make the DBs built available to medical imaging 
research community for performance benchmarking of liver segmentation algorithms. 
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