
Using GNU's GDB Debugger

Memory Layout And The Stack
By Peter Jay Salzman

Previous: Introduction Next: Debugging With Your Brain

Where Are We Going To Go?

To effectively learn how to use GDB, you must understand frames, which are also
called stack frames because they're the frames that comprise the stack. To learn
about the stack, we need to learn about the memory layout of an executing
program. The discussion will mainly be theoretical, but to keep things interesting
we'll conclude the chapter with an example of the stack and stack frames using
GDB.

The material learned in this chapter may seem rather theoretical, but it does serve
a few very useful purposes:

1. Understanding the stack is absolutely necessary for using a symbolic
debugger like GDB.

2. Knowing the memory layout of a process will help us understand what
exactly a segmentation fault (or segfault) is, and why they happen (or
sometimes, more importantly) don't happen when they should. In brief,
segfaults are the most common immediate cause for a program to
bomb.

3. A knowledge of a program's memory space can often allow us to figure
out the location of well-hidden bugs without the use of print() statements,
a compiler or even GDB! In the next section, which is a guest written
piece by one my friends, Mark Kim, we'll see some real Sherlock Holmes
style sleuthing. Mark homes in on a well hidden bug in somewhat lengthy
code. It only took him about 5 or 10 minutes, and all he did was look at
the program and use his knowledge of how a program's memory space
works. It's really impressive!

So without futher ado, let's take a look at how programs are laid out in memory.



Virtual Memory (VM)

Whenever a process is created, the kernel provides a chunk of physical memory
which can be located anywhere at all. However, through the magic of virtual
memory (VM), the process believes it has all the memory on the computer. You
might have heard "virtual memory" in the context of using hard drive space as
memory when RAM runs out. That's called virtual memory too, but is largely
unrelated to what we're talking about. The VM we're concerned with consists of the
following principles:

1. Each process is given physical memory called the process's virtual
memory space.

2. A process is unaware of the details of its physical memory (i.e. where it
physically resides). All the process knows is how big the chunk is and that
its chunk begins at address 0.

3. Each process is unaware of any other chunks of VM belonging to other
processes.

4. Even if the process did know about other chunks of VM, it's physically
prevented from accessing that memory.

Each time a process wants to read or write to memory, its request must be
translated from a VM address to a physical memory address. Conversely, when the
kernel needs to access the VM of a process, it must translate a physical memory
address into a VM address. There are two major issues with this:

1. Computers constantly access memory, so translations are very common;
they must be lighting fast.

2. How can the OS ensure that a process doesn't trample on another
process's VM?

The answer to both questions lies in the fact that the OS doesn't manage VM by
itself; it gets help from the CPU. Many CPUs contain a device called an MMU: a
memory management unit. The MMU and the OS are jointly responsible for
managing VM, translating between virtual and physical addresses, enforcing
permissions on which processes are allowed to access which memory locations, and
enforcing read/write permissions on sections of a VM space, even for the process
that owns that space.

It used to be the case that Linux could only be ported to architectures that had an
MMU (so Linux wouldn't run on, say, an x286). However, in 1998, Linux was ported
to the 68000 which had no MMU. This paved the way for embedded Linux and Linux
on devices such as the Palm Pilot.

Exercises

1. Read a short Wikipedia blurb on the MMU
2. Optional: If you want to know more about VM, here's a link. This is much

more than you need to know.



Memory Layout

That's how VM works. For the most part, each process's VM space is laid out in a
similar and predictable manner:

High Address Args and env vars Command line arguments and environment variables

Stack
|
V

Unused memory

^
|

Heap

Uninitialized Data Segment (bss) Initialized to zero by exec.

Initialized Data Segment Read from the program file by exec.

Low Address Text Segment Read from the program file by exec.

Text Segment: The text segment contains the actual code to be executed. It's
usually sharable, so multiple instances of a program can share the text segment to
lower memory requirements. This segment is usually marked read-only so a
program can't modify its own instructions.
Initialized Data Segment: This segment contains global variables which are
initialized by the programmer.
Uninitialized Data Segment: Also named "bss" (block started by symbol) which
was an operator used by an old assembler. This segment contains uninitialized
global variables. All variables in this segment are initialized to 0 or NULL pointers
before the program begins to execute.
The stack: The stack is a collection of stack frames which will be described in the
next section. When a new frame needs to be added (as a result of a newly called
function), the stack grows downward.
The heap: Most dynamic memory, whether requested via C's malloc() and friends
or C++'s new is doled out to the program from the heap. The C library also gets
dynamic memory for its own personal workspace from the heap as well. As more
memory is requested "on the fly", the heap grows upward.

Given an object file or an executable, you can determine the size of each section
(realize we're not talking about memory layout; we're talking about a disk file that
will eventually be resident in memory). Given hello_world-1.c, Makefile:



1   // hello_world-1.c
2   
3   #include <stdio.h>
4   
5   int main(void)
6   {
7      printf("hello world\n");
8   
9      return 0;
10  }

compile it and link it separately with:

   $ gcc -W -Wall -c hello_world-1.c
   $ gcc -o hello_world-1  hello_world-1.o

You can use the size command to list out the size of the various sections:

   $ size hello_world-1 hello_world-1.o 
   text   data   bss    dec   hex   filename
    916    256     4   1176   498   hello_world-1
     48      0     0     48    30   hello_world-1.o

The data segment is the initialized and uninitialized segments combined. The dec
and hex sections are the file size in decimal and hexidecimal format respectively.

You can also get the size of the sections of the object file using " objdump -h" or
" objdump -x".

   $ objdump -h hello_world-1.o 
   
   hello_world-1.o:     file format elf32-i386
   
   Sections:
   Idx Name          Size      VMA       LMA       File off  Algn
     0 .text         00000023  00000000  00000000  00000034  2**2
                     CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
     1 .data         00000000  00000000  00000000  00000058  2**2
                     CONTENTS, ALLOC, LOAD, DATA
     2 .bss          00000000  00000000  00000000  00000058  2**2
                     ALLOC
     3 .rodata       0000000d  00000000  00000000  00000058  2**0
                     CONTENTS, ALLOC, LOAD, READONLY, DATA
     4 .note.GNU-stack 00000000  00000000  00000000  00000065  2**0
                     CONTENTS, READONLY
     5 .comment      0000001b  00000000  00000000  00000065  2**0
                     CONTENTS, READONLY

Exercises

1. The size command didn't list a stack or heap segment for hello_world or
hello_world.o. Why do you think that is?

2. There are no global variables in hello_world-1.c. Give an explanation for why
size reports that the data and bss segments have zero length for the object
file but non-zero length for the executable.

3. size and objdump report different sizes for the text segment. Can you guess



where the discrepancy comes from? Hint: How big is the discrepancy? See
anything of that length in the source code?

4. Optional: Read this link about object file formats.

Stack Frames And The Stack

You just learned about the memory layout for a process. One section of this
memory layout is called the stack, which is a collection of stack frames. Each stack
frame represents a function call. As functions are called, the number of stack
frames increases, and the stack grows. Conversely, as functions return to their
caller, the number of stack frames decreases, and the stack shrinks. In this section,
we learn what a stack frame is. A very detailed explanation here, but we'll go over
what's important for our purposes.

A program is made up of one or more functions which interact by calling each
other. Every time a function is called, an area of memory is set aside, called a stack
frame, for the new function call. This area of memory holds some crucial
information, like:

1. Storage space for all the automatic variables for the newly called
function.

2. The line number of the calling function to return to when the called
function returns.

3. The arguments, or parameters, of the called function.

Each function call gets its own stack frame. Collectively, all the stack frames make
up the call stack. We'll use hello_world-2.c for the next example.

1   #include <stdio.h>
2   void first_function(void);
3   void second_function(int);
4   
5   int main(void)
6   {
7      printf("hello world\n");
8      first_function();
9      printf("goodbye goodbye\n");
10  
11     return 0;
12  }
13  
14  
15  void first_function(void)
16  {
17     int imidate = 3;
18     char broiled = 'c';
19     void *where_prohibited = NULL;
20  
21     second_function(imidate);
22     imidate = 10;
23  }
24  
25  



26  void second_function(int a)
27  {
28     int b = a;
29  }

When the program starts, there's one stack frame,
belonging to main(). Since main() has no automatic
variables, no parameters, and no function to return
to, the stack frame is uninteresting. Here's what the
stack looks like just before the call to first_function()
is made.

Frame for main()

When the call to first_function() is made, unused
stack memory is used to create a frame for
first_function(). It holds four things: storage space
for an int, a char, and a void *, and the line to return
to within main(). Here's what the call stack looks like
right before the call to second_function() is made.

Frame for main()

Frame for first_function()
Return to main(), line 9
Storage space for an int
Storage space for a char
Storage space for a void *

When the call to second_function() is made, unused
stack memory is used to create a stack frame for
second_function(). The frame holds 3 things: storage
space for an int and the current address of
execution within second_function(). Here's what the
stack looks like right before second_function() returns.

Frame for main()

Frame for first_function():
Return to main(), line 9
Storage space for an int
Storage space for a char
Storage space for a void *

Frame for second_function():
Return to first_function(),

line 22
Storage space for an int
Storage for the int

parameter named a

When second_function() returns, its frame is used to
determine where to return to (line 22 of
first_function()), then deallocated and returned to
stack. Here's what the call stack looks like after
second_function() returns:

Frame for main()

Frame for first_function():
Return to main(), line 9
Storage space for an int
Storage space for a char
Storage space for a void *

When first_function() returns, its frame is used to



determine where to return to (line 9 of main()), then
deallocated and returned to the stack. Here's what
the call stack looks like after first_function() return:

Frame for main()

And when main() returns, the program ends.

Exercises

1. Suppose a program makes 5 function calls. How many frames should be on
the stack?

2. We saw that the stack grows linearly downward, and that when a function
returns, the last frame on the stack is deallocated and returned to unused
memory. Is it possible for a frame somewhere in the middle of the stack to
be returned to unused memory? If it did, what would that mean about the
running program?

3. Can a goto() statement cause frames in the middle of the stack to be
deallocated? The answer is no, but why?

4. Can longjmp() cause frames in the middle of the stack to be deallocated?

The Symbol Table

A symbol is a variable or a function. A symbol table is exactly what you think: it's a
table of variables and functions within an executable. Normally, symbol tables
contain only memory addresses of symbols, since computers don't use (or care)
what we name variables and functions.

But in order for GDB to be useful to us, it needs to be able to refer to variable and
function names, not their addresses. Humans use names like main() or i. Computers
use addresses like 0x804b64d or 0xbffff784. To that end, we can compile code with
"debugging information" which tells GDB two things:

1. How to associate the address of a symbol with its name in the source
code.

2. How to associate the address of a machine code with a line of source
code.

A symbol table with this extra debugging information is called an augmented or
enhanced symbol table. Because gcc and GDB run on so many different platforms,
there are many different formats for debugging information:

stabs: The format used by DBX on most BSD systems.
coff: The format used by SDB on most System V systems before System V
Release 4.
xcoff: The format used by DBX on IBM RS/6000 systems.



dwarf: The format used by SDB on most System V Release 4 systems.
dwarf2: The format used by DBX on IRIX 6.
vms: The format used by DEBUG on VMS systems.

In addition to debugging formats, GDB understands enhanced variants of these
formats that allow it to make use of GNU extensions. Debugging an executable with
a GNU enhanced debugging format with something other than GDB will can result in
anything from it working correctly to the debugger crashing.

Don't let all these formats scare you: in the next section, I'll show you that GDB
automagically picks whatever format is best for you. And for the .1% of you that
need a different format, you're already knowledgeable enough to make that
decision.

Preparing An Executable For Debugging

If you plan on debugging an executable, a corefile resulting from an executable, or
a running process, you must compile the executable with an enhanced symbol
table. To generate an enhanced symbol table for an executable, we must compile it
with gcc's -g option:

   gcc -g -o filename filename.c

As previously discussed, there are many different debugging formats. The actual
meaning of -g is to produce debugging information in the native format for your
system.

As an alternative to -g, you can also use gcc's -ggdb option:

   gcc -ggdb -o filename filename.c

which produces debugging information in the most expressive format available,
including the GNU enhanced variants previously discussed. I believe this is probably the
option you want to use in most cases.

You can also give a numerical argument to -g, -ggdb and all the other debugging
format options, with 1 being the least amount of information and 3 being the most.
Without a numerical argument, the debug level defaults to 2. By using -g3 you can
even access preprocessor macros, which is really nice. I suggest you always use -
ggdb3 to produce an enhanced symbol table.

Debugging information compiled into an executable will not be read into memory
unless GDB loads the executable. This means that executables with debug
information will not run any slower than executables without debug information (a
common misconception). While it's true that debugging executables take up more



disk space, the executable will not have a larger "memory footprint" unless it's from
within GDB. Similarly, executable load time will be nearly the same, again, unless
you run the debug executable from within GDB.

One last comment. It's certainly possible to perform compiler optimizations on an
executable which has an augmented symbol table, in other words: gcc -g -O9 try1.c.
In fact, GDB is one of the few symbolic debuggers which will generally do quite well
debugging optimized executables. However, you should generally turn off
optimizations when debugging an executable because there are situations that will
confuse GDB. Variables may get optimized out of existence, functions may get
inlined, and more things may happen that may or may not confuse gdb. To be on
the safe side, turn off optimization when you're debugging a program.

Exercises

1. Run " strip --only-keep-debug try1". Look at the file size of try1. Now run " strip -

-strip-debug try1 and look at the file size. Now run strip --strip-all try1 and
look at the file size. Can you guess what's happening? If not, your
punishment is to read "man strip", which makes for some provocative
reading.

2. You stripped all the unnecessary symbols from try1 in the previous exercise.
Re-run the program to make sure it works. Now run " strip --remove-

section=.text try1" and look at the file length. Now try to run try1. What do
you suppose is going on?

3. Read this link about symbol tables (it's short).
4. Optional: Read this link about the COFF object file format.

Investigating The Stack With GDB

We'll look at the stack again, this time, using GDB. You may not understand all of
this since you don't know about breakpoints yet, but it should be intuitive. Compile
and run try1.c:

   1    #include<stdio.h>
   2    static void display(int i, int *ptr);
   3    
   4    int main(void) {
   5       int x = 5;
   6       int *xptr = &x;
   7       printf("In main():\n");
   8       printf("   x is %d and is stored at %p.\n", x, &x);
   9       printf("   xptr points to %p which holds %d.\n", xptr, *xptr);
   10      display(x, xptr);
   11      return 0;
   12   }
   13   
   14    void display(int z, int *zptr) {
   15     printf("In display():\n");
   16       printf("   z is %d and is stored at %p.\n", z, &z);
   17       printf("   zptr points to %p which holds %d.\n", zptr, *zptr);



   18   }

Make sure you understand the output before continuing with this tutorial. Here's
what I see:

   $ ./try1 
   In main():
      x is 5 and is stored at 0xbffff948.
      xptr points to 0xbffff948 which holds 5.
   In display():
      z is 5 and is stored at 0xbffff924.
      zptr points to 0xbffff948 which holds 5.

You debug an executable by invoking GDB with the name of the executable. Start a
debugging session with try1. You'll see a rather verbose copyright notice:

   $ gdb try1
   GNU gdb 6.1-debian
   Copyright 2004 Free Software Foundation, Inc.
   GDB is free software, covered by the GNU General Public License, and you are
   welcome to change it and/or distribute copies of it under certain conditions.
   Type "show copying" to see the conditions.
   There is absolutely no warranty for GDB.  Type "show warranty" for details.
   
   (gdb) 

The (gdb) is GDB's prompt. It's now waiting for us to input commands. The program
is currently not running; to run it, type run. This runs the program from inside GDB:

   (gdb) run
   Starting program: try1 
   In main():
      x is 5 and is stored at 0xbffffb34.
      xptr points to 0xbffffb34 which holds 5.
   In display():
      z is 5 and is stored at 0xbffffb10.
      zptr points to 0xbffffb34 which holds 5.
   
   Program exited normally.
   (gdb) 

Well, the program ran. It was a good start, but frankly, a little lackluster. We
could've done the same thing by running the program ourself. But one thing we
can't do on our own is to pause the program in the middle of execution and take a
look at the stack. We'll do this next.

You get GDB to pause execution by using breakpoints. We'll cover breakpoints later,
but for now, all you need to know is that when you tell GDB break 5, the program will
pause at line 5. You may ask: does the program execute line 5 (pause between 5
and 6) or does the program not execute line 5 (pause between 4 and 5)? The
answer is that line 5 is not executed. Remember these principles:

1. break 5 means to pause at line 5.
2. This means GDB pauses between lines 4 and 5. Line 4 has executed. Line

5 has not.



Set a breakpoint at line 10 and rerun the program:

   (gdb) break 10
   Breakpoint 1 at 0x8048445: file try1.c, line 10.
   (gdb) run
   Starting program: try1 
   In main():
      x is 5 and is stored at 0xbffffb34.
      xptr holds 0xbffffb34 and points to 5.
   
   Breakpoint 1, main () at try1.c:10
   10         display(x, xptr);

We set a breakpoint at line 10 of file try1.c. GDB told us this line of code
corresponds to memory address 0x8048445. We reran the program and got the first 2
lines of output. We're in main(), sitting before line 10. We can look at the stack by
using GDB's backtrace command:

   (gdb) backtrace
   #0  main () at try1.c:10
   (gdb) 

There's one frame on the stack, numbered 0, and it belongs to main(). If we execute
the next line of code, we'll be in display(). From the previous section, you should
know exactly what should happen to the stack: another frame will be added to the
bottom of the stack. Let's see this in action. You can execute the next line of code
using GDB's step command:

   (gdb) step
   display (z=5, zptr=0xbffffb34) at try1.c:15
   15              printf("In display():\n");
   (gdb) 

Look at the stack again, and make sure you understand everything you see:

   (gdb) backtrace
   #0  display (z=5, zptr=0xbffffb34) at try1.c:15
   #1  0x08048455 in main () at try1.c:10

Some points to note:

We now have two stack frames, frame 1 belonging to main() and frame 0 belong to
display().
Each frame listing gives the arguments to that function. We see that main() took no
arguments, but display() did (and we're shown the value of the arguments).
Each frame listing gives the line number that's currently being executed within
that frame. Look back at the source code and verify you understand the line
numbers shown in the backtrace.
Personally, I find the numbering system for the frame to be confusing. I'd prefer
for main() to remain frame 0, and for additional frames to get higher numbers. But
this is consistent with the idea that the stack grows "downward". Just remember
that the lowest numbered frame is the one belonging to the most recently called
function.



Execute the next two lines of code:

   (gdb) step
   In display():
   16         printf("   z is %d and is stored at %p.\n", z, &z);
   (gdb) step
      z is 5 and is stored at 0xbffffb10.
   17         printf("   zptr holds %p and points to %d.\n", zptr, *zptr);

Recall that the frame is where automatic variables for the function are stored.
Unless you tell it otherwise, GDB is always in the context of the frame corresponding
to the currently executing function. Since execution is currently in display(), GDB is
in the context of frame 0. We can ask GDB to tell us which frame its context is in by
giving the frame command without arguments:

   (gdb) frame
   #0  display (z=5, zptr=0xbffffb34) at try1.c:17
   17         printf("   zptr holds %p and points to %d.\n", zptr, *zptr);

I didn't tell you what the word "context" means; now I'll explain. Since GDB's context
is in frame 0, we have access to all the local variables in frame 0. Conversely, we
don't have access to automatic variables in any other frame. Let's investigate this.
GDB's print command can be used to give us the value of any variable within the
current frame. Since z and zptr are variables in display(), and GDB is currently in
the frame for display(), we should be able to print their values:

   (gdb) print z
   $1 = 5
   (gdb) print zptr
   $2 = (int *) 0xbffffb34

But we do not have access to automatic variables stored in other frames. Try to
look at the variables in main(), which is frame 1:

   (gdb) print x
   No symbol "x" in current context.
   (gdb) print xptr
   No symbol "xptr" in current context.

Now for magic. We can tell GDB to switch from frame 0 to frame 1 using the frame
command with the frame number as an argument. This gives us access to the
variables in frame 1. As you can guess, after switching frames, we won't have
access to variables stored in frame 0. Follow along:

   (gdb) frame 1                           <--- switch to frame 1
   #1  0x08048455 in main () at try1.c:10
   10         display(x, xptr);
   (gdb) print x
   $5 = 5                                  <--- we have access to variables in frame 1
   (gdb) print xptr
   $6 = (int *) 0xbffffb34                 <--- we have access to variables in frame 1
   (gdb) print z
   No symbol "z" in current context.       <--- we don't have access to variables in frame 0
   (gdb) print zptr
   No symbol "zptr" in current context.    <--- we don't have access to variables in frame 0



By the way, one of the hardest things to get used to with GDB is seeing the
program's output:

   x is 5 and is stored at 0xbffffb34.
   xptr holds 0xbffffb34 and points to 5.

intermixed with GDB's output:

   Starting program: try1
   In main():
   ...
      Breakpoint 1, main () at try1.c:10
   10         display(x, xptr);

intermixed with your input to GDB:

   (gdb) run

intermixed with your input to the program (which would've been present had we
called some kind of input function). This can get confusing, but the more you use
GDB, the more you get used to it. Things get tricky when the program does terminal
handling (e.g. ncurses or svga libraries), but there are always ways around it.

Exercises

1. Continuing from the previous example, switch back to display()'s frame.
Verify that you have access to automatic variables in display()'s frame, but
not main()'s frame.

2. Figure out how to quit GDB on your own. Control-d works, but I want you to
guess the command that quits GDB.

3. GDB has a help feature. If you type help foo, GDB will print a description of
command foo. Enter GDB (don't give GDB any arguments) and read the help
blurb for all GDB commands we've used in this section.

4. Debug try1 again and set a breakpoint anywhere in display(), then run the
program. Figure out how to display the stack along with the values of every
local variable for each frame at the same time. Hint: If you did the previous
exercise, and read each blurb, this should be easy.

 

   Back: Introduction   Up to the TOC
Next: Debugging With Your

Brain   

  Email comments and
corrections

  Printable version




