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Abstract
An important yet largely uncharted problem in malware defense is how

to automate generation of infection signatures for detecting compromised

systems, i.e., signatures that characterize the behavior of malware residing

on a system. To this end, we develop AGIS, the first host-based technique

that detects infections by novel malware and automatically generates an

infection signature of the malware. AGIS monitors the runtime behav-

ior of suspicious code according to a set of security policies to detect a

previously undetected infection, and then identifies its characteristic be-

havior in terms of system or API calls. AGIS then statically analyzes the

corresponding executables to extract the instructions important to the in-

fection’s mission. These instructions can be used to build a template for a

static-analysis-based scanner, or a regular-expression signature for legacy

scanners. AGIS also detects encrypted malware and generates a signa-

ture from its plaintext decryption loop. We implemented AGIS on Win-

dows XP and evaluated it against real-life malware, including keyloggers,

mass-mailing worms, and a well-known mutation engine. The experimen-

tal results demonstrate the effectiveness of our technique in detecting new

infections and generating high-quality signatures.

1 Introduction
The capability of malware to spread rapidly has moti-

vated research in fully automated defense techniques that
do not require human intervention. For example, significant
strides have been made in the automated generation of ex-
ploit signatures and patches (e.g., [40, 27, 24, 34, 32, 44, 33,
31, 12, 14, 47, 30, 39]) to protect vulnerable software from
being exploited. These approaches detect the compromise
of a process and then trace the compromise to the exploit
input that caused it, enabling the construction of a signature
for that input and possibly variations thereof. These tech-
niques, however, are largely constrained to detecting and
generating signatures for code-injection attacks, due to the
limited class of violations they can detect.

Although many research projects have developed solu-
tions to automatically generate exploit signatures to prevent
the malware from penetrating into vulnerable systems, they
cannot prevent all attacks, especially zero-day ones, and
thus allow malware to infect the victim systems. This prob-
lem calls for an automatic mechanism to detect the malware
when it has already penetrated into the vulnerable systems.

We meet this challenge by exploring the automatic genera-
tion of a different type of signature, named as infection sig-
nature, which characterizes malware’s behaviors when they
reside on a system. The main objective of constructing in-
fection signatures is to detect the presence of a malware that
has successfully penetrated into a system. While an exploit
signature can be generated through analyzing the software
vulnerability which allows the exploit to happen [47, 8], in-
fection signatures are generally more difficult to get, due to
the diversity of malware’s behavior in an already infected
system.

The first kind of infection signatures to have undergone
extensive study are virus signatures, which are generated
mostly through manual analyses of virus code. Kephart and
Arnold proposed an approach that automatically extracts
invariant byte sequences from “goat” files infected by the
virus running in a controlled environment [22]. A similar
approach has been adopted by Symantec in their digital im-
mune system [43]. These techniques rely on a virus’ repli-
cation behavior, which is absent in other types of malware
such as spyware, Trojans and back doors. In addition, they
cannot handle polymorphic and metamorphic code [9].

There are other malware detectors that identify malware
code using very simple techniques like the MD5 check-
sum. Generation of a checksum signature can be easily au-
tomated. However, it is too specific to accommodate any
modification to the code such as injection of NOP instruc-
tions. Wang et al. [45] proposed a network-based signature
generation approach which automatically extracts invariant
tokens from malware’s communication traffic. However,
such a signature can be evaded if attackers vary the servers
which communicate with infected hosts (possibly through a
botnet) or simply encrypt network traffic.

In this paper, we seek a very general approach to auto-
matically generating infection signatures, in particular one
that does not presuppose a method by which the attacker
causes his code to be executed on the computer; in the limit,
the user could have installed and run the malware himself,
as users are often tricked into doing so. Consequently, our
approach does not begin with detectors for a code-injection
attack (e.g., using an input-provided value as a pointer [28]),
but rather monitors for an array of suspicious behaviors



that are indicative of a compromise, such as a system call
to hook a dynamic-link library (DLL) file for intercepting
keystrokes and subsequent I/O activities for depositing and
transferring a log file. Once such behavior are detected, our
technique employs dynamic and static analyses to extract
the instruction sequences used to perform the offending ac-
tions, and can do so even if the instructions have undergone
moderate obfuscations. These instructions can be used to
build a “vanilla” version of infection [10, 11], an instruc-
tion template for a static analyzer to detect the infection’s
variants, or regular-expression signatures for legacy mal-
ware scanners. In the case that malware has been encrypted,
our technique extracts the instructions necessary for it to
decrypt its executable and run, which must be plaintext.
We have implemented these techniques in a system called
AGIS, and will detail its operation here.

At a high level, AGIS bears some similarity to recent
work on behavior-based spyware detection that composes
dynamic and static analysis to detect spyware in the form of
a plug-in to Internet Explorer [26, 16]. However, our tech-
nique complements that approach in that it works on stan-
dalone malware such as keyloggers, mass-mailing worms.
Most recently, Yin et al. [48] proposed Panorama to uti-
lize instruction-level taint propagation for malware detec-
tion and analysis. In this aspect, Panorama could act as
the first part of AGIS for infection detection. Our exper-
iments in AGIS, nevertheless, shown that our lightweight,
coarser-grained taint propagation in the system-call level
was enough for infection detection by successfully gener-
ating signatures for all infections. Moreover, it practically
tackles the problems in Panorama, such as indirect depen-
dencies, anti-emulation techniques, and a high performance
penalty. Lastly but most importantly, AGIS is the first host-
based system which automates infection signature genera-
tion for a variety of infections.

We believe that AGIS advances research on malware de-
fense in the following respects.
• Detection of infections caused by novel malware. We
have developed a new technique to detect a previously un-
known infection by monitoring behavior of suspicious code
for violations of security policy. Examples of such behavior
include hooking a DLL file and exporting log files, or re-
cursively searching a file system (for email addresses) and
connecting to SMTP servers. While our technique is also
applicable to plugin-based spyware like in [26], our current
focus is given to standalone malware.
• Automatic generation of infection signatures. We have
developed novel dynamic and static analysis techniques to
generate infection signatures. Our dynamic analyzer inputs
to the static analyzer the locations of the system or API calls
within an infection’s executables which are responsible for
its malicious behavior, and other information that facilitates
static analysis of the malicious code. The static analyzer

then extracts the instructions indispensable to these calls.
Our approach also keeps track of the relationships among
different components of an infection through monitoring
their interactions, which enables automatic generation of
a series of signatures to identify the infection components
which are indirectly responsible for the malicious behavior.
This property is particularly important to malware disinfec-
tion, as some infection component, if left undetected, could
restore other components once removed.
• Resilience to obfuscated and encrypted infection exe-
cutables. We demonstrate that our technique can reliably
and efficiently extract signatures from an infection even if
its code has been moderately obfuscated and encrypted.

2 Design
To generate infection signatures, AGIS takes two key

steps: malicious behavior detection and infection signa-
ture extraction (Figure 1). In the first step, a malware is
penetrated into a sandboxed environment such as hon-
eypot [41]. Followingly, the suspicious executables of
the malware are tainted and their runtime activities are
monitored and checked against security policies to de-
tect malicious behaviors. Any detection triggers the static
analysis in the second step to extract the instruction se-
quences responsible for these behavior, from which infec-
tion signatures are constructed. In this section, we first de-
scribe the general idea through a simple example, and then
elaborate on the techniques involved.

2.1 Overview

As an illustrative example, let us consider a Trojan
downloader trapped within a honeypot. Once activated, the
Trojan downloads and installs a keylogger, and sets a Run
registry key to point to it in order to survive the infected sys-
tem reboots. The keylogger consists of two components, an
executable file which installs a hook to Windows message-
handling mechanism, and a DLL file containing the hook
callback function to create and transfer log files.

To detect this infection, the AGIS-enhanced honeypot
first runs the Trojan to monitor its system calls which
reflect the behavior of the code. From these calls,
AGIS constructs an infection graph which records the
relations among the Trojan and the two files it down-
loads, e.g., the registry change to automatically invoke
the keylogger executable, and extends the surveillance to
them. An alarm is raised when the keylogger installs the
DLL to monitor keyboard inputs through the system call
NtUserSetWindowsHookEx, and the DLL exports a
file in response to inputs of keystrokes.1 Such behavior is
suspected to violate a security policy which forbids hooking

1Keystrokes are automatically generated by a program in AGIS.
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Figure 1. The design of AGIS.

the keyboard and writing a log file. The presence of this ma-
licious activity can be confirmed by a static analyzer which
tries to find an execution path from the callback function in
the DLL to the NtWriteFile call being observed. Back-
tracking on the infection graph, AGIS also pronounces the
Trojan to be malicious.

To extract infection signatures, our dynamic analyzer
first identifies the locations of the calls within executables
(a.k.a. call sites) responsible for the malicious behaviors
which include downloading of the keylogger, modification
of the registry key, invocation of the keylogger, installation
of the DLL and export of a log file. It can also collect other
information useful to static analysis, in particular, the call
sites of other system calls being observed, anchoring the
execution path of the program. Using such information, a
static analyzer extracts the instruction sequences in individ-
ual executables which affect the malicious calls directly or
transitively. The infection signatures of the Trojan down-
loader are derived from these instructions.

2.2 Malicious Behavior Detection
The objectives of this step are to determine whether a

piece of suspicious code is a malware’s infection and if so,
to identify a set of behaviors which characterize the infec-
tion. AGIS adopts a novel technique which first builds an
infection graph to describe the relations among different
components of an infection such as modified registry keys
and downloaded executables, and then detects some com-
ponents’ malicious behaviors using a set of security policies
as well as related activities from other components. These
behaviors are used to generate infection signatures.

Infection Graph. An infection graph can be described as
a tuple 〈V, A〉, where V is a set of vertices and A is a set
of arcs. Set V is further partitioned into two subsets: a set
S of subjects which contains executable components such
as a keylogger and a set O of objects that includes other
components such as registry entries. An arc a from compo-
nent v to v′ indicates that either v outputs something to v′,
e.g., creating v′, or v′ inputs something from v, e.g., reading
from v. We also consider an arc existing from an auto-start
extensibility point (ASEP) [46] such as the Run registry key
to the executable it points to.

Our approach identifies an infection graph using a sys-
tem call level taint-analysis technique. We first taint the sus-
picious code trapped in a honeypot and its process, which
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Figure 2. The infection graph of the example. The dotted lines
annotated with ‘backtrack’ describe the backtracking process. The
vertices with ‘Detected!!!’ are detected violating security policies.

forms the first set of vertices on the infection graph we
called the sources. Other vertices are obtained through taint
propagation: a tainted v propagates taint to another subject
or object v′ if an arc can be drawn from v to v′ as discussed
above. Figure 2 presents the infection graph of the example
in Section 2.1, in which the Trojan passes the taint to the
Run registry key, the hook installer, and the DLL file.

Security Policies. Tainted executables are monitored by
AGIS for the behaviors that violate a set of predetermined
security policies. Infections of the same type usually ex-
hibit common behavior patterns. For example, a keylogger
usually hooks the system message-handling mechanism and
then records keystrokes into a local or remote log; a mass-
mailing worm is very likely to search the file system for
email addresses and then connect to remote SMTP servers
to propagate itself to other clients. Security policies are set
to flag an alarm whenever these malicious activities are ob-
served. For the above example, the keylogger policy is used
to forbid the behavior sequences of hooking and record-
ing, and the mass-mailing policy to prevent the behaviors
of reading files and then connecting to SMTP servers. In
AGIS, we specify the security policy using Behavior Mon-
itoring Specification Language (BMSL) [38].2 Table 1 de-
scribes the two example policies in BMSL.

A security policy can capture a large number of mal-
ware instances: for example, we examined 23 mass-mailing
worms reported by Symantec [1], all of which exhibit the
behaviors described above. Our experiments on 19 com-
mon applications in Section 4.1 also shown that the above
example polices do not introduce any false positives. AGIS
can incorporate more such security policies for infection de-
tection. However, our main objective in this paper is to pro-
pose a new automatic generation mechanism of infection

2BMSL is an event-based language designed for policy specifications. BMSL
rules have the form event pattern → action, where both event pattern and
action can be defined as regular expressions to connect functions and statements.
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signatures, and as such we use the two security policies for
keyloggers and mass-mailing worms, which are described
above, in the following sections. Exploring the design of
security polices is left as our future work.

Infection Detection and Behavior Extraction. AGIS de-
tects an infection by matching the behaviors of suspicious
code to the event pattern on a security policy. Most of
such behaviors can be directly observed through system
calls, while the rest needs to be identified through static
analysis of suspicious executables. For example, the key-
logger rule in Table 1 will be activated only if the pro-
gram makes WriteFile or Sendto calls and those calls are
reachable from the hooked function f . The second con-
dition is verified by the helper function ExistPath , which
searches an execution path connecting the callback func-
tion (pointed by the hook call) to a function exporting a file
on the control flow graph (CFG) of a tainted executable3.
The ExistSearchLoop helper function in the mass-mailing
rule can be implemented using dynamic analysis alone: our
approach triggers the rule if the frequency of recurrence of
ReadFile or related calls from the same call site exceeds a
pre-determined threshold.

Once an event pattern is observed, AGIS announces de-
tection of an infection and puts the detected processes and
their executable files to the infection set N . After that, the
backtrack function is invoked, which continues to add into
N the vertices on the infection graph with arcs to the ver-
tices inside N (called responsible arcs) until all such ver-
tices are included in that set. During this process, the file of
every vertex in N , which could also be a vertex, is also in-
cluded in the infection set. These vertices and their respon-
sible arcs form a subgraph connecting the sources to the be-
haviors that trigger a security policy. We further remove the
vertices which do not have physical representations on the
hard disk and their arcs. The remaining subgraph records all
the behaviors both necessary for the malicious activities to
occur and retrievable from a compromised system. We call
the set of such behavior the infection action set, denoted by
M, which is used to generate signatures for every file inN .

Figure 2 also illustrates a detection and backtrack pro-
cess. Here the malicious behaviors include the actions to
hook and record keystrokes from the keylogger, the actions
to change the run registry key and deposit the keylogger
from the installer, and the registry entry that points to the
keylogger which automatically starts the malware.

2.3 Infection Signature Extraction
An ideal infection signature should uniquely character-

ize an infection to eliminate false positives, and also tolerate
metamorphism exhibited by malware variants to avoid false

3Static analysis can be defeated by anti-disassembling techniques [20], or deep
obfuscations of the executable. When this happens, we can use instruction-level dy-
namic analysis to verify the existence of an execution path.

negatives. AGIS pursues these two goals though extract-
ing the instruction sequences responsible for an infection’s
behaviors in its infection action set M. These behaviors
are important in a sense that they are indispensable to mal-
ware’s mission. Therefore, their corresponding instruction
sequences could offer a unique characterization of the in-
fection caused by the malware.

Our approach utilizes a composition of dynamic analy-
sis and static analysis to extract the important instruction
sequences. This approach works well against the code with
moderate obfuscation, as we discovered in our study.

Dynamic Analysis. An executable’s behaviors observed by
AGIS are in the form of system calls. Our dynamic ana-
lyzer intercepts these calls and examines their call stacks to
find out the return addresses insides a tainted executable’s
process image. These addresses are further mapped into the
call sites in the executable’s physical file. This approach is
able to work smoothly for the programs that do not contain
any encoded components. For an encoded executable, the
approach reveals the discrepancy between the instructions
in its process image and those in its file, which allows the
static analyzer to extract the code indispensable for decrypt-
ing and running it.

A problem here is that a call’s stack frame can be forged
by the malware. For example, an internal callee can first
wipe out any stack frame and recover it before returning to
its caller. However, the stack frame is difficult to fake if
the callee is an API function of which the attacker has lit-
tle control, and any inappropriate manipulation on the stack
will cause crash. Therefore, AGIS only trusts the call sites
of API calls, not those of internal functions.

Static Analysis. After locating all the call sites, our static
analyzer applies a chopping technique [36]4 to extract the
instruction sequences influencing the calls responsible for
the malicious behaviors in the infection action set M.
Chopping is a static analysis technique which reveals the
instructions involved in a transitive dependency from one
specific instruction (the source criterion) to another (the tar-
get criterion) [36]. For example, to find a chop for a tar-
get instruction call eax, we first find from the program’s
control flow the last instruction before the target which op-
erates on eax, and then move on to identify the last instruc-
tion which influences that instruction, and so on, until the
source instruction is reached. Since the behaviors in which
we are interested are system or API calls, the objective of
the chopping is to find all the instructions which directly or
transitively affect these calls. To this end, not only do we
need to take the call instruction itself as the target criterion,
but we also have to include in the target other instructions

4The chopping algorithm we used is described in Section 3.2. Our approach
differs from the standard chopping techniques in that we only identify the related
instructions on a particular execution path, instead of all possible paths. Such a path
is located using the call sequence observed.
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NAME SECURITY POLICY COMMENTS
Keylogger
rule

any()∗; hook(keyboard, f )|f1 = f ; any()∗;
(WriteFile||Sendto)|ExistPath(f1) −→
detected(N )&&backtrack(N ) &&GenSign(N )

If a call to hook keyboard is observed in the system call set SysCall and the callback
function f it points to has an execution path leading to either WriteFile or Sendto,
then a keylogger is detected (detected) and its processes and files are added intoN , the
infection set. We also need to backtrack the infection graph, adding the tainted subject or
object with an arc to the subject(s) or object(s) in N to N (backtrack ), and generate a
signature for every file inN (GenSign).

Mass-
mailing-
worm rule

any()∗; (ReadFile()|ExistSearchLoop;
(!Sendto(SMTP))∗)∗; Sendto(SMTP) −→
detected(N ) &&backtrack(N ) &&GenSign(N )

If an executable file contains a loop to search directories for reading files
(ExistSearchLoop) and API calls to send messages to SMTP servers, then it is a mass-
mailing worm.

Table 1. Examples of security policies.

known to be part of the call, in particular, the stack opera-
tions for transferring parameters. This requires knowledge
of an API function’s model, which provides the information
on the input parameters of the API.

Here we describe the idea behind our static analysis
mechanism. Our approach takes advantage of the call se-
quences observed in the dynamic analysis step to pinpoint
the execution path an executable went through in dynamic
analysis. If the executable is multi-threaded, we build a call
sequence for every thread to make sure that it reflects an
execution path. Let (c0, . . . , cn) be the call sites of a call
sequence, where c0 is the beginning of the executable’s con-
trol flow and cn is a call site inside the infection action set
M that is determined to violate policy. To extract the in-
structions responsible for that call, AGIS works as follows:
(1) disassemble the executable’s binaries and construct a
control flow graph; (2) find an executable path p which in-
cludes (c0, . . . , cn); (3) for k = n . . . 1: chop the instruction
sequence of p between ck−1 and ck.

Metamorphic Infection. AGIS can reliably extract a chop
even if an infection has been moderately obfuscated. Com-
mon obfuscation transformations [10] include junk-code in-
jection, code transposition, register reassignment and in-
struction substitution. AGIS forms a CFG before chopping
which defeats the injection of the junk code unrelated to the
malicious calls. The technique proposed in SAFE [10] can
also be used to mitigate the threat which adds junk code to
a chop. Specifically, code between two points on the chop
[p1, p2] is deemed as junk code if every variable (register or
buffer) has the same value at p1 as its value at p2. How-
ever, the problem of junk code detection is undecidable in
general [10]. The code transposition attack becomes power-
less in the presence of the CFG, which restores the original
program flow. Register reassignment and instruction sub-
stitution are more to do with infection scanning than signa-
ture generation, as the objective of AGIS is to identify the
instructions indispensable to an infection’s mission, not all
of their possible variations. A static-analysis based scanner
can convert the output of AGIS to an intermediate form [11]
which replaces the registers and addresses with variables
and utilizes a dictionary to detect equivalent instructions.

Encoded Executables. The dynamic analyzer also com-
pares an infection’s instructions around malicious call sites

in the virtual memory with their counterparts in the physical
file.5 If there is a discrepancy, AGIS reports that the infec-
tion is encoded and moves on to generate a signature from
its decryption loop. This is achieved through identifying the
instruction which writes to the addresses of these malicious
calls, and then chopping the infection’s executable to ex-
tract all other instructions directly or transitively related to
it. These instructions are deemed indispensable for decrypt-
ing and running the executable.

A critical question here is how to capture the instruc-
tion serving as the chopping target. The most reliable way
is using tools such as Microsoft’s Nirvana and iDNA [7] to
conduct an instruction-level tracing. A more lightweight but
less reliable alternative is changing a malicious executable’s
physical file to set the attribute of the section involving ma-
licious calls to ready-only and rerun the executable. Such
a rerun will produce an exception, which reveals the loca-
tion of the instruction. We evaluated this approach using a
real infection (Section 4.2), and successfully extracted the
chop for the decryption loop. Its weakness is the possibil-
ity to identify a wrong instruction if the read-only section
actually contains data.

Construction of Signatures. A collection of the chops
from the beginning of the execution flow c0 to important
calls within one thread or process constitutes a piece of
vanilla malware, which describes the malicious activities an
infection carries out. In case the infection is encrypted, the
chop for its decryption loop is treated as vanilla malware.

Compared with a static analyzer, traditional pattern-
matching scanners perform much faster though they are
much less resilient to metamorphism. AGIS can generate
byte-sequence signatures or regular-expression signatures
for these scanners. Here is a simple approach. Given a
signature size l in bytes, the signature generator selects a
malicious call or a decryption instruction and walks from
its location backward along its chop to find the first m + 1
instruction segments, each of which has a continuous ad-
dress space and contains Bi (1 ≤ i ≤ m + 1) bytes. These
segments satisfy two conditions: (1)

∑m
i=1 Bi ≤ l and (2)∑m+1

i=1 Bi > l. A regular-expression signature is formed

5A malware could evade this approach by deliberately putting the instructions
around call sites to their corresponding locations in the file. This attack can be de-
feated through extracting the chop of malicious calls from a tainted process’s virtual
memory and checking its existence in the process’s physical file.

5



through a conjunction of the first m segments and a string
in the (m + 1)th segment with a length of l − ∑m

i=1 Bi

bytes. For example, let the signature size be 30 bytes and
the sizes of three segments closest to the call site be 8, 12
and 16; the signature generated is a conjunction of the first
and the second segments, and a string of 10 bytes in the last
segment. Our research shows that the efficacy of such a sig-
nature is related to the selection of the malicious call. If that
call has also been frequently used by legitimate programs,
a long signature is needed to subdue the false positive rate.
Otherwise, a short signature can be sufficient.

3 Implementation
AGIS was prototyped on Windows XP to evaluate its

efficacy. Our implementation includes a Windows kernel
monitor for dynamic analysis and a static analyzer.

3.1 Kernel Monitor
The monitor hooks Windows system service dispatch ta-

ble (SSDT) and the shadow table to intercept the system
calls from the malware’s executable for the purpose of con-
structing an infection graph and detecting malicious behav-
iors. It also employs a stackwalk technique to identify the
call sites of system or library calls. Table 2 lists all the sys-
tem calls intercepted for propagating taints and establishing
an infection graph in our prototype.

Category Function Name
File system access NtCreateFile, NtOpenFile, NtReadFile, NtWriteFile,

NtDeleteFile, NtSetInformationFile
Registry access NtCreateKey, NtOpenKey, NtDeleteKey, NtSetValueKey,

NtDeleteValueKey, NtQueryValueKey
Process, thread and section NtCreateProcessEx, NtCreateThread, NtCreateSection
Networking NtDeviceIoControlFile

Table 2. System calls intercepted in AGIS kernel monitor.

Using the system calls in Table 2, the kernel moni-
tor propagates taint across different subjects and objects.
Specifically, a tainted subject (e.g., a process) taints another
subject or object if it creates or modifies the latter; a tainted
object taints a subject if the subject reads from it. An excep-
tion is that we avoid tainting some critical system service
programs such as LSASS.EXE which interact with most
running processes, as otherwise the whole system would be
tainted. This leaves open the possibility to exploit the vul-
nerabilities of these services to pass infection components.
However, since AGIS is designed for honeypots instead of
real clients, we always can add extra protections to these
services, e.g., anomaly detection in [18].

In order to capture network activities, we parse param-
eters of the system call NetDeviceIoControlFile.
Other system calls are used to detect malicious behaviors
specified by security policies. For example, the system
call NtUserSetWindowsHookEx indicates an attempt
to hook Windows message-handling mechanism, which has
been intensively used by keyloggers [42]. Our prototype
took the policies in Table 1 for infection detection. Another

application of these calls is to supply the call site informa-
tion to the static analyzer, which helps anchor the instruc-
tion path an executable followed. For this purpose, we need
to find out their call sites.

Locations of call sites6 are found in our prototype
through a stackwalk algorithm, which tracks down the stack
frames of a system call from the kernel to user thread stack
until a return address within the executable’s image is iden-
tified. A problem is that some executables’ routines may not
have stack frames at all as a result of compiling optimiza-
tions, which stops the stack-walk prematurely. We mitigate
this problem using a known technique [37] to guess the ad-
dress and then verify it by checking the instruction prior to
it, which should be a call.

3.2 Static Analyzer
The objective of static analysis is to extract the instruc-

tion sequences indispensable for the detected malicious
calls to happen. To this end, we implemented a static analy-
sis tool to dissemble an executable, build its control flow
graph (CFG), identify the execution path with observed
calls and chop that path to obtain the instruction sequences.

We implemented a disassembler on the basis of Proview
PVDASM [15], an open source disassembling tool. It
builds a CFG for every executable with malicious calls.
From the CFG, the static analyzer identified all execution
paths which contain the sites of all the calls we observed,
including those responsible for an infection’s malicious be-
haviors recorded in its malicious action setM. These paths
are constructed through a backward depth-first search, start-
ing from the site of a malicious call. That call is set to be the
last one on the sequence of calls which triggered a security
policy, because the execution paths reaching it must also in-
clude the ones reaching other malicious calls that happened
before it. However, this treatment might not work if the
executable is only partially disassembled, which prevents
us from finding a complete CFG. When this happens, we
simply start the search from every malicious call to find the
paths matching as many observed call sites as possible.

Instructions indispensable to malicious calls are discov-
ered through chopping the paths in the set of selected paths
(denoted by P) with respect to these calls. The chopping al-
gorithm we implemented focuses more on the dataflow than
the control flow, as the latter is easier for the attacker to ma-
nipulate using obfuscation techniques. However, it keeps
all the structure information such as existence of branches
and loops. To find the chop for a call c over a path p ∈ P ,
we first identify the push instructions related to that call,
which can be done using models of API functions. Tak-
ing these push instructions as chop targets, the static an-
alyzer backtracks p to pick up other instructions on the

6The location of a call site is represented by the offset of a call site to the begin-
ning of its residing image and the residing image name.
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path carrying elements affecting the return values of c di-
rectly or transitively through the push instruction. For ex-
ample, the instruction push ecx passes a parameter to
c, and its preceding instruction mov ecx, dword ptr
[0x4+2*ebx], which sets the value of ecx, is also in-
cluded in the chop.

The call-site information might be too coarse to uniquely
identify the path a program executed. This results from the
existence of multiple paths between two call sites. When
this happens, we end up with multiple chops. Our analyzer
first attempts to intersect these chops, which yields a set of
instructions guaranteed to be necessary to the chop target.
In the worst case, if the resulted intersection is too small,
we can keep either all the chops or only those that will not
cause a significant false positive, which can be estimated
using a set of legitimate executables.

4 Evaluation
In this section, we describe our evaluation of AGIS. Our

objectives were to understand its efficacy from three per-
spectives: (1) effectiveness in detecting new infections, (2)
quality of the signatures it generates, and (3) resilience
to moderate obfuscations. To this end, we conducted ex-
periments with infections caused by strains of real-world
malware and their variants, including MyDoom (D/L/Q/U),
NetSky(B/X) [6], Spyware.KidLogger [23], Invisible Key-
Logger 97 Shareware version [3], and Home Keylogger
v1.60 [2]. All the malware are collected from Internet,
and the experiments were carried out in a VMware in-
stalled with Windows XP (service pack 2) on a host with
3.2GHz CPU and 1GB memory.

4.1 Infection Detection
We ran AGIS against all nine strains of malware inside

the VMware and successfully detected all of them. My-
Doom (D/L/Q/U) and NetSky (B/X) triggered the mass-
mailing rule in Table 1, and all three keyloggers set off the
keylogger rule. AGIS automatically generated the infection
graphs for all of these infections. Here, we take MyDoom.D
and Spyware.KidLogger as two examples to elaborate on
our experiments.

MyDoom.D. Mydoom.D is a mass-mailing worm, which
is also capable of turning off anti-virus applications, stop-
ping the computer from booting and reducing system secu-
rity [4]. This worm arrives as an attachment to an email.

Our kernel monitor reported the following behav-
iors. It first copied itself to \WINDOWS\SYSTEM32\
as taskmon.exe and dropped another executable
shimgapi.dll to the same directory. Then, it modified
many registry keys, including the Run registry key to point
to itself. The monitor observed that a thread of the exe-
cutable invoked a large number of NtReadFile calls from

the same call site. These calls touched 588 files. This well
exceeds the threshold for detecting a search loop, which
we set as 100. Another thread of the application made a
number of calls to NtDeviceIoControlFile, which
turned out to be the attempts to invoke Send, delivering
messages to the SMTP server related to an email address
we included in a “goat” html file. So far, the event condi-
tions for mass-mailing worms were unambiguously met and
the rule was triggered.

Spyware.KidLogger. Spyware.KidLogger is a spyware
program that logs keystrokes. It can also monitor instant
messaging, web browsing and the applications activated pe-
riodically. Symantec rates its risk impact as high [5].

Within AGIS, KidLogger deposited and executed
a temporary executable is-I486L.tmp which fur-
ther dropped several files, including executables such
as Hooks.dll, shfoldr.dll, MainWnd.exe,
report.exe, and dsk bmp4.exe. is-I486L.tmp
then modified the Run registry key to point to
MainWnd.exe. After being activated, MainWnd
had the RunService registry key pointed to itself. Then,
it initiated a call to NtUserSetWindowsHookEx, the
parameters of which indicated that the hook was set for the
keyboard, and that the callback function was located inside
Hooks.dll. That file responded to keystrokes with a
number of calls to NtWriteFile. Our static analyzer
scanned that DLL and found an execution path from the
entry of the callback function to the site of the API call
which led to NtWriteFile. Moreover, the sites of all the
calls observed from hooks.dll which happened before
NtWriteFile also appeared on that path. This matched
the ExistPath condition, and triggered the keylogger rule
(in Table 1), which classified MainWnd, hooks.dll and
the KidLogger installer as malicious executables.

Policy False Positives. We ran both security policies on 19
common applications including BiTtorrent, web browsers,
Microsoft Office, Google desktop and others. Our proto-
type did not classify any of them as an infection. Google
desktop was found to hook keyboard. However, its hook
procedure did not write to files or make network connec-
tions. Other applications’ behavior did not even come close
to the keylogger policy. Some applications such as Out-
look were observed to make connections to a mail server.
However, they did not read massive files as a mass-mailing
worm does. Actually, the legitimate application making the
largest number of calls to NtReadFile from a unique call
site was PowerPoint, which accessed 90 files. In contrast,
MyDoom read 588 files in our experiment.

4.2 Signature Generation

AGIS automatically extracted the chops for all the infec-
tions we tested. Again, we use MyDoom.D and KidLogger
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API Call Call Site
#

Comments

RegSetValueExA 1 Set the Run Registry key to point to Taskmon.exe
ReadFile 1 Scan the file system for email addresses
WS2 32.dll:send 3 Send emails to SMTP servers

Table 3. Malicious Calls in MyDoom.D.

as examples to explain our results.

MyDoom.D. The kernel monitor reported five malicious
calls (Table 3) from the main executable of MyDoom,
which was renamed as TaskMon.exe. With regards to
these calls, our static analyzer extracted three chops, one
for setting the registry, one for scanning the file system and
one for sending emails. Figure 3 illustrates the execution
path for scanning, in which the instructions on the chop are
highlighted. From that figure we can easily identify the loop
for searching directories (on the left) which contains API
calls FindFirstFileA and FindNextFileA, and its
embedded loop for reading files (on the right) which uses
CreateFile to open an existing file, and then continu-
ously reads from that file. Moreover, the chops automat-
ically extracted from other MyDoom worms and NetSky
worms have the similar structures.

Entry Point…………
      004A4617: CALL 004A6E3A

004A6E3A: CALL 004A6E65…………
      004A6E53: CALL 004A6D79

004A6D79: PUSH EBP…………
      004A6E0B: CALL 004A68F9…………
      004A6A68: POP ECX
      004A6A69: POP ECX
      004A6A6A: JMP 004A699E
      004A699E: CMP DWORD PTR SS:[EBP-04H],00H
      004A69A2: LEA EAX,DWORD PTR SS:[EBP+FFFFFDA4]
      004A69A8: PUSH EAX

 004A69A9: JNZ 004A69D0
      004A69AB: LEA EAX,DWORD PTR SS:[EBP+FFFFFEE4]
      004A69B1: PUSH EAX                          
      004A69B2: CALL DWORD PTR DS:[004A10CC] ;FindFirstFileA

 ......
      004A69CE: JMP 004A69E1

 004A69D0: PUSH DWORD PTR SS:[EBP-04H]
      004A69D3: CALL DWORD PTR DS:[004A1094] ;FindNextFileA

004A69D9: TEST EAX, EAX
      004A69DB: JZ 004A6A84  
      004A69E1: CMP BYTE PTR SS:[EBP+FFFFFDD0],2EH
      ......
      004A6A4B: CMP AL, 10          
      004A6A4D: JNZ 004A6A6F 

004A6A6F: LEA EAX,DWORD PTR SS:[EBP+FFFFFDA4]
      ......

 004A6A7D: CALL 004A6A9F  
004A6A82: JMP 004A6A68 ; LOOP

Function Starting from 0x004A68F9

      004A6A9F: PUSH EBP
      004A6AA0: MOV EBP, ESP…
      004A6C45: CMP DWORD PTR SS:[EBP-04H],01H
      004A6C49: JNZ 004A6C55
      004A6C4B: PUSH DWORD PTR SS:[EBP+08H]  
      004A6C4E: CALL 004A6647

Function Starting from 0x004A6A9F

004A6647: PUSH EBP 
      004A6648: MOV EBP, ESP……

004A666A: CALL DWORD PTR DS:[004A1068] ;CreateFileA……
004A66A7: PUSH EAX

      004A66A8: CALL ESI ; ReadFile
004A66AA: MOV EAX,DWORD PTR SS:[EBP+08H]

      004A66AD: CMP EAX, EBX                        
      004A66AF: JZ 004A6704                         
      004A66B1: CMP EAX, 0000FFFF                   
      004A66B6: JNB 004A6704                        
      004A66B8: ADD DWORD PTR SS:[EBP-04H],EAX      
      004A66BB: MOV BYTE PTR SS:[EAX+EBP+FFFEFFF4H],BL

004A66C2: PUSH EAX
004A66C2: PUSH EAX

      004A66C3: LEA EAX,DWORD PTR SS:[EBP+FFFEFFF4] 
      004A66C9: PUSH EAX
      004A66CA: CALL 004A6719
      004A66F2: PUSH EBX                           
      004A66F3: PUSH EAX                
      004A66F4: LEA EAX,DWORD PTR SS:[EBP+FFFEFFF4]

004A66FA: PUSH EDI                           
      004A66FB: PUSH EAX                           
      004A66FC: PUSH DWORD PTR SS:[EBP-0CH] 

004A66FF: MOV DWORD PTR SS:[EBP+08H],EBX
004A6702: JMP 004A66A8  ; LOOP

Function Starting from 0x004A6647

Figure 3. The execution path for scanning email addresses in
MyDoom.D. Highlighted instructions are on the chop.

Spyware.KidLogger. We detected five malicious
calls from three executables dropped by KidLogger
(KidLogger.exe, MainWnd.exe and Hooks.dll).
These calls are listed in Table 4. Our static ana-
lyzer extracted chops from the recorded calls. Fig-
ure 4 demonstrates the execution paths and the chops
for MainWnd.exe and Hooks.dll. MainWnd.exe
hooked a callback function in Hooks.dll to intercept
keystrokes. The chop of that DLL unequivocally indi-
cated the malicious mission of the keylogger, which first
acquired keystrokes (GetKeyNameTextA), and then cre-
ated or opened a log file (CreateFileA) to save them
(SetFilePointer and WriteFile).

Signature False Positives. Two types of signatures were
generated from the chops: the regular-expression signature
constructed using the approach described in Section 2.3,
and the vanilla malware directly built from these chops. To
evaluate their false positive rates, we collected 1378 PE

(A) The Execution Path of SetWindowsHookExA 
in MainWnd.exe and its Chop

00401324: PUSH 00

00401326: CALL 00401500

0040132B: ADD ESP, 04  

0040132E: CALL 00401440

00401440: PUSH 0041E210
00401445: CALL DWORD PTR DS:[00418128] ;LoadLibraryA
0040144B: TEST EAX, EAX
0040144D: MOV DWORD PTR DS:[004226A4], EAX

00401452: JNZ 0040146C

0040146C: MOV ECX,DWORD PTR DS:[004183DC]
00401472: PUSH ESI                            
00401473: MOV ESI,DWORD PTR DS:[00418390]
00401479: PUSH 00                             
0040147B: PUSH EAX                           
0040147C: PUSH ECX                          
0040147D: PUSH 02  

0040147F: CALL ESI ;SetWindowsHookExA

100010E9: LEA EAX,DWORD PTR SS:[EBP-14H]    
100010EC: PUSH 13                            
100010EE: PUSH EAX                             
100010EF: PUSH DWORD PTR SS:[EBP+10H]          
100010F2: CALL DWORD PTR DS:[10006114] ;GetKeyNameTextA

   ...
10001129: PUSH EAX            
1000112A: LEA EAX,DWORD PTR SS:[EBP-50H]    
1000112D: PUSH EAX                   

1000112E: CALL 1000117B 

       (B) The Execution Path of NtWriteFile in 
Hooks.dll and its Chop.

1000117B: PUSH EBP 
  ...
100011B8: LEA EAX,DWORD PTR SS:[EBP+FFFFFE30]  
  ...      
100011CE: PUSH EAX            
100011CF: CALL DWORD PTR DS:[10006028] ;CreateFileA
  ...
10001248: CALL EDI                      ;WriteFile
1000124A: PUSH 02                           
1000124C: PUSH EBX                         
1000124D: PUSH EBX                    
1000124E: PUSH DWORD PTR SS:[EBP+0CH]
10001251: CALL DWORD PTR DS:[10006054]  ;SetFilePointer
10001257: LEA EAX,DWORD PTR SS:[EBP-04H]  
1000125A: PUSH EBX                            
1000125B: PUSH EAX                   
1000125C: PUSH ESI                    
1000125D: CALL 100018A0
10001262: POP ECX  
10001263: PUSH EAX                 
10001264: PUSH ESI                      
10001265: PUSH DWORD PTR SS:[EBP+0CH]    
10001268: CALL EDI                      ;WriteFile

Figure 4. The execution paths and their chops for Spy-
ware.Kidlogger. Highlighted instructions are on the chop.
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Figure 5. False positive rate vs. signature length.

files from directory ‘C:\ProgramFiles’ on Windows
XP and used them as a test dataset.

Regular-expression Signatures. A regular-expression sig-
nature we used is a conjunction of byte strings which are
closest to the site of a malicious call on its chop. Therefore,
it is natural to conjecture that the selection of the call af-
fects the quality of the signature. Another important factor
related to false positives is signature length. The longer a
signature is, the fewer false positives it will lead to as it
is more specific. The objective of our experiments was to
study the relation between these factors and the false posi-
tive rate of our signatures. We developed a simple scanner
which first took out the executable section of a PE file and
then attempted to find the signature from it. Figure 5 de-
scribes the experiment results.

In the figure, the signatures constructed from the API
functions RegSetValueExA and Send had the lowest
false positive rates. A possible reason is that these func-
tions are less frequently used than the other functions, such
as CreateProcessA. False positives also decreased with
the increase of the signature length. As illustrated by the
zoomed subfigure in Figure 5, it was completely eliminated
after the length reached 28 bytes.

Vanilla Malware. To evaluate the quality of a vanilla-
malware signature, we need to demonstrate that the in-
struction template (i.e, the chop) we extracted will not ap-
pear in a legitimate program. To this end, we developed
a static-analysis based scanner which works as follows.
It first checks if a program imports all the API functions
on the template chop, and then attempts to find an exe-
cution path in the program with all these functions on it.
If both conditions are satisfied, the scanner further chops
that path with regards to an important call, and compares
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File Name API Call Call Site # Comments
kidlogger.exe CreateProcessA 1 Create a process (is-I486L.tmp) to install other code
MainWnd.exe RegSetValueExA 1 Set the Run Registry key to point to itself

SetWindowsHookExA 1 Hook the keyboard
Hooks.dll WriteFile 2 Export keystrokes to a log file

Table 4. Malicious calls of Spyware.KidLogger. Note that there was one temporary executable (is-I486L.tmp) with malicious
calls. However, we did not use them because the file was deleted and could not be used for signature generation.

the sequence of the operators of the instructions on the
template chop with those on the chop of the normal pro-
gram. For example, suppose the instructions on the tem-
plate are push eax; add eax,ebx; mov ebx,10;
the sequence we attempt to find from the chop in a normal
program is push add mov.

In our experiment, we scanned all 1378 files, and no
false positive was reported by our scanners.

Resilience to Metamorphism. The resilience of AGIS to
metamorphic infections was evaluated using a mutation
engine based on RPME [17], which can perform three
mutation operations: junk code injection, instruction
transposition and instruction replacement. To generate
metamorphic code, we ran the mutation engine on the
execution paths used to extract chops.

RPME performed all three mutation operations on
execution paths of MyDoom.D and KidLogger, and then
AGIS analyzed them using our static analyzer. As ex-
pected, almost all the chops extracted were identical to the
original ones except that some adjacent but independent in-
structions were swapped. This problem does not threaten
our approach because the static analyzer will build a CFG
for every instruction sequence, which is used to avoid
extracting wrong instructions. In our experiments, the
code size of the execution paths varied from 39 bytes to
467 bytes, while the mutated code kept a constant size of
4K bytes.

Effectiveness against Encode Infections. We also evalu-
ated our prototype using an encoded infection, MyDoom.D
which is packed using UPX. In the experiment, our proto-
type located malicious call sites in the section UPX1 of its
executable, and set the attribute of the section to read-only.
Rerunning the executable produced an exception which re-
vealed the malicious instruction “mov [edi],eax”. Our
static analyzer chopped the executable using that instruction
to generate vanilla malware. Further study shows that the
chop extracted actually describes the unpack loop of UPX.

4.3 Performance

We measured the performance of our implementation:
infection detection took 73s for MyDoom.D and 66s for
KidLogger; signature generation took 60s for MyDoom.D
and 6s for KidLogger. As a comparison, Panorama [48]
lasts 15 to 25 minutes to detect one malware sample.

5 Discussion
In this section, we will discuss the limitations in the de-

sign and implementation of AGIS.
The current design of AGIS could be evaded by the in-

fections in the OS kernel and those capable of countering
dynamic analysis. For example, malware can check the
SSDT to detect the presence of the kernel monitor and re-
move its executables. In addition, an infection might delib-
erately delay running its malicious payload or condition the
execution of malicious activities on environmental factors.
How to defeat these attacks is part of our future research.

Our current implementation only monitors malware’s in-
teraction with operating systems (OS), which are observ-
able from system calls. However, some infections are in the
form of add-ons to a legitimate application and their interac-
tions with the application do not go through OS. An exam-
ple is the spyware based on Brower Helper Object [26]. Our
implementation will let these behaviors slip under the radar.
This limitation, however, is more to do with the simplicity
of the implementation than the weakness of the design. Re-
cent research [26, 29] shows there is no essential technical
barrier to wrapping the interactions in AGIS.

Another concern is that these excluded system services
in Section 3.1 could be used to conduct malicious activities
to evade detection. To this end, we can adopt a technique
which traces the subjects and objects indirectly affected by
an infection through monitoring the outputs of a service pro-
gram corresponding to the request from a tainted process.

AGIS generates an infection signature based upon the
malicious behaviors observed from suspicious executables.
Such an approach, however, may only capture a subset of
the infection’s activities. We believe the subset of malicious
behaviors in many cases is enough to characterize an infec-
tion, as what we really care about is not an accurate classi-
fication of malware strains but detection of the presence of
dangerous code and disruption of its activities.

Detection of metamorphic malware is an undecidable
problem in general. That said, theoretically it is possible to
develop a metamorphic malware that thoroughly modifies
the way it accomplishes its mission for every infection. In
fact, many malware authors built their metamorphic or poly-
morphic malware using the mutation engines developed by
third parties [17, 49]. These mutation engines have limited
capability to carry out in-depth obfuscations such as injec-
tion of junk code related to an important call, which requires
understanding of the code being obfuscated. We plan to fur-
ther investigate this problem to enhance AGIS.
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As we discussed before, static analysis has only limited
capabilities to handle indirect calls and jumps, which also
constrains the effectiveness of AGIS. This problem can be
mitigated through dynamic analysis. For example, we can
use static analysis to identify branching instructions and
then instrument the code before them to help identify their
jump targets at runtime. Dynamic slicing techniques can
also be applied to extract the chop when obfuscations con-
found static analysis.

6 Related Work
Techniques for automatic generation of malware signa-

tures have been intensively studied [40, 27, 24, 34, 32, 44,
33, 31, 13, 12, 14, 47, 30]. However, existing research
mainly focuses on generation of exploit signatures which
reflect the intrusion vectors malware employs to break into
a vulnerable system. Such signatures are designed for pre-
venting an exploit, not for detecting an already infected
system. Infection signatures are used to detect infections,
which serves to complement exploit signatures.

Only limited research has been conducted to automate
infection signature generation. The first automatic tool for
generating virus signatures was proposed by Kephart and
Arnold [22]. Their approach extracts a prevalent byte se-
quence from infected files which serve as “goats” to at-
tract infection from a virus in a sandboxed environment.
This method does not handle metamorphic malware well
and heavily relies on the replication property of viruses.
By comparison, AGIS can generate signatures for non-
replicable infections, and those caused by metamorphic
malware. Wang et al. [45] recently proposed NetSpy,
a network-based technique for generating spyware signa-
tures. NetSpy intercepts spyware’s communication with
spyware companies, and extracts prevalent strings from its
messages. However, network traffic may not carry suffi-
cient information to characterize an infection. AGIS is a
host-based technique, which complements NetSpy with the
host information related to an infection’s behaviors.

Recently, Kirda et al. proposed a behavior-based spy-
ware detection technique [26, 16] which applies dynamic
analysis to detect suspicious communications between an
IE browser and its BHO plug-ins, and then analyzes the
binaries of suspicious plug-ins to identify the library calls
which may lead to leakage of user’s inputs. Although this
approach shares some similarity with AGIS, it is for detec-
tion only, not for signature generation. In addition, it only
works on BHO based spyware. In contrast, AGIS is able to
work against standalone spyware.

The taint-analysis technique AGIS uses to construct in-
fection graphs resembles those proposed for other purposes
such as tracking intrusion steps and recovering a compro-
mised system. BackTracker [25] traces an intrusion back
to the point it entered the system. Process Coloring [21]

is another system designed for a similar purpose. Back-to-
the-Future framework [19] offers a system repair technique
to restore an infected system using a log recording infected
files and registry entries.

With the objective of malware detection, Panorama [48]
tracks how taint information flows among system objects in
an instruction level, but it suffers from indirect dependen-
cies, anti-emulation techniques [35], and high performance
overhead. In contrast, our approach tracks taint propaga-
tion at system-call level. It makes an overestimate in taint
propagation and thus be able to largely handle indirect de-
pendencies. Our experimental results shown that such over-
estimation has not introduced any additional false positives
in the detection phase. AGIS alleviates the other two prob-
lems in Panorama by running in a real PC environment with
reasonable performance overhead, enabling it to run on a
production system. Besides detection, our approach also
generates infection signatures to detect infected systems.

7 Conclusions
In this paper, we present AGIS, the first host-based

technique for automatic generation of infection signatures.
AGIS tracks the activities of suspicious code inside a hon-
eypot to detect novel malware, and identify a set of mali-
cious behaviors which uniquely characterizes its infection.
Dynamic and static analyses are further used to automati-
cally extract the instruction sequences responsible for these
behaviors. A range of infection signatures can be con-
structed using these sequences, from regular-expression sig-
natures for legacy scanners to vanilla malware for static an-
alyzer [10]. Our empirical study demonstrates the efficacy
of the approach.

The current design of AGIS still leaves much to be de-
sired. In the follow-up research, we plan to investigate ex-
tension of dynamic analysis to tackle indirect branching,
and techniques to counter anti-emulation tricks played by
malware executables. In addition, we will develop new
scanning techniques which use our signatures to quickly
and accurately detect infections.
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