
Test Generation to Expose Changes in Evolving Programs

Dawei Qi, Abhik Roychoudhury, Zhenkai Liang
National University of Singapore

{dawei,abhik,liangzk}@comp.nus.edu.sg

ABSTRACT
Software constantly undergoes changes throughout its life cycle,
and thereby it evolves. As changes are introduced into a code base,
we need to make sure that the effect of the changes is thoroughly
tested. For this purpose, it is important to generate test cases that
can stress the effect of a given change. In this paper, we propose an
automatic test generation solution to this problem. Given a change
c, we use dynamic symbolic execution to generate a test input t,
which stresses the change. This is done by ensuring (i) the change
c is executed by t, and (ii) the effect of c is observable in the output
produced by the test t. To construct a change-reaching input, our
technique uses distance in control-dependency graph to guide path
exploration towards the change. Then, our technique identifies the
common programming patterns that may prevent a given change
from affecting the program’s output. For each of these patterns
we propose methods to tune the change-reaching input into an in-
put that reaches the change and propagates the effect of the change
to the output. Our experimental results show that our test genera-
tion technique is effective in generating change-exposing inputs for
real-world programs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools, Symbolic execution

General Terms
Experimentation, Reliability

Keywords
Software Evolution, Test Generation, Symbolic Execution

1. INTRODUCTION
Regression testing is one of the most commonly known software

engineering activities for developing reliable software. In simple
terms, it stresses “program changes” as a program evolves from one
version to another, checking whether new functionality introduced

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

by the changes is correct and whether the changes result in errors in
existing functionality. Often, regression testing involves re-testing
using a new test-suite containing both existing test cases and new
test cases as the program evolves.

For re-testing with existing test cases, because the test-suite of
a program is often huge, it is inefficient to test the changed pro-
gram with all existing test cases. Most of the past research efforts
in regression testing focus on this inefficiency issue and provide so-
lutions via test selection [2,12] (selecting a subset of the tests to be
run) or test prioritization [4, 15] (changing the order in which a set
of given tests is run).

However, the evolution of a program often involves addition of
new functionality, and thus the test-suite should also evolve with
the evolution of the program. In this aspect, the key challenge is
to generate test cases related to the changes. Recent work [13, 16,
19] has studied test-suite augmentation for evolving software. The
main task in test-suite augmentation is to find new test cases that
stress the program changes and affect the program output. Suppose
a program P (with a test-suite T) evolves to a program P ′, i.e.,
P is changed to produce P ′. A test-suite augmentation method
should generate test cases that make the effect of the changes vis-
ible in terms of observable program output. If these test cases do
not appear in the existing test-suite T , we add them to T .

Let us now examine an intuitive way of generating test cases
for stressing program changes. Consider an output variable out in
programs P and P ′, and let the inputs of P and P ′ be in1, in2,
. . ., and ink. By performing a strongest post-condition computa-
tion (using symbolic execution) on program P , we represent the
output variable out in P as a formula ϕ(in1, in2, . . . , ink). Simi-
larly, by performing a strongest post-condition computation on pro-
gram P ′, we represent the variable out in P ′ as another formula
ϕ′(in1, in2, . . . , ink). We can then solve

ϕ(in1, in2, . . . , ink) 6= ϕ′(in1, in2, . . . , ink)

and the solutions are test cases (assignments of values to inputs
in1, in2, . . . , ink) that make the output values different in the two
programs.

Although the above approach is straightforward, it does not scale.
Since we need to perform static symbolic execution on the program
(rather than dynamic symbolic execution on an execution path of
the program), it is difficult for the approach to scale up to large real-
world programs. In this paper, we develop a scalable approach for
test-suite augmentation. Our approach builds on the execute-infect-
propagate (PIE) paradigm [18]: the new tests should (i) execute the
program changes, (ii) infect the program state, and (iii) propagate
the infection to the output.

From a high level, our approach works in two steps. The first
step is to generate an input satisfying the execute property in the

1 int x ; /∗ Input v a r i a b l e ∗/
2 int y ;
3 int o ; /∗ Output v a r i a b l e ∗/
4
5 input (x) ;
6
7 i f (x > 0) {
8 y = 3 ; // change : y = 2;
9 i f (x − y > 0)

10 o = y ;
11 else
12 o = 0 ;
13 } else
14 o = −1;
15
16 i f (x > 20)
17 o = 10 ;
18
19 output (o) ;

(a) Original Program

1 int x ; /∗ Input v a r i a b l e ∗/
2 int y ;
3 int o ; /∗ Output v a r i a b l e ∗/
4
5 input (x) ;
6
7 i f (x > 0) {
8 y = 2 ; /∗ CHANGE ∗/
9 i f (x − y > 0)

10 o = y ;
11 else
12 o = 0 ;
13 } else
14 o = −1;
15
16 i f (x > 20)
17 o = 10 ;
18
19 output (o) ;

(b) New Version
Figure 1: A motivating example to illustrate our approach.

reaching test cases, which are constructed iteratively. In
each iteration, a new test case is generated to drive the pro-
gram execution closer to the targeted change. This process
continues until we get a test input which executes the given
program change.

Algorithm 1 captures the core method for generating a change-
reaching test case. The inputs to the algorithm are — the
old program P , the changed program P ′, and the test-suite
TP for program P . There a single change between the pro-
grams P and P ′, that is, P and P ′ differ via a unit change
statement stmt. The output of the algorithm is a test input
tnew which executes this changed statement stmt.

Central to the working of Algorithm 1 is the notion of partial
path conditions (abbreviated as PPC). Since we are trying
to construct a feasible program path (i.e., exercised by at
least one program input) in the changed program P ′ which
terminates in the given change stmt — our method works
by constructing a path which iteratively gets “closer” to the
change c. The measure of closeness or proximity of a path π
(w.r.t. the change stmt) is given by the length of the chain
of control dependencies that need to be traversed from π in
order to reach stmt. So, during the execution of Algorithm
1, we are working with program paths which have not yet
reached the change stmt. The path condition of such paths
are referred to as partial path conditions in our terminology,
the term “partial” specifically emphasizing that the change
has not yet been reached. Also, note that the path condition
of any program path π is a quantifier-free first order logic
formula which is satisfied by all test inputs which execute π.

The basic intuition of the algorithm is as follows. We run
the test-suite TP of the old program P on the changed pro-
gram P ′. If any test t ∈ TP executes the changed statement
stmt in the changed program P ′, we can stop and return t.
Otherwise, we collect the path condition of every test in TP
and try to manipulate these path conditions to“advance”to-
wards the changed statement stmt. This is done as follows.
Let the path condition of test t ∈ TP be ψ1 ∧ ψ2 ∧ . . . ψm.
We also know that t does not execute the changed statement

Partial Path
Condition (PPC)
are computed
f th thfrom these paths One round of deviations from PPC

If they do not reach changed stmt
‐deviate further from these deviations.

Path for t ∈ TPath for t ∈ TP

Figure 2: Summary of Algorithm 1

stmt, so, we look for mechanisms of deviating from the ex-
ecution trace of t to reach stmt. For this reason, we first
accumulate the m partial path conditions

{ψ1 ∧ . . . ∧ ψi ∧ ψi+1 | 0 ≤ i < m}

These are path conditions of different prefixes of the execu-
tion trace for test t in program P ′. We now deviate from
these prefixes to construct formulae of the form

ψ1 ∧ . . . ∧ ψk−1 ∧ ¬ψk
where, essentially, the last branch condition in one of the
partial path conditions is negated. Note that this formula
may be unsatisfiable. If it is satisfiable we find an input ti
which satisfies the formula, execute ti in P ′ and compute
all the partial path conditions from the path condition of
ti. These partial path conditions are then explored to see
whether they can reach the changed statement stmt, other-
wise we explore further deviations from these partial path
conditions of ti in a similar way (i.e., by negating the last
branch condition). This, in essence, is the heart of our algo-
rithm for reaching the changed statement. Figure 2 shows a
visual summary of the working of ’our algorithm.

From the preceding rough description of Algorithm 1, we

(a) Example Program

ENTRY

EXIT

14

7

5

8

10 12

19
17

9

16

(b) Control Flow Graph

ENTRY

EXIT

14

7

5

8

10 12

19
17

9

16

ENTRY

EXIT

14

7 5

8

10 12

19

179

16

(c) Control Dependence Graph

Figure 1: A motivating example to illustrate our approach.

PIE paradigm. Given a change c (in source code from one program
version to another), we find a path that reaches c in the control flow
graph. We then perform symbolic execution along the path to find
an input t that makes the program execute the path leading to c.
The second step of our approach aims to generate test cases that
satisfy the infect and propagate properties, in addition to the ex-
ecute property. Since any infection in program states is reflected
as different variable values (after the change) in the two program
versions, we observe that state infection and propagation may be
avoided if (i) variables affected (directly/indirectly) by a program
change are defined but not used, or (ii) the uses of affected vari-
able cannot propagate the change effect forward (by affecting other
variables). If an assignment of some affected variable v is not used
in the execution of test t, we find a new test t′ (aided by symbolic
execution along a path) that can execute the uses of v. If the use of
variable v does not propagate the change effect forward, we find a
new test t′ that can propagate the effect in v.

The preceding describes our method in a nutshell. The key to
the method’s efficiency lies in our strategy in avoiding symbolic
execution on programs. Our approach performs every symbolic ex-
ecution along a program path. Note that symbolic execution along
a program path has additional overhead in enumerating and search-
ing for the “right” path. We use various analysis methods to guide
us to the “right” path. When trying to execute the change, the short-
est path in the control dependency graph guides us to efficiently lo-
cate and construct a path to the change. When trying to propagate
the change effect, we identify the reasons for which the propaga-
tion terminates, and propagate the change effect to program output
while detecting branch correlations on-the-fly (which allows us to
avoid infeasible program paths).

Performing symbolic execution along a path also helps us avoid
the memory alias problem: since the symbolic execution is along a
program path, all memory references are disambiguated.

In our experiments, we tried our test-case generation approach
on two programs: tcas, a small program with multiple versions
(each encoding a different change) from the SIR repository [3]
and libPNG, a large-scale library for manipulating PNG images
(27977 lines of code). For both the subject programs, our method

successfully generated test cases that stress the changes (by produc-
ing different program outputs) for almost all the program versions.

2. MOTIVATING EXAMPLE
In this section, we motivate the problem of test case generation

in evolving programs with an example.
Figure 1 shows an example of evolving programs. In the example

program shown in Figure 1(a), the variable x is the input variable
and the variable o is the output variable. The change is at line 8,
where the assignment of variable y is changed from 3 to 2. We now
need to synthesize a test case that stresses this change. Figure 1(b)
and Figure 1(c) show the control-flow graph (CFG) and control-
dependency graph (CDG) of the example program, respectively, in
which the changed statement is marked in dark color.

In order to test the change, we need test cases that can drive the
program to the changed statement in P ′, and can result in an output
of P ′ different from that of P .

Reaching the change.
Suppose we have the following test case for the original program

P : x = -1. The execution trace of the test case x = -1 in the changed
program is {5, 7, 13, 14, 16, 19}, which does not cover the change
at line 8. Note that there are two branches in the trace, namely line 7
and line 16. If we execute these branches differently, we may drive
P ′ to reach the change. However, some of the branches, such as
line 16, do not help to reach the change. We use the CDG to identify
such branches. From the CDG in figure 1(c), we can see that node
7 can determine whether the change (node 8) is executed, while
node 16 cannot. So we want to execute branch 7 differently. This
analysis (for finding which branch to evaluate differently) can be
automated via traversal of the CDG. In this example, we construct
the formula (x > 0) by flipping the evaluation of the branch in line
7. Solving this formula x > 0, we get an input, say x = 1, that
stresses the change.

Affecting program output.
Using the new input x = 1 to test both program versions, we get

the same program output 0. Even though the change is executed,
its effect is not propagated into the program output. We can see that

propagation of the change effect (y = 2) stops at the branch in line
9 — this branch is evaluated to false in both the program versions
for x = 1. To propagate the effect of the program change past this
branch, we need the branch to be evaluated differently in P and P ′,
which is expressed in the following symbolic formula.

(x > 0) ∧ (x− 2 > 0) ∧ ¬(x− 3 > 0)

An x satisfying this formula will execute the change, and evaluate
the branch in line 9 differently in the two program versions. This
gives us the answer x = 3. Executing P and P ′ using the input x
= 3, we find that the program output is different in both program
versions. Thus, we have generated a test case which executes the
change, and propagates its effect to the program output.

3. OUR APPROACH
Our goal is to generate test cases that make the effect of software

changes observable through difference in program outputs. A test
case for regression testing should drive the changed program to ex-
ecute the changes, and the program states affected by the changes
should result in difference in program outputs.

To meet the above requirements, our approach uses symbolic
execution on program traces to guide the exploration of program
paths. The exploration in our approach is guided by the execute-
infect-propagate philosophy (execute the change, infect program
state and propagate the infection to output), instead of program path
coverage. Our approach is divided into two steps. First, given a pro-
gram change, we use symbolic execution to find the constraints on
program input variables that need be satisfied to execute the change.
Second, given the constraints (and sample test inputs) generated in
the first step, we tune the sample test inputs into test cases that not
only execute the change but also propagate the effect of the change
to the program output.

We now explain these two steps in Section 3.1 and Section 3.2,
respectively.

3.1 Driving the program to reach the changes
Our approach iteratively constructs the change-reaching test in-

puts using symbolic execution. In each iteration, a new test input
is generated to drive the program execution closer to the targeted
change. This process continues until we get a test input that exe-
cutes the given program change.

The basic intuition of this step is as follows. We run the test-
suite TP of the old program P on the changed program P ′. If any
test t ∈ TP executes the changed statement stmt in the changed
program P ′, we return t. Otherwise, we collect the path condition
of P ′ when it processes t and manipulate the path condition to gen-
erate a new input that “advances” the execution in P ′ towards the
changed statement stmt.

Assume the path corresponding the test input t is π, which does
not reach the changed statement stmt, and π’s path condition is
ψ1 ∧ ψ2 ∧ . . . ψm. We look for inputs that can make P ′ deviate
from π to reach stmt. The deviation can be made at any of the
branches along π. If an input makes P ′ deviate from π at the k-th
branch, it must satisfy the following condition:

ψ1 ∧ . . . ∧ ψk−1 ∧ ¬ψk
That is, the new input satisfies the first k − 1 branching conditions
of π, but does not satisfy the k-th branching condition. If it is
satisfiable1, we can generate an input ti satisfying the formula. The
new input ti leads to a different path, which can potentially make
P ′ reach the target.
1Note that this formula may be unsatisfiable.

Algorithm 1 Reaching the change
1: Input:
2: P P ′ : original and modified program
3: Tp : The existing test-suite for P
4: Output:
5: tnew: A test case that reaches the difference between P and P ′

6: unexpanded = ∅
7: S = ∅
8: stmt = ... // this is the changed statement
9: CDGp′ = computeCDG(P ′)

10: Gstmt = computeDistGraph(CDGP ′ , stmt)
11:
12: // step1: run the existing test-suite
13: for all t ∈ Tp do
14: ret = Execute(P ′, t)
15: if ret 6= null then
16: return ret
17: end if
18: end for
19: // step2: construct new test case
20: while unexpanded 6= ∅ and not timeout do
21: select ϕ ∈ unexpanded with minimum distance
22: remove ϕ from unexpanded
23: let ϕ = (ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk)
24: construct θ = (ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ¬ψk)
25: solve θ
26: if θ is satisfiable then
27: let tθ be an input that satisfies θ
28: ret = Execute(P ′, tθ)
29: if ret 6= null then
30: return ret
31: end if
32: end if
33: end while
34: return null
35:
36: procedure Execute(P ′, t)
37: execute P ′ with input t
38: let f = (ψ1 ∧ ψ2 ∧ . . . ∧ ψm) be the path condition
39: for all i from 1 to m do
40: ϕi

def
= ψ1 ∧ . . . ψi ∧ ψi+1

41: if dist(ψi+1) = 0 then
42: return t
43: end if
44: if dist(ψi+1) 6=∞ and ϕi /∈ S then
45: S

⋃
= ϕi

46: unexpanded
⋃

= ϕi
47: end if
48: end for
49: return null
50: end procedure

Partial Path
Condition (PPC)
are computed
f th th

One round of deviations from PPC
If they do not reach changed stmt

from these paths ‐deviate further from these deviations.

Change

Path for t ∈ T

Change

No path to change
…..

Path for t ∈ TP

Figure 2: Summary of Algorithm 1

One of the major challenges faced by this intuitive solution is
to handle the large number of branching conditions. The intuitive
solution cannot handle large-scale software with limited time and
computing resources. To address this problem, we observe that
the negation of certain branching conditions cannot help to reach
the change. For example, in our motivating example described in
Section 2 (illustrated in Figure 1), negating the branch condition
at line 16 will not help to drive the execution closer to the change.
Therefore, we need to measure whether the negation of a branch
condition can drive the execution in P ′ closer to the change. In our
approach, the measure of closeness or proximity of a path π (w.r.t.
the change stmt) is given by the length of the chain of control
dependencies that need to be traversed from π in order to reach the
change stmt.

In this step, we are working with program paths that have not yet
reached the change stmt. The path conditions of such paths are
referred to as partial path conditions (abbreviated as PPC) in our
terminology. The term “partial” specifically emphasizes that the
change has not yet been reached. Also, note that the path condition
of any program path π is a quantifier-free first order logic formula
satisfied by all test inputs that drive P ′ to execute along π. The no-
tion of partial path conditions is central to our approach. Since we
are trying to construct a feasible program path (i.e., exercised by at
least one program input) in the changed program P ′ that terminates
at the given change stmt, our method works by constructing a path
that gets “closer” to the change. These partial path conditions are
then explored to see whether they can reach the changed statement
stmt, otherwise we explore further deviations from these partial
path conditions of ti in a similar way (i.e., by negating the last
branch condition). This, in essence, is the heart of our algorithm
for reaching the changed statement.

Algorithm 1 captures the core method for generating a change-
reaching test case. The inputs to the algorithm are: the old program
P , the changed program P ′, and the test-suite TP for program P .
There is a single change between the programs P and P ′, that is,
P and P ′ differ via a unit change statement stmt. The output of
the algorithm is a test input tnew that executes this changed state-
ment stmt. The elements in set S and unexpanded are PPCs
(partial path conditions). Set S is used to maintain all the PPCs we
have seen to avoid redundancy. Set unexpanded contains all the
PPCs that have not been tried out. In the algorithm, the CDG of
P ′ is first computed, then the distance from each node to stmt
is computed from the CDG of P ′. This is shown by the func-
tion dist in the algorithm. Thus, let b be a program branch in

the changed program P ′ whose condition is ψ. Then dist(ψ) is
the shortest path from b to the changed statement in the static inter-
procedural control dependency graph of P ′. The distance for a PPC
ϕi (ϕi = ψ1 ∧ . . . ψi ∧ψi+1) is the same as the distance of the last
branch condition in ϕi, that is, dist(ϕi) = dist(ψi+1).

The algorithm first looks for a change-reaching test case in the
existing test-suite T . If no existing test case can reach the target,
our algorithm iteratively constructs such a test case in the second
step. In each iteration of the second step, we choose a PPC that is
closest to the target from the PPCs that have not been tried out. By
deviating at the last branch of the path, we get closer to the target
in each iteration.

From the description of Algorithm 1, we see that it is similar to
the generational search strategy used in SAGE [7]. In SAGE, given
a path π for a test, new paths are explored by negating each branch
in π, similar to our algorithm. The main difference between our
method and SAGE is in the way that we choose the branches to
negate. Given a set of partial path conditions (obtained from the
path condition ψ1 ∧ . . . ∧ ψm of a program path)

{ψ1 ∧ . . . ∧ ψi ∧ ψi+1 | 0 ≤ i < m}
we use the distance between ψk and the changed statement stmt
to prioritize the selection of the branch condition to negate. The
distance between ψk and stmt is defined as the weighted shortest
path from the program branch contributing to ψk to the changed
statement stmt in the static inter-procedural control dependency
graph of the changed program P ′. If the k-th branch condition has
the smallest distance from stmt, it will be negated first.

3.2 Propagating the effect of a change to pro-
gram outputs

Executing the changed statement is not sufficient for reflecting
the change in the output. A change should first affect some pro-
gram states, and the effect of the change should be seen from the
output (via propagation of the affected states). In reality, a program
can have a large number of paths. Therefore, any propagation tech-
nique is either path insensitive and hence imprecise, or path sensi-
tive but not scalable to large programs. In this section, we propose
a practical technique for propagating the effect of the change in an
iterative way.

Assumptions. Before we describe our method for propagating
effects of the program change to output, we make some assump-
tions about the programs we work with.

• Assumption 1: A variable defined in a program must be used
somewhere in the program.

If we have a program that does not satisfy this assumption,
we can use def-use analysis to eliminate all the variables that
are never used. Since we only eliminate the variables that are
defined but never used, this transformation will not change
the program behavior.

• Assumption 2: All statements are reachable.

If there are unreachable statements, we can eliminate these
statements without affecting the program behavior.

Why a change may not propagate to output. To build a
method that propagates the effect of a change to output, we investi-
gate common reasons for which propagation failed to reach the out-
put. We use P and P ′ to denote the original program and changed
program respectively. The execution trace of input t in program

P is denoted as trace(P, t). For a variable definition statement
instance s′, we say the defined variable is “affected” when it has
different value than the value defined in s. Statements s and s′

are aligned statements in trace(P, t) and trace(P ′, t) respectively.
Note that the effect of a change could have propagated to certain
distance before the propagation stops. So we do not need to start
the propagation from the change each time, we only need to in-
tervene when the effect stops propagating in the execution. The
change cannot affect the output when none of the affected variables
can affect the output. Suppose an affected variable v is defined in
s′ in trace(P ′, t), the reasons that the different value in v stops
propagating, may now be enumerated as follows.

• The uses of v are never executed before v is redefined in
trace(P ′, t). As an example, consider the program in our
example.

y = 2; /* originally y = 3; */
if (x > 0){ o = y;} else { o = 0;}

Here, the changed statement affects the definition of y. How-
ever, in the execution trace for the input x = 0 (and thus
x > 0 is false), the use of this definition is never executed.
The output variable o is not affected by the change.

• Uses of v are executed before v is redefined in trace(P ′, t),
but the use cannot result in other affected variable. As an
example, consider the following program. Let x be the input,
and o be the output of this program fragment.

y = 2; /* originally y = 3; */
if (x - y > 0){ o = y;} else { o = 0;}

Here y is the variable whose definition is affected by the
change. The use of the definition is also executed in the form
of the condition (x-y > 0). However, for input x = 0, it
does not make a difference in the control flow and the subse-
quently calculated output value for o.

Propagating changes to the output. We handle the two rea-
sons for which the effect of a change may not propagate to the pro-
gram output as follows. If the uses of the affected variables are not
executed in an execution trace π, we drive the program execution
towards the use statements. This is achieved via a method similar to
Algorithm 1, where we set the use statements as the target, instead
of the changed statement.

In the second case, the uses of the affected variables are executed
in the trace but no program variables are affected by the use. Sup-
pose the affected variable v is defined in statement instance s′, and
v is subsequently used in statement instance m′. Obviously, m′

was not able to propagate the effect of v forward. According to the
type of m′, we use the following steps to propagate the effect in v.

• If m′ is a variable definition statement, we compute the so-
called “transfer condition” [11] (Definition 1 below) of the
statement. Intuitively, the transfer condition of an expres-
sion is the condition under which the value of the expression
will be different if one of its operands is different. Given the
transfer condition, we use it in symbolic execution to com-
pute a test input which propagates the effect of the change,
while following the same path.

DEFINITION 1 (TRANSFER CONDITION). The transfer
condition for exp = oprand1 op oprand2 with respect to
oprand1 is the condition under which exp has different value
if oprand1 has different value.

For example the transfer condition of x + y is true since if
either operand is different, the sum is different. On the other
hand, the transfer condition of x * y is y 6= 0 for a change
in x.

• If m′ is an branch and v is used as the condition in m′, we
compute the condition which makes m and m′ to be eval-
uated differently in the two programs P and P ′ in order to
produce different outputs in P and P ′ (m andm′ are aligned
statements in trace(P, t) and trace(P ′, t)). We use sym-
bolic execution to find an input that reaches m in programs
P and m′ in P ′ and then evaluates m and m′ differently in
the two programs.

Algorithm for Propagating Change. The algorithm for prop-
agating change effects is shown in Algorithm 2. The algorithm iter-
atively calls procedure Propagate to construct a new input that can
propagate the change effect forward. The procedure Propagate first
executes P and P ′ using the input t. Then it analyzes the execution
traces of P and P ′. An important concept here is the change effect
propagation tree (CEPT) calculated by CPTree at line 11.

DEFINITION 2 (CHANGE EFFECT PROPAGATION TREE). Given
a unit change, a CEPT CT is defined as follows. The nodes of a
CEPT are statement instances in the changed program P ′. There is
an edge from α′ to β′ in CT if and only if (i) β′ is dependent on α′

(either control dependence or data dependence) (ii) the operands
of β′ have different values than those of β, where β is the corre-
sponding statement of β′ in P . Each leaf node in the CEPT is a
place where the change effect propagation terminates.

Note that the CEPT defined above is a polytree [8]. A polytree is
a restricted DAG (Directed Acyclic Graph). While a DAG allows
multiple undirected paths between two nodes as long as they do not
form directed cycle, a polytree allows at most one undirected path
between any two nodes. Compared to nodes in a tree, a node in a
polytree can have more than one parent node, which represents that
more than one operand in a statement are affected by the change.

Identifying terminating locations of effect propagation.
The CEPT is computed by dynamic forward slicing. During slic-
ing, our approach compares the operand values of corresponding
statement instances in both programs to determine whether the change
effect has stopped propagating. If the operand values of a statement
instance s′ in P ′ are the same as those of the corresponding state-
ment instance s in P , s′ will not be included in the propagation
tree, because it will not cause differences in the output. In other
words, the change effect does not propagate to s′.

When comparing the operand values of corresponding statement
instances in both P and P ′, if s′ of P ′ has no corresponding state-
ment instance in P , the operands for s′ are treated as different from
those in P . To compare the operand values, we use trace alignment
to find the corresponding statement instance s (in execution trace
of P) of s′ (in execution trace of P ′), which is the align(P, P ′, t)
function in Algorithm 2. For simplicity, we use sat(ϕ) to represent
an input instance that satisfies ϕ.

Propagating change effects further. According to the type
of the leaf nodes in the change effect propagation tree, we use dif-
ferent methods to drive the propagation of the change effect for-
ward. If an affected variable is defined but never used, the proce-
dure PropNouse is called. In this procedure, we first use def-use
analysis to identify all the use locations of the defined variable, and
use our Algorithm 1 to reach at least one of these locations.

If an affected variable is used but does not propagate the effect
forward, according to the type of the use statement s′, two dif-
ferent procedures are used for propagation. If the statement s′ is
a variable-definition statement and the defined variable is used, it
can only become leaf node (of CEPT) when the transfer condition
is not satisfied. Procedure PropTransfer is invoked in this case.
In this procedure, we first use symbolic execution to compute the
transfer condition TC. Then we get a new input that satisfies TC
by solving the formula f ′ ∧ TC where f ′ is the partial path con-
dition up to s′. If an affected variable is used as the condition in
a branch, it becomes a leaf node when the branch is evaluated the
same in both versions. In this case, we use PropCjmp to execute
the branch differently in two versions. If the procedure Propagate
cannot generate a change stressing test input by analyzing the new
program version, we apply Propagate to the old program version.

4. IMPLEMENTATION
We implemented our approach on the x86 platform based on the

BitBlaze [14] binary analysis framework. We show the compo-
nent view of our implementation in Figure 3, where the compo-
nents used in our solution are shown as boxes, and the data used
by the components are shown as italic labels of edges. Some of the
important intermediate data are shown in ovals.

SMT formula solving is used extensively throughout our ap-
proach. We used the Boolector SMT solver [1] for all our formula
solving tasks.

4.1 Architecture of our implementation

Reaching changes.
The top portion of Figure 3 illustrates the implementation of the

first step of our approach: finding inputs to reach the change. Our
approach first computes the static control-flow dependency graph
(CDG): it uses the ERESI tool [5] to generate the static CFG, and
then uses our module CDG builder to compute the inter-procedural
CDG and distance graph from the static CFG. The distance from a
node v to the target is defined as the shortest path from v to target
in weighted CDG. In a weighted CDG, auxiliary edges (such as
function call to the start of the called function) are associated with
weight 0. All other edges have weight of 1. We use Dijkstra’s
algorithm to compute the distance of all nodes (to the change) using
one pass of the algorithm.

Next, our approach iteratively constructs an input to reach the
change. Given the binary P ′ and a test case t, our approach gener-
ates an execution trace of P ′ using BitBlaze’s TEMU component.
TEMU is a whole-system emulator based on QEMU [10]. It emu-
lates a PC system, which runs operating systems such as Windows
and Linux. TEMU supports logging instructions executed in the
emulated PC and tracking instruction operands that are dependent
on program inputs (tainted operands) using taint analysis. Next,
our approach uses BitBlaze’s analysis component, VINE, to gener-
ate the path condition of the execution trace. The path condition is
represented by VINE’s intermediate language.

With the CDG and path condition, our approach uses our change-
reaching input generation module to select a branching condition
to negate based on the distance to the change statement in the CDG.
It then generates a new input that drives P ′ to execute closer to the
change. If P ′ reaches the change using the new input, our approach
continues to the next step. Otherwise, the above process is repeated
using the new input until it generates an input that leads P ′ to exe-
cute the changed statement.

Algorithm 2 Propagate the change effect
1: Input:
2: t: a change reaching input
3: P P ′: original and modified program
4: Output:
5: tnew: a input that have different output in P and P ′

6: procedure Propagate(P , P ′, t)
7: align(P, P ′, t)
8: let stmt be the difference between P and P ′

9: execute t in P ′ and P to get the execution traces
10: T = CPTree(stmt, P ′, P, t)
11: for all leaf node s′ in CT do
12: if s′ is a variable definition statement then
13: if variable defined by s′ is not used in t’s trace then
14: ret = PropNouse(s′)
15: else
16: ret = PropTransfer(s′)
17: end if
18: else
19: ret = PropCjmp(s′)
20: end if
21: if ret 6= null then
22: return ret
23: end if
24: end for
25: return null
26: end procedure
27: procedure PropNouse(s′)
28: U = useSet(s′) // All first uses of the definition of s′

29: for all u ∈ U do
30: execute Algorithm 1 using u as the target
31: let ret be the return value from Algorithm 1
32: if ret 6= null then
33: return ret
34: end if
35: end for
36: return null
37: end procedure
38: procedure PropTransfer(s′)
39: compute the transfer condition TC for s′

40: let the partial path condition up to s′ be f ′

41: if f ′ ∧ TC is satisfiable then
42: return sat(f ′ ∧ TC)
43: else
44: return null
45: end if
46: end procedure
47: procedure PropCjmp(s′)
48: let s be the corresponding statement instance for s′ in P
49: let the partial path condition up to s′ for t in P ′ be f ′ =

ψ′1 ∧ . . . ψ′i′ ∧ ψ′i′+1, the path condition up to s for t in P be
f = ψ1 ∧ . . . ψi ∧ ψi+1

50: let ϕ = f ∧ ψ′1 ∧ . . . ψ′i′ ∧ ¬ψ′i′+1

51: let ϕ′ = f ′ ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1

52: if ϕ is satisfiable then
53: return sat(ϕ)
54: else if ϕ′ is satisfiable then
55: return sat(ϕ′)
56: else
57: return null
58: end if
59: end procedure

TEMU VINE

ERESI

Change−Reaching

Input Generation

Change−propagating

input

new input

new input

path
condition

Reaching

Changes

Changes

Propagating

traces

traces

Builder
CDG

CFG

CDG

CEPT

binary of P, P’

Generation
CEPT

Input Generation

with distance
CDG

Figure 3: Component view of our approach (CEPT = Change Effect Propagation Tree, CDG = Control Dependency Graph).

Propagating effects of changes.
The bottom portion of Figure 3 illustrates the implementation of

the second step of our approach: finding inputs to propagate the ef-
fects of the change to the program output. If the input generated in
the previous step (the input that reaches and executes the change)
cannot affect the output, our approach uses it to generate an ex-
ecution trace of P ′ and compute the path condition. Then, our
approach generates the Change Effect Propagation Tree or CEPT
(refer Def. 2) to decide how to further propagate the change effect
towards the output.

As described in our algorithm 2, trace alignment is needed to
compute the CEPT. Our approach views each trace as an instruction
sequence, and aligns the traces of P and P ′ using minimum edit-
ing distance. From the alignment result, we compare the operand
values of P ′ with the corresponding instructions in P , which is re-
quired by our approach to decide whether a node is a leaf node in
computing CEPT. For def-use analysis, we implemented a simple
def-use analysis module without pointer aliasing support.

With the above information, our approach constructs the CEPT
by performing forward slicing on the x86 instruction trace. Each in-
struction is treated as a statement in the slice. One of the practical
challenges is caused by memory and register allocation in differ-
ent program traces. The memory addresses of the same variable
in two binary versions are often allocated differently by compiler
or loader. Therefore, when such addresses become the instruction
operands, the aligned instructions will have different operand val-
ues. For example, mov EAX, [EBX] will have different EBX
value if the variable pointed to by the EBX is allocated at different
addresses in the traces of P and P ′. However, the difference in
memory address does not imply a different program state, which is
defined by the contents of variables, instead of addresses of vari-
ables. Similar issue happens with the stack registers ESP and EBP.
To address this problem, our approach does not treat difference in
memory address operands and stack register operands as different
program states.

4.2 SMT solving optimizations
We note that in Algorithm 1 (for constructing an input which

reaches the change), many of the formulae ψ1 ∧ . . .∧ψk−1 ∧¬ψk
constructed for reaching the changed statement may be unsatisfi-
able. For example, when there is no dynamic data dependence
chain between ψk and input variables (along the path which results

in the partial path condition ψ1 ∧ . . . ∧ ψk−1 ∧ ψk), the formula
ψ1 ∧ . . .∧ψk−1 ∧¬ψk is unsatisfiable. Naturally there is no point
in submitting such formulae to the SMT solver. In this way, we
reduce a significant amount of SMT queries, which leads to more
than 90% reduction of SMT solving queries in our experiments.

4.3 Handling branch correlations
Most of the SMT formulae used in our algorithms are based on

path condition. We noticed some branches along the path could be
correlated. Suppose the branch we are trying to negate is bβ , there
is an earlier branch bα that is correlated with bβ . This correlation
could make the constructed formula unsatisfiable. We handle the
common cases of “immediate conflicts" between (branch, branch)
and (assignment, branch) pairs as follows.

1. if(x>2){ ... // x is not modified here}
if(x<0){ //target }

Given a trace for say x == 3which evaluates the first branch
to true and the second branch to false, suppose we want to
flip the evaluation of the second branch statement to reach
the target. However evaluating x > 2 to true and then x
< 0 to true constitutes an infeasible path in the control flow
graph.

Solution: When we solve formula θ = (ψ1∧ψ2∧. . .∧¬ψk),
if the branch corresponding to ψk is bk, we perform a back-
ward slicing on the trace from bk. All the branch conditions
that are not in the slice are removed from the path condition
θ. In this way, we keep all the branches that are relevant for
reaching bk, and we also keep all the statements that are used
for computing the branch condition.

2. if(x>0){ y = 1; } else{ y = 0; }
if(y){ //target }

For the input x = 0, we can see y is set to 0 from the exe-
cution trace. To reach the target, we need to negate the first
branch that the definition of y is dependent on.

Solution: If we find a branch condition ψk is not “tainted”
(dependent on the input via a chain of data dependencies),
we cannot directly negate this branch. Suppose the last defi-
nition of ψk’s variables in the trace is def , we use backward
slicing to find all tainted branches that def is dependent on.

By negating one of these branches, we may evaluate ψk dif-
ferently.

5. EVALUATION
To examine the efficacy of our approach, we evaluated our ap-

proach using two real-world programs. In this section, we report
our empirical evaluation results.

5.1 Experience with tcas

The first program we used to evaluate our approach was tcas
from the SIR repository [3]. Tcas is an aircraft collision avoid-
ance system. It has an original version (the golden program) and
41 changed versions with seeded bugs, exactly one line of a change
for each bug. The tcas program from SIR reads inputs from com-
mand line, we modified the program to read inputs from a file. To
stress our test generation method fully, we took an initial test-suite
with only one randomly generated test case in this case study. Then
we apply Algorithm 1 on this test-suite to generate test cases reach-
ing the change.

Our technique uses 80 runs to reach all the 41 changes, about
two runs to reach one change on average. Out of the 41 versions, in
8 versions, the inputs generated by Algorithm 1 already produced
different program outputs; thus change effect propagation is not
needed in these cases. These inputs are returned by our approach
as the test cases to augment the test-suite.

The remaining 33 buggy versions of tcas needs to go through
change effect propagation (as shown in Algorithm 2), to generate
test cases. Our approach successfully generated test cases that show
different program outputs (w.r.t the original tcas program) in 31
out of the 33 program versions. In the remaining two program ver-
sions, because of incorrect program alignment at line 7 of algorithm
2, the CEPT was not computed correctly. The node where change
effect propagation terminates was not identified as a leaf node in
the incorrect CEPT.

Now we discuss two cases where change effect propagation are
needed in tcas. Through these examples, we show that how our
techniques propagate the change effect forward towards the output.

Affected variable defined but not used.. Figure 4 shows
an example in version 3 of tcas, in which the change effect can-
not propagate because the affected variable intent_not_known
is defined but not used. Note that in the example code, one line
of source code is treated as multiple instructions in our technique.
In the example, because the operator is changed from && to ||,
the variable intent_not_known is evaluated to different values in
two different versions in execution. However, because the value of
tcas_equipped is false, the variable intent_not_known is never
used after its definition (note that a && is defined using short circuit
evaluation, that is, if the first operand is false, the second operand
is not used). To propagate the effect of the change, we employ our
algorithm 1 to reach the statements where intent_not_known is
used. Algorithm 1 negated the value of tcas_equipped to execute
the condition test on intent_not_known.

Propagation stops because of branches.. From our expe-
rience in the experiments, it is very common that the propagation
terminates because of a branch is evaluated similarly in both ver-
sions. Figure 5 shows the case in version 13 of tcas. The value
compared withOwn_Tracked_Alt_Rate is changed from 600 to
700. Only when Own_Tracked_Alt_Rate is in (600, 700], the
effect of the change propagates. Through symbolic execution, our
technique found a value 604 for Own_Tracked_Alt_Rate such

//original version
intent_not_known = Two_of_Three_Reports_Valid
&& Other_RAC == NO_INTENT;
alt_sep = UNRESOLVED;
if (enabled && ((tcas_equipped
&& intent_not_known) || !tcas_equipped))

//changed version
intent_not_known = Two_of_Three_Reports_Valid
|| Other_RAC == NO_INTENT; /* logic change */
alt_sep = UNRESOLVED;
if (enabled && ((tcas_equipped
&& intent_not_known) || !tcas_equipped))

Figure 4: Variable intent_not_known defined but not used

//orginal version
enabled = High_Confidence
&&(Own_Tracked_Alt_Rate <= 600)
&&(Cur_Vertical_Sep > MAXALTDIFF);

//changed version
enabled = High_Confidence
&&(Own_Tracked_Alt_Rate <= 700)
&&(Cur_Vertical_Sep > MAXALTDIFF);

Figure 5: Propagation stops because of branches

that variable enabled is evaluated to different values in two ver-
sions.

Comparison with [16].. We compare our results with [16] —
the only work that generates test cases to stress program changes.
Other research efforts on this topic, such as [13], generate criteria
for propagating effects of changes, but they do not generate test
cases to reach and stress a program change. Therefore, we cannot
compare our experimental results directly with those of [13].

In [16], they build their work based on PIE model. They provide
heuristics to avoid exploring paths that (i) cannot lead to execution
of the change (ii) cannot lead to state infection (iii) cannot lead to
affected state propagation.

To compare with [16], we used the result from first 11 changed
versions of the tcas program, the same versions used in the evalu-
ation of [16]. For each version, our technique started with a random
generated input, and interactively generated new inputs to reach the
change. The technique in [16] used 95 runs in total to reach all the
11 changes. In contrast, our technique used only 32 runs to reach
all the 11 changes. Note that we compare the number of runs for
reaching the change, not the number of runs for propagating the
change effect to the output. This is because, [16] does not report
the number of runs for propagating the effect of the change to the
output. Our technique can generate change-reaching inputs with
much fewer runs, because the path exploration in our technique is
guided by a target. We use the notion of distance in the control de-
pendency graph to prioritize exploring shorter paths to the change.

In addition to the number of runs reported above, our technique
also made less number of calls to the SMT solver. We used data
tainting method to identify branches that cannot be executed differ-
ently, as is described in Section 4.2. In our experiments, we found
that this optimization led to significant reduction in the number of
calls to the SMT solver. More than 90% branch conditions are not
tainted, and thus can be eliminated, in both of our case studies.

5.2 Experience with libPNG

In our second case study, we studied the changes between two
versions of the libPNG program. LibPNG is a open-source li-

//original version
png_byte red_high =
(trans_value->red > 8) & 0xff;

//changed version
png_byte red_high =
(trans_value->red » 8) & 0xff;

Figure 6: An example change from libPNG

brary for manipulating PNG image files. It supports almost all the
features of PNG file format. We used two consecutive versions
from libPNG, v1.2.20 and v1.2.21. Each version has a large code
base, running into around 28000 lines of code.

We first remove all the obvious syntactic changes that do not af-
fect the semantics of the program. After removing these changes,
we are left with 10 changes. Each of these 10 changes are in-
dependent. Therefore, we can construct intermediate versions of
libPNG by applying the 10 changes to version v1.2.20 one by
one. We use ci to denote change i and use v0 to v10 to denote the
intermediate versions (Version v0 is v1.2.20 and v10 is v1.2.21).
Version vi is obtained by applying ci on Version vi−1. Because the
changes are not correlated, if a change ci can affect the output in
vi−1 and vi, it can also affect the output in v1.2.20 and v1.2.21.

Instead of randomly generating test inputs, we used the Png-
Suite [17] as the test-suite for evaluating Algorithm 1 on libPNG.
PngSuite is a large collection of PNG files to test PNG applica-
tions. The creator of PngSuite aims to represent all the PNG for-
mats when the suite was created in 1998. Because libPNG has
been evolving with the evolution of PNG specification, some new
features in libPNG cannot be fully tested by PngSuite any more.
This is the exact situation where test-suite augmentation is needed
due to program evolution.
LibPNG comes with a test driver to show how the library should

be used. We modified the test driver to make the changes statically
reachable. We tried to make the changes to the test driver minimal.

Eight out of all ten changes were reached by existing test cases
in the PngSuite. For the remaining two changes, our algorithm was
able to construct new PNG files that can drive the execution to the
changes. A PNG file consists of multiple chunks with different in-
formation. Each chunk contains chunk type, chunk length, check-
sum, and the chunk data. Most functions in libPNG are chunk-
specific. For example, a function for handling chunk of type iTXt
is only called when there is a chunk of type iTXt in the input PNG
file. These two changes appeared in functions that handle the iTXt
chunk type. Since iTXt only appears in v1.2 of PNG specification,
which was released in 1999, no PNG files in PngSuite (created in
1998) were able to test these two changes. Our algorithm automat-
ically generated test inputs of the iTXt type.

After finishing Algorithm 1 for all the ten changes, we got ten
change-reaching inputs (one for each change). Each of these ten in-
puts can only guarantee the corresponding change being executed,
but they may not necessarily affect the program output. In fact, we
found that out of the ten change-reaching inputs, seven affect the
program output (that is, the output is different for these inputs in
the two program versions), and the remaining three do not. Among
these seven changes, six changes are bug fixes, and the other is a
content change in the output message. We show one example of
a bug fix in Figure 6. In the example, the bit-wise right shift op-
erator � was mistyped as greater than operator > in the buggy
version (original version). With the bug fix, the variable red_high
had different values in two versions. This variable was later used to
compute a PNG file as the program output. The output was already

different because of this change, so change effect propagation was
not needed in this case.

Three out of the ten change reaching test inputs needed to go
through change effect propagation (Algorithm 2 in our approach).
By employing Algorithm 2, we succeeded in altering two of these
three change-reaching inputs, to produce test inputs which execute
the change, and propagate its effect to the program output. In other
words, we constructed a PNG file which executes the change and
manifests its effect by producing different outputs in the two ver-
sions of libPNG.

For the last program change, we did not succeed in generating
a change-stressing input. The change-effect propagation stopped
at a conditional jump in this case. The formula constructed was
not satisfiable because of branch correlation. The heuristics pro-
posed by us to handle branch correlation (see Section 4.3) did not
allow us to construct a satisfiable formula in this case. This is
because, our heuristics handle “immediate" (branch, branch) and
(assignment, branch) conflicts. It does not handle “transitive con-
flicts" where the branch correlation cannot be explained by a pair
of assignments/branches. For example consider the code fragment
x = 1; y = x; if (y > 2) Here the direction of evalua-

tion of y > 2 is fixed by the past two assignments, but there does
not exist any pair of statements which can explain the infeasibility
of the sequence of statements being executed for any input.

In summary, there are ten changes in our experiment with libPNG,
our technique succeeded for nine of them. In the first step of our
technique, we successfully get ten change-reaching inputs for all
the changes. Eight of these ten inputs are from existing test-suite,
the other two inputs are generated by our Algorithm 1. In the sec-
ond step of our technique, our Algorithm 2 modifies the results
from the first step to get inputs that have different output because
of the changes. The second step succeeded on nine changes and
failed on only one change.

6. RELATED WORK
To test evolving programs, there have been several research ef-

forts under the banner of “regression testing.” Even though re-
gression testing in general refers to any testing process intended to
detect software regressions (where a program’s functionality stops
working after some change), often regression testing amounts to
re-testing of tests from an existing test-suite. In the past, there have
been several research directions that go beyond re-testing all of the
tests of an existing test-suite. One stream of work has espoused test
selection [2, 12] — selecting a subset of tests from existing test-
suite for running on the modified program. Another stream of work
proposes test prioritization [4, 15] — ordering tests in an existing
test-suite to better meet testing objectives of the changed program.

Recent research projects [13, 16, 19] have proposed test-suite
augmentation — developing new tests to stress the effect of the
program changes, and these are the works that are closest to our
method. We now compare our work with these methods.

The technique in [13] focuses on generating criteria for test-suite
augmentation. Their technique starts from the change and guaran-
tees the change effect is propagated up to certain distance. Our
technique differs from [13] in several aspects. The work of [13]
can either be used to select test cases from a large test pool or can
be used as the criteria to drive test generation techniques. In con-
trast, our technique generates test cases, and the test cases gener-
ated by our technique are guaranteed to satisfy the criteria of [13].
The technique of [13] performs static symbolic execution (on a pro-
gram), whereas we perform symbolic execution on a dynamic exe-
cution trace. Generally the scalability of static symbolic execution
is always an issue, and for this reason we believe [13] restricts the

use of symbolic execution to certain length of dependencies. Our
technique is not restricted by the length of dependence chains, and
we can handle change effect propagation to any length.

Overall, the work of [13] requires an input which reaches the
change, but how such an input is obtained is not considered in their
paper. Automatically constructing a change-reaching input is diffi-
cult for large programs with huge number of control flow paths. In
our work, we construct an input that reaches the change and propa-
gates its effect to the output, whereas the method of [13] starts from
the change itself (how to reach the change is not studied).

White-box concolic testing techniques from Directed Automated
Random Testing or DART (e.g., see [6]) can be used to generate test
cases using symbolic execution. The original works on DART fo-
cused on test generation to systematically explore program paths.
There was no study on generating tests to stress program changes.
However, recently some test generation methods [16,19] for evolv-
ing programs have been proposed, which are based on DART. The
technique in [16] integrates heuristics to avoid paths that cannot
lead to a change and paths that cannot propagate the change-effect.
Since they do not consider the distance to the program change,
if there are multiple paths leading to the change (as is often the
case), their technique would randomly choose one, whereas our
technique would prioritize shorter paths. For change effect prop-
agation, the work of [16] only provides heuristics to avoid trying
out paths which are unlikely to propagate effects of changes. In
contrast, we use dynamic symbolic execution to guarantee the ad-
vancement in propagation of change effect.

The work in [19] identifies “dangerous edges” affected by the
change in control flow graph. Subsequently, heuristics (built on top
of symbolic execution using DART) are used to stress these edges.
However, after the dangerous edges are identified, the entire anal-
ysis is carried out in the changed program. It is important to note
that any test generation that analyzes only one program version is
unlikely to find the test cases to stress changes. As an example we
can consider the two versions of Figure 1 as an example. Consider
the test-suite {x = 0, x = 1, x = 4, x = 100}. These tests stress the
set of all feasible control flow paths in the changed program of Fig-
ure 1. Thus, it even achieves path coverage! Whatever dangerous
edges are identified, clearly they will be stressed by the tests in this
test-suite. However, this test-suite still does not contain the only
test input x = 3 that will stress the program change in this example.
In contrast, our technique automatically constructs the input x = 3,
which behaves differently in these two versions.

Finally, differential symbolic execution (DSE) [9] uses static sym-
bolic execution to characterize the effect of changes. Thus they
form a summary of changes across program versions. The sum-
maries are achieved by abstracting large same portions between the
original version and the changed version to reduce cost and im-
prove efficiency. Such a technique, while useful for change com-
prehension, cannot be directly used for test-suite augmentation. If
we employ the technique for test-suite augmentation we need to
employ symbolic execution of programs for large code-bases (the
similar portions across program versions can be abstracted in a
summary, but it is not clear how to avoid symbolic execution of
this common code-base while generating new tests).

7. DISCUSSION
In this paper, we present a test-suite augmentation method which

stresses program changes. To stress a change c in a program, our
technique automatically generates a new test case t that gives dif-
ferent outputs in two versions. Our technique works mainly in two
steps. In the first step, we use distance in Control Dependency
Graph to guide our path exploration towards the change. After a

change-reaching input is constructed, our technique use change ef-
fect propagation tree to identify why a change cannot affect output,
and then propagate its effect accordingly.

In the case of correct refactorings, we expect the technique to
not generate any new inputs. Since such a change does not result in
different program state, our test-suite augmentation method indeed
does not generate any change-stressing inputs in such a case.

We have implemented our technique in a toolset based on Bit-
Blaze [14]. To test the efficacy of our technique, we performed two
case studies on tcas and libPNG. For almost all the changes we
studied, our tool was able to generate a new test case that stresses
the change and causes difference in program outputs. Compared
with existing test-suite augmentation techniques, our technique is
more goal-directed since we: (i) employ metrics like distance in
the control dependency graph to reach the change quickly (this en-
ables us to find a short program path to the change), and (ii) employ
heuristics to handle correlated branches while propagating the ef-
fect of program change to output (this enables us to avoid searching
through many infeasible program paths).

In terms of future work, we can extend our method to handle
test programs which stress multiple changes. If the changes are
independent (as was the case in our experiments with libPNG),
the method proposed in this paper can handle multiple changes.
However, for inter-dependent program changes (such as when the
variable sets affected by two changes have a non-empty intersec-
tion), our method needs to be further augmented. This remains an
important avenue of future work.

Acknowledgments. This work was partially supported by a De-
fence Innovative Research Programme (DIRP) grant (R-252-000-
393-422) from Defence Research and Technology Office (DRTech).

8. REFERENCES
[1] R. Brummayer and A. Biere. Boolector: An efficient smt solver for bit-vectors

and arrays. In TACAS, 2009.
[2] Y. Chen, D. Rosenblum, and K. Vo. Testtube: a system for selective regression

testing. In ICSE, 1994.
[3] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation

with testing techniques: An infrastructure and its potential impact. Empirical
Software Engineering, 10(4), 2005.

[4] S. Elbaum, A. Malishevsky, and G. Rothermel. Prioritizing test cases for
regression testing. In ISSTA, 2000.

[5] ERESI. http://www.eresi-project.org/, 2009.
[6] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random

testing. In PLDI, 2005.
[7] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox fuzz testing. In

NDSS, 2008.
[8] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible

inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.
[9] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu. Differential symbolic

execution. In FSE, 2008.
[10] QEMU. QEMU emulator. http://www.qemu.org, 2009.
[11] D. Richardson and M. Thompson. The relay model of error detection and its

application. In Workshop on Software Testing, Verification, and Analysis, 1988.
[12] G. Rothermel and M. J. Harrold. A safe efficient regression test selection

technique. TOSEM, 6(2), 1997.
[13] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J. Harrold.

Test-suite augmentation for evolving software. In ASE, 2008.
[14] D. Song et al. BitBlaze: A new approach to computer securityvia binary

analysis. In ICISS, Keynote paper, 2008.
[15] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in a development

environment. In ISSTA, 2002.
[16] K. Taneja, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Guided path

exploration for regression test generation. In ICSE, New Ideas and Emerging
Results, 2009.

[17] W. van Schaik. Pngsuite. http://www.schaik.com/pngsuite/, December 1998.
[18] J. M. Voas. PIE: a dynamic failure-based technique. IEEE TSE, 18(8):717–727,

Aug. 1992.
[19] Z. Xu and G. Rothermel. Directed test suite augmentation. In APSEC, 2009.

