
Codejail: Application-transparent Isolation of
Libraries with Tight Program Interactions?

Yongzheng Wu1, Sai Sathyanarayan2, Roland H.C. Yap2, and Zhenkai Liang2

1 Singapore University of Technology and Design
yongzheng wu@sutd.edu.sg

2 School of Computing, National University of Singapore
{sathya,ryap,liangzk}@comp.nus.edu.sg

Abstract. Dynamically linked libraries are commonly used in software
programs to facilitate code reuse. Once a library is linked into a software
program, a bug in the library can lead to compromise of the whole pro-
gram. Moreover, the library may also contain malicious code. Existing
solutions for software component isolation assume simple interactions
between a library and the main program, otherwise, they require signif-
icant modification of the main program and the library. In this paper,
we propose a novel solution, Codejail, which supports a partial isolation
of libraries that have tight memory interactions with the main program.
Codejail requires no modification to the main program or the library.
We demonstrate using a Linux prototype that Codejail can work easily
with real-world programs and libraries. The performance is good for a
portable implementation with costs commensurate with the degree of
tight interaction.

1 Introduction

Software today heavily relies on dynamically-linked libraries. Libraries are usu-
ally seen as a necessary step to facilitate code reuse. While the use of libraries can
considerably simplify and speedup software development, there is a downside,
namely, the libraries can themselves have bugs. In this paper, we distinguish be-
tween the code in specific libraries (or simply library) with the code outside the
library which we call the main program. Once a library is linked into the main
program, a bug in the library can lead to compromise of the entire program.

Specifically, there are two main threats posed by third-party libraries to its
main program. First, the library may be vulnerable because it contains a bug
that can be exploited by an attacker. Typical attacks are through memory cor-
ruptions, such as buffer overflow together with code injection or return-oriented
programming [14]. Even though the main program contains no vulnerabilities,
vulnerabilities in the library may propagate and affect the main program. Sec-
ond, a library could also be malicious. The extensive use of libraries, i.e. dynam-
ically linked libraries, only exacerbates these problems.

? This work has been supported by a DRTech grant R-394-000-054-232.

To mitigate the threats from dynamic libraries, a range of solutions have been
proposed to isolate program components to control their privilege [5, 6, 16, 18].
Most solutions adopt a separated memory model: a component can only access
its own memory, which is mutually exclusive with the memory of the main pro-
gram. While this model works with simple inter-component interactions, it either
does not work or is not efficient for libraries that engage in tight interactions
with the main program. Rather, it is more common for programs and libraries
to be written with tight interactions, such as sharing global variables, passing
references to complex data structures, callbacks, longjmp, etc. It is not practical
to assume that such libraries can be rewritten to eliminate the tight interaction,
let alone doing so for all software using such libraries. This is even less practical
for close-source libraries/programs.

Our goal is to mitigate the threats from dynamic libraries in a transparent
fashion. Ideally, we want to reduce or prevent these threats without the need to
modify either the libraries or the main program when there are tight interactions
between them. Existing solutions, however, are not transparent to the main
program and libraries. Often, significant work is needed to port a library and
a main program in order to make library execution safe while preserving the
functionality. This usually needs source code, thus, preventing reuse of existing
binaries. We argue that while existing solutions can provide security, they do
not address transparency and hence are of limited applicability.

We use NativeClient (NaCl) [18] as an example to illustrate the need for a
transparent library security mechanism. NaCl is designed for isolating untrusted
native browser plugins. It adopts a separated memory model that ensures an
untrusted component can only access its own dedicated memory and code. As
a result, communication between the trusted and untrusted components are in
a remote-procedure-call style, i.e. parameters and return values are passed by
value and data structures are serialized. However, libraries are not typically
designed for this model. Instead, most libraries assume that the library and
main program share the same memory and by-reference parameter passing is
commonly used for efficiency. There are practical difficulties with porting any
code that uses such assumptions. Good software engineering practices mean
that details of data structures are encapsulated and (mostly) opaque, and thus
porting requires reverse engineering the implementation. Many complex libraries
employ tight interactions such as callbacks and longjmp, which are not allowed in
NaCl because the code segment is isolated, e.g. the popular libpng library uses
an opaque structure to keep internal states with longjmp as the error handling
mechanism. Thus, NaCl cannot be used to isolate libpng, and libpng is used
in a number of web browsers. Many security vulnerabilities have been found in
libpng, rendering such browsers vulnerable.

In this paper, we present Codejail, a framework to isolate untrusted libraries.
We assume that libraries have well defined APIs, which specify the extent of the
tight interactions with the main program. This is reasonable since it is necessary
for the user of a library to understand how to make use of it. To prevent bugs in
a library from compromising the whole program, Codejail ensures: (i) memory

access in the library is sandboxed so that side effects are limited to conform
to its API; and (ii) system privileges are controlled to be only what is allowed
for its designed tasks. The design goal of Codejail is to provide application-
transparent solutions for isolating libraries that have tight interaction with the
main program. Unlike the separated memory model, Codejail proposes a semi-
shared memory model, which allows common tight interactions while ensuring
the integrity of main program’s data. In this model, the jailed library has full
access to its own memory and read access to other memory. In addition, the
main program can selectively allow the jailed library to write to any memory.
We support callbacks where the jailed library needs to run a function supplied
by the main program using the main program’s data and the use of longjmp to
return to the main program from the jailed library. As we work at the binary
library API level, library source code is not needed and Codejail works with
dynamically linked libraries.

Although the overall goal is to support tight interactions of the main program
with an untrusted library transparently, we have some restrictions. Codejail en-
sures that a jailed library is not able to modify arbitrary memory outside its
sandbox. This restriction applies even if the library has no vulnerabilities nor is
it malicious, so not every library with tight interaction can work transparently
with Codejail. Nevertheless, we believe that a much larger class of libraries and
software will function with Codejail than with more strongly separated memory
models such as software fault isolation.

We have built a portable Unix prototype implementation of Codejail in
Linux. We demonstrate the usability of Codejail to transparently sandbox well-
known dynamic libraries using the off-the-shelf binaries of standard programs
and libraries. Even though our prototype is portable and works in user-mode,
the performance impact is still reasonable. Where there are large numbers of calls
to a jailed library (or callbacks) and the library needs to write significant data
outside its own memory, there will naturally be more overhead. We have tested
libpng with the Mozilla Firefox browser and were able to protect against attacks
from libpng to Firefox. From a performance standpoint, we did not observe any
degradation in the user experience when using Firefox.

In summary, our major contribution is the design and prototype implemen-
tation of a novel approach, Codejail, that isolates untrusted libraries. Codejail
supports tight program interactions required by a signification portion of li-
braries. It can also be applied transparently, without modifying the software
program or the untrusted library.

2 Related Work

Applying the principle of least privilege by partitioning a program into a number
of processes with different privilege has been studied by many researchers. Provos
et al. [13] partitioned OpenSSH into two parts, a privileged master to only
handle authentication and unprivileged slaves to handle the rest of the work.
Kilpatrick [8] proposed Privman, a library to help partition privileged UNIX

daemons where the main program talks to a privileged server with the Privman
library to perform privileged tasks. This is by replacing privileged function calls
to the corresponding Privman wrappers, but a significant amount of manual
work is still necessary. Brumley et al. [2] proposed Privtrans to automate the
privilege separation work. The programmer manually specifies privileged data
and functions. Privtrans automatically separates the program into an untrusted
slave and a trusted monitor, each running in a separated process. Access to
privileged data and functions only takes place in the trusted monitor. Both
Privman and Privtrans adopt a trusted callee model where the main program
is untrusted and the privileged operations are performed by a trusted monitor
process. In contrast, Codejail addresses the opposite situation with a trusted
caller and untrusted callee.

There are other solutions on confining memory access of a software compo-
nent without separation into different processes. Software Fault Isolation (SFI) [16]
ensures all memory accesses of the untrusted component is within the memory
dedicated to the component by statically verifying direct memory access instruc-
tions and dynamically checking indirect access. Other work [4–6,11,18] uses the
same idea while using different techniques and hardware features. Vx32 [6] uses
the segment register in x86 to confine memory access in hardware. Other so-
lutions [3, 10, 15] provide isolation by confining the untrusted component to a
memory region assigned to the component, we call such a memory model as a
separated memory model. There are two problems with this model. Firstly, ex-
isting code typically assumes global memory access and has to be recompiled
or manually ported. Secondly, inter-component pass-by-reference function calls
need to be changed to pass-by-value, as the callee cannot access the memory of
the caller. This is not easy or efficient for complex data structures.

Wedge [1] uses tagged memory to restrict memory accesses of software com-
ponents, where each memory allocation is explicitly associated with a tag. Soft-
ware is partitioned into least-privilege components, which can only access mem-
ory with specific set of tags. Compared to the separated memory model, Wedge
allows memory sharing, such as by-reference function parameters, if the memory
regions have compatible tags. However, it needs each component to understand
how memory is used by other components. This requires understanding the mem-
ory access behavior of all components in the software and memory allocation
has to be modified to specify the correct tag. When modification is not possible,
Wedge provides a way to specify the default tag for all allocations made by a
component. This can lead to the confused deputy problem. Consider a malicious
component C1 and a benign component C2 both using component C3. C2 uses
C3 to allocate memory to store critical data. C1 may be able to tamper with
C2’s data by using C3.

3 Problem Statement

3.1 Motivating Example

We use the libpng library to demonstrate the problem of tight interactions be-
tween a main program and a library. It shows the difficulty of supporting such
interactions in the separated memory model. Fig. 1 shows a sample main pro-
gram using libpng. We underline the key points in the listing, and we emphasize
whether main or libpng manage the memory of particular data structures, as
well as who uses it.

The main data structure for libpng is an opaque structure png struct pointed
by png. It is created at Line 7 with png create read struct (similarly, info at Line
8) – memory allocated by libpng is used in main. This structures pointed by png

and info can be thought of as identifying the interaction between main and libpng

but as they are not directly accessed by the main program, the details should be
considered as private and implementation specific. If libpng is sandboxed using
a separated memory model, parameter marshalling of png struct will break the
separation between interface and implementation. Rather than marshalling, png
can be treated as a resource handle rather than pointer. However, this can crash
the main program if it tries to dereference it. png destroy read struct at Line 10
& 22 is used to free the opaque structure as well as resetting the pointer to
NULL – libpng changes png in main.

Due to lack of language-based exception handling in C, setjmp and longjmp

are often used in libraries including libpng. At Line 9, setjmp is used to create
the error handling code in main, the jmpbuf comes from memory managed by
libpng. Such library code does not fit with the separated memory model, e.g.
the longjmp branches outside the allowed code range and stack frame in NaCl.

The function main reads the PNG file in a loop. It passes chunks of PNG data
to libpng using png process data at Line 19 – libpng reads buff managed by
main. The main program also passes the function pointer row callback to libpng

at Line 14 – the function resides in main. In png process data, row callback is
called by libpng whenever a row of pixels is decoded. The main program then
displays the row through its row callback function. This mechanism is known
as function callback, where the main program registers a function pointer in the
library, which will be called by the library. The callback mechanism will cause a
similar problem as longjmp in separated memory model approaches.

3.2 Tight Interactions

We now examine the typical interactions between the main program and a li-
brary, including those that are challenging to support under the separated mem-
ory model, such as the side effects of library functions and function callbacks:

1. By-Value Parameter Passing and Return: The parameters are copied
from the caller to the callee and vice versa for return values, e.g. sqrt().

1 static void row_callback(png_struct *png , png_bytep new_row ,

2 png_uint_32 row_num , int pass) {

3 // display the row

4 }

5 int main (void) {

6 FILE *fp = fopen("foo.png", "rb");

7 png_struct *png = png_create_read_struct (...);

8 png_info *info = png_create_info_struct(png);

9 if (setjmp(png jmpbuf(png))) {

10 png_destroy_read_struct (&png, &info, NULL);

11 close(fp);

12 return 1;

13 }

14 png_set_progressive_read_fn(ptr , ..., row callback, ...);

15 while (1) {

16 char buff [1024];

17 size_t len = fread(buff , 1, 1024, fp);

18 if (!len) break;

19 png_process_data(png , info , buff, len);

20 }

21 fclose(fp);

22 png_destroy_read_struct (&png, &info, NULL);

23 return 0;

24 }

Fig. 1: Using libpng to read a PNG file

2. By-Reference Parameter Passing and Return: The caller passes point-
ers of the parameters, and memory is dereferenced by the callee and possibly
modified, e.g. strlen() and asctime r().

3. Global Variable: Some libraries export global variables that can be directly
accessed by the main program or other libraries, e.g. errno from libc.

4. Function Callback: Library functions may need to call the main program
in order to read/write data or signal task completion, e.g. png process data()

makes a callback as described in Sec. 3.1.

5. Long Jump: Some libraries, e.g. libpng, use setjmp/longjmp as an error-
handling mechanism. This can cause the library to transfer control to the
main program without using the return mechanism.

The first type of interaction involves no tight memory interactions, which
can be easily supported by memory isolation models. However, the other types
of interactions are not compatible with memory isolation models. They either
have implicit shared memory operands, or involve non-standard control transfer
between code of the main program and the library.

3.3 Threat Model and Design Goal

Threat model. In our approach, we aim to mitigate the untrusted library’s threat
to directly access undesired system resources or memory. Note that the untrusted
library can cause indirect threats through the data it returned to the main
program, such as returning malicious data to exploit memory errors in the main
program. This type of threats is out of the scope of our solution (and the related
solutions in Section 2). It can be addressed by the main program through data
sanitizing, checking returned data (including updates of by-reference parameters)
from the untrusted library.

Design goal. Under this threat model, an untrusted library must be separated
from the main program to prevent it directly accessing the main program’s
resources and memory. However, the library needs tight interactions with the
main program. The goal of Codejail is to isolate untrusted libraries into different
execution contexts. The contexts share a flexible memory model which supports
close interactions. Specifically, our solution guarantees the following properties:

– The untrusted library cannot execute arbitrary code in the trusted context.
– The untrusted library cannot crash the main process through, for example,

null pointer dereference, illegal memory access and deadlock.
– The untrusted library cannot make arbitrary system calls, for example, only

system calls explicitly specified by the main process are allowed. The speci-
fication can include a set of allowed system calls, a set of files and directories
and system resource limits such as memory usage, time limits, etc.

4 The Codejail Approach

We describe Codejail’s key techniques showing how they meet our design goals.
An untrusted library is typically used in the following fashion. The software
consists of a trusted main program, an untrusted library, and a trusted library.
The main program uses functions from both libraries; the untrusted library uses
the trusted library. The main program only interacts with the untrusted library
through the library’s API, which specifies functions exported from the libraries
with their parameter types and calling conventions. For by-reference parameters,
the API should specify whether the callee updates the parameter. The API also
specifies exported global variables and their data types. For data types that are
directly accessed externally, their data structures have to be specified, e.g., in a
header file. We do not assume availability of source code of the main program or
the libraries. However, we assume the header file of the library to be available.
We have no assumption about the binary of the untrusted library, i.e. it can
contain arbitrary code including indirect branches and system calls.

4.1 Codejail Overview

Fig. 2 gives an overview of Codejail. Codejail creates contexts to separate the
main program and the untrusted library. The main program runs in the trusted

Fig. 2: An overview of Codejail

context, while the untrusted library runs in the untrusted context. When the
main program calls (Step 2) a function in the untrusted library, Codejail switches
execution to the untrusted context. When the untrusted library function returns
(Step 5) to the main program, execution switches back to trusted context. Calling
functions in the trusted library does not change the context. Calling any function,
including functions in the main program, in the untrusted context remains in
the untrusted context. However, callbacks can be set up so that the untrusted
library can call them to switch from untrusted to trusted context. The untrusted
context is unprivileged, and its system resource accesses are sandboxed.

Memory access in the untrusted context is sandboxed. It can write to its own
memory. However, for writes to the main program’s memory, changes are only
observable in the untrusted context but not in the trusted context. In Fig. 2 Step
3, the untrusted library assigns 20 to variable y, which is in its memory. The
main program observes this change in Step 6. However, in Step 4, the assignment
of 30 to x, which is in the main program, is not observable by the main program
in Step 7, where the old value 10 is read. The main program can selectively
“commit” changes made in untrusted context, so that it sees the value 30 in x.
Other changes are lost in both contexts.

4.2 Memory Access Policies

Codejail classifies writable memory into three types: Mm, memory of the main
program; Mj , memory of the untrusted library; and Ml, memory of the trusted
library. The semantics of memory access depends on context and memory type.

Table 1 shows the classification of writable memory types. The static allo-
cated memory typically includes global variables and static local variables. In
the ELF binary format, such variables reside in the .bss and initialized data
segment. The static allocated memory is associated with the code that declares
it. In Codejail, we further divided it into three parts: the main program, trusted
libraries, and untrusted libraries. Codejail divides the stack into two parts: one
used by the trusted context (including the main program and trusted libraries)
and the other used by untrusted context. Similarly, the heap is divided into two
– different contexts allocate memory in different heaps.

Memory Type

static allocated memory
main program Mm

untrusted library Mj

trusted library Ml

stack
trusted context Mm

untrusted context Mj

heap
trusted context Mm

untrusted context Mj

Table 1: Memory types in Codejail.

We now describe the policies for memory access on the three types of memory:

– Mm Memory of Main Program: Initially, Mm memory in both contexts
is synchronized, i.e. memory read gives the same value for the same ad-
dress. After the main context writes to it, the memory is still synchronized.
However, after the untrusted context writes to it, the memory is not synchro-
nized. Each context has a different view of the memory, so that the memory
writes are only observable in its own context. As a result, after the untrusted
library function returns, the main program is not able to observe the change
made by the untrusted library. In this way, we prevent the untrusted library
from corrupting data of the main program.
In some cases, we want the library to update some data. For example, we
want memcpy(dest, src, n) to update [dest, dest+n]. Codejail provides the
API (cj recv(void *ptr, size t size)) to copy data from the untrusted
context to the trusted context.
Before each untrusted function call, Mm memory is re-synchronized to the
synchronized state, and changes made by the previous untrusted function,
unless committed through cj recv, are discarded.

– Mj Memory of Untrusted Library: Both contexts can observe the up-
dates made by each other. As a result, the main program should sanitize it
before using its value.

– Ml Memory of Trusted Library: Initially Ml memory in both contexts
is synchronized. However, memory writes made by either context cause it
to be not synchronized, thus the other context is not able to observe the
changes. Ml memory is never re-synchronized. For example, if we consider
libc as the trusted library, the random seed used by rand() is in Ml. Thus
a different copy of the random seed is kept in each context. The untrusted
context cannot modify the trusted context’s seed.

4.3 Supporting Tight Interactions

Using the memory types and access policies, Codejail supports tight interactions
between the trusted context and the untrusted context.

Pass-by-reference: The main program passes pointer p to the untrusted
library. Memory pointed by p can be allocated in trusted context (Mm) or un-
trusted context (Mj). In Line 10 & 22 of Fig. 1, &png points to memory in the

png_uint_32 wrapper_png_get_text (png_structp png_ptr,

png_infop info_ptr, png_textp *text_ptr, int *num_text)

{

png_uint_32 retval = (png_uint_32) cj_jail(

real_png_get_text, 4, png_ptr, info_ptr, text_ptr, num_text);

cj_recv(text_ptr, sizeof(png_textp));

cj_recv(num_text, sizeof(int));

return retval;

}

Fig. 3: An wrapper function for png get text() in libpng

main program’s stack, i.e. in Mm. The main program has to call cj recv to “com-
mit” the change made in libpng. In Line 19, png points to memory allocated in
libpng, i.e. in Mj . The main program does not need to call cj recv in this case.

Global Variables of the Untrusted Library: The memory model of
Codejail allows the main program to transparently read and write global vari-
ables exported by the untrusted library. This is because they are in Mj , which
allows both contexts to observe changes made by each other.

Callback: Codejail allows the untrusted library to call the main program’s
functions in a trusted context. To do this, the main program calls Codejail
API cj reg callback to register a callback function. A function pointer f is
passed to cj reg callback and another function pointer f ′ is returned. f ′ is
then passed to the untrusted library. When the untrusted library calls f ′ in
the untrusted context, Codejail will switch to trusted context and call f . After
f returns, execution switches back to untrusted context. Both call and return
are transparently handled by Codejail. Callbacks can be nested recursively, i.e.
during a callback, the main program can call untrusted library functions, which
then make more callbacks.

Long Jump: Codejail allows long jumps between different contexts. To pre-
vent the untrusted library from jumping to arbitrary code in the trusted context,
Codejail ensures all long jumps are using a jmp buf registered with setjmp.

We handle typical cases of tight interactions. However, there are cases that
Codejail does not support. For example, memory allocation in the trusted con-
text is freed in the untrusted context, which is not allowed to protect Mm. When
the interface between the library and the main program is not well defined, Code-
jail cannot support the interaction. This includes undocumented memory write
by the library, undocumented library functions called by the main program, and
passing opaque data structures to the library. Such not well defined interactions
are less common being not good software engineering practices.

4.4 Codejail Primitives

There are two ways to apply Codejail. One is to write a wrapper library exporting
the same set of functions as the untrusted library. The wrapper library calls the

Codejail API. In this way, we do not need to modify the main program. The
wrapper library is reusable on any program that uses the untrusted library.

Fig. 3 shows an example of the wrapper function for png get text(), which
passes back a number of strings to the caller. real png get text is the real libpng
function. A string pointer and integer are allocated in the trusted context (Mm).
cj recv is necessary to pass them from the untrusted context. The actual string
is allocated in untrusted context (Mj) but it is not necessary to call cj recv to
pass the string. In this example, assuming 32-bits, 20 bytes (one function address
and 4 parameters) are passed before the jailed call. 12 bytes (one return value
and 2 output parameters) are passed after the jailed call.

The second way is where a general wrapper library is not feasible, or some
assumptions in the main program can make Codejail to be more efficient. In
these cases, we can modify the main program, to call Codejail API directly.

We list the Codejail API functions which are called from the trusted context:

– void *cj jail (void *func, int argc, ...)

It switches the context from trusted to untrusted and calls function func

with argc number of integer type3 arguments and return value.
– void cj recv (void *data, size t size)

It synchronizes Mm and Ml memory from the untrusted context to the
trusted context. Note that only one address is specified, because the address
space layout is the same in both contexts.

– void *cj reg callback (void *mainfunc, int argc)

It takes a function pointer in the main program and returns another function
pointer which can be called from the untrusted context. When it is called,
the context is switched from untrusted to trusted.

– void *cj jail func (void *libfunc, int argc)

It takes a function pointer in the untrusted library and returns another
function pointer which can be called from the trusted context. When it’s
called, context is switched from trusted to untrusted.

– FILE *cj duplicate file (FILE *fp)

It takes a file pointer opened in the trusted context and returns a shadow file
pointer to be used in the untrusted context. The purpose of this function is
to allow passing FILE pointers from the trusted context to untrusted context
without understanding the internal data structure of the FILE structure. The
untrusted context is able to operate on the shadow file which points to the
same underling file. The limitation is that the file will be corrupted if both
contexts operate on the file after calling this function, because the file pointer
in both FILE structures will be out of sync.

4.5 Security Analysis

Although Codejail’s design achieves the functionality requirement, attackers may
launch attacks targeting Codejail. We consider the following potential attacks.

3 For simplicity, this notation assumes integer type arguments which include char,
short, int, long and pointer types but can be extended in a straightforward way.

– Denial-of-Service: The untrusted library can refuse to perform its expected
function by, for example, infinite looping, infinite memory allocation, seg-
mentation fault. This can be caught by timeout or signal handler and han-
dled appropriately.

– Return-to-Libc, Return oriented attacks: Some library APIs allow the
libraries to pass function pointers in returned data structure and the main
process will call the pointed function. A potential attack is for the untrusted
library to pass a pointer to a malicious function and hope the function is
invoked in the trusted context. This is prevented by not allowing the library’s
code to be executed in the trusted context. In case the main program intends
to call the function, it can call the Codejail API cj jail func described in
Sec 4.4 to wrap the function pointer.

Another attack is to return pointer to code in the main program or trusted
library, similar to return-to-libc attack and return-oriented-programming.
This is prevented by wrapping all function pointers.

– Abusing system privileges: We assume system privileges requested by
the untrusted library to be examined by either the programmer of the main
program or system administrator, depending on how Codejail is applied.

5 Implementation

Our prototype Codejail is implemented portably in Linux in user mode. We now
discuss the implementation choices and challenges.

Context for isolating libraries. We choose process as the basic mechanism
for implementing the two contexts, a main process for trusted context and a
jailed process for untrusted context. Communication across contexts is supported
by sending and receiving data through a UNIX socket. In the jailed process,
we use etrace [7] as a portable user-mode system call interposition mechanism.
(However, kernel-based system call sandboxing mechanisms, e.g. Systrace [12],
can be used). When etrace finds a suspicious system call, it sends a signal to the
Codejail process. Now, the Codejail process can abort the execution and safely
pass the control back to the main program. Thus, Codejail is effective against
memory corruption and arbitrary code execution attacks as well as side effects
from system calls.

Memory sharing across contexts. Memory of Mm and Mj is shared between
two processes using the standard shm open and mmap API. Codejail creates virtual
files to be mapped into both processes. Mj memory is mapped as MAP SHARED in
both processes, so that memory writes can be observed by each other. Mm

memory is mapped as MAP SHARED in the main process and MAP PRIVATE in jailed
process, so that the main process cannot observe jailed process’ memory writes.
Re-synchronization of Mm memory is done by re-mapping (munmap and mmap) it
in the jailed process.

Codejail hooks the memory allocation routines in order to control memory
allocation in the Mm for the main process and Mj for the jailed process. This

works for most programs using the standard library memory allocator or custom
allocators which call the standard allocator.4

Since Codejail has to maintain a symmetric memory address layout, mmap

performed in one process has to be performed in the other. For readonly mmap,
we can simply call mmap with the same parameters in the other process. However,
writable mmap has to be handled properly in order to ensure our memory model.
The rule is that mmap performed by the main process should be in Mm; while
mmap by jailed process should be in Mj . For writable anonymous mmap, we can
consider it as a heap allocation. For writable file-backed and MAP PRIVATE mmap,
we can allocate on the heap and read in the file. However, this is inefficient as it
breaks the sole purpose of mmap, which is not to read the whole file.

Implementation of Codejail primitives. The initialization of Codejail is per-
formed after dynamic linking and before calling main. It is implemented transpar-
ently by hooking libc start main. Codejail forks a new process and setups the
shared memory and the communication channel. After that, the jailed process
reads and waits for a message from the socket.

When the main process calls cj jail, the target function address and ar-
guments are send through the UNIX socket. The jailed process receives them
and calls the target function. After the function returns, jailed process sends
the return value to the main process through the socket. Callbacks are handled
similarly in the reverse direction. To prevent the jailed process from invoking
arbitrary internal functions in the main process, a callback table is used (simi-
lar to the jump table in related work in control flow integrity [9, 17, 19]). When
the main process calls cj recv, the address and size are sent and the memory
is received. At the end of the main program, main process sends a termination
message and the jailed process exits.

Codejail supports multi-threaded program, but for simplicity we assume only
one thread uses the untrusted library at a time. We have one thread in the jailed
process servicing multiple threads in the main process. A pthread mutex prevents
multiple simultaneous library calls.

Application-transparency support. To transparently support existing program
and libraries, we use a wrapper library exporting the same functions as the iso-
lated library. The LD PRELOAD environment variable “injects” the wrapper library
into a program so that it transparently calls our wrapper functions instead of the
real untrusted library functions.5 Functions in the wrapper library identify the
original functions using dlsym(RTLD NEXT, name), and call the original functions
using cj jail then cj recv to receive data from the jailed library when necessary.

4 Some programs use completely custom allocators, e.g. Firefox uses jemalloc. In Code-
jail, the allocated memory will not be shared, but only valid in the allocating process.
If the process passes the memory to the other process, it will cause a segmentation
fault when it is accessed. We get around this by re-building Firefox and disabling
jemalloc in the build configuration.

5 If dynamic loading with dlopen() is used, our wrapper library will be opened when
a relative path is used. If an absolute path is used, which is uncommon, the original
library will be opened, calling its API has an exception as it is not executable in the
main context.

Name Callback
Shadow Modify main’s Pass-by-

longjmp
File Memory Reference

libpng Yes Yes Yes Yes Yes

libexpat Yes No No Yes No

libbzip No Yes Yes Yes No

libtiff No Yes Yes Yes Yes

Table 2: Libraries used in evaluation and their types of program interactions.

Attacks targeting the implementation. When the attackers are aware of the
Codejail implementation mechanism, they may launch attacks targeting the im-
plementation. We discuss possible attacks and the defenses.

– Attacking Codejail’s internal states: In the jailed process, the Codejail’s in-
ternal routines such as heap allocator, signal handler, and RPC handler, ex-
ecute in the same memory and privilege state as the jailed library routines.
Thus, we consider the Codejail’s internal routines only as helper routines
rather than trusted routines. The security guarantees are not based on the
correctness of these routines, thus attacking the internal routines and states
does not break the guarantees.

– Denial-of-service attacks: Infinite loops and memory allocation can be dealt
with by setrlimit, causing an exception in the jailed process. It can then
caught by a timeout set in the main process.

– Controlling the main program using ptrace, /proc/[pid]/mem: The jail pro-
cess can use system mechanisms such as ptrace and /proc interface to modify
the main process’ memory. This is prevented by the system call policy.

– Library constructor: The separation into two processes takes place after li-
brary loading and before calling main(). Before the separation, the process
run with full privilege, thus a malicious library can call system calls in li-
brary constructor, which is called before main(). One way to prevent this is
to delay the library constructor and call it after the separation.

6 Evaluation

We have evaluated the Codejail prototype using a number of real-world programs
using complex real world libraries. The experiments are run on an Intel Core 2
Duo 2.80GHz processor with 4GB of RAM in Linux 2.6.35.

We evaluate the following libraries which exhibit a full range of tight pro-
gram interactions: libpng (1.4.2) provides handling of Portable Network Graph-
ics (PNG) images; libtiff (3.8.2) provides support for Tag Image File Format
(TIFF) images; libexpat (2.0.1) is a XML parser library; and libbzip2 (1.0.4)
provides a general purpose compressor/decompressor. The types of program in-
teractions used by the above libraries are shown in Table 2. For example, libtiff

does not use callbacks, while libpng and libexpat do. We also chose these li-
braries for their popularity and because the particular versions have the fol-
lowing known vulnerabilities: CVE-2010-1205, CVE2009-3720, CVE-2008-1372 and
CVE-2010-3087.

6.1 Functionality and Usability

We wrote wrappers for all the libraries and evaluated them on the command
line utilities listed in Fig. 4. We tested transparency by using the wrappers with
executables of each program together with corresponding DLL binary. In all
cases, we could transparently deploy Codejail for the program and library with
the same functional behavior.

In addition, for libpng, which exhibits the full range of close interaction in
Table 2, we tested with several GUI programs that display PNGs using libpng,
namely, the eog image viewer, the Mozilla firefox web browser and the xfig

and dia graphics editors. All these programs are multi-threaded. The programs
all worked and displayed images correctly with Codejail. As these are GUI pro-
grams, we did not measure performance, rather their overall usability. We did
not find any perceptible delays or other differences in the usage.6

As Firefox is a complex program, we show some details of how we jail libpng
in Firefox (3.6.4). This version of Firefox is selected as having modern features
but still being single process (due to the existing restrictions of the prototype).
Normally, Firefox includes its own malloc library, jemalloc, and a special version
of libpng. This is because it supports the Animated Portable Network Graphics
(APNG) file format which is an unoffical extension to PNG and thus not sup-
ported by libpng. However, there is also a patch available to support APNG files
with the standard libpng library. While it is feasible to hook the internal Firefox
code and redirect them to the appropriate wrappers, we want use Codejail to
jail untrusted dynamically linked libraries. Thus, we simply recompiled Firefox,
to not use jemalloc and its own internal libpng code so that Codejail can use
the APNG patched libpng DLL.

6.2 Performance Evaluation

Fig 4 shows benchmarking Codejail on four command-line programs using the
libraries. For each library, we used two input files of different sizes. We measured
execution time without Codejail; with Codejail but not jailing any library func-
tions (to see the impact of Codejail on the main program and trusted library);
and jailing all library functions. In all the test cases, using Codejail without
jailing the library has small overhead.

The libpng library, although the most complex, has the best performance.
The overhead is low as there are only 15 jailed function calls and no callbacks
are used by pngtopnm as it uses file I/O style of using libpng rather than the
display function style.7 The pixel buffer is allocated by libpng thus not copied.

6 The figures in the paper are drawn using dia with Codejail.
7 However, eog and firefox use callbacks with libpng.

1MB 4MB

Without Codejail 0.064 0.308

With Codejail and without
Jailing Library

0.068 0.31

With Codejail and Jailing Library 0.072 0.312

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ti
m

e(
Se

co
nd

s)

Libpng

(a) pngtopnm using libpng

15MB 30MB

Without Codejail 0.324 0.788

With Codejail and without
Jailing Library

0.336 0.86

With Codejail and Jailing Library 8.796 15.276

0

2

4

6

8

10

12

14

16

18

Ti
m

e(
Se

co
nd

s)

Libexpat

(b) xmlwf using libexpat

Compression DeCompression

Without Codejail 98.29 28.866

With Codejail and without
Jailing Library

98.622 28.57

With Codejail and Jailing Library 103.382 34.842

0

20

40

60

80

100

120

Ti
m

e(
Se

co
nd

s)

Libbzip2

(c) bzip2 using libbzip2 (300MB decom-
pressed)

1MB 32MB

Without Codejail 0.02 0.392

With Codejail and without
Jailing Library

0.024 0.396

With Codejail and Jailing Library 0.044 0.472

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Ti
m

e(
Se

co
nd

s)

Libtiff

(d) tifftopnm using libtiff

Fig. 4: Performance evaluation: (i) native; (ii) program with Codejail but the
library is not jailed; and (iii) program with Codejail and library being jailed

On the other end of the scale is, xmlwf with libexpat. It has large overheads
due to the large number8 of callbacks made. The callbacks have more overhead
as they incur context switches.

bzip2 using libbzip2 shows the advantage of the Codejail memory model
where the jail can access the main memory. In bzip2, the main program handles
I/O to do with decompressed file while the library handles I/O of the compressed
file. When compressing, the original data can be accessed directly in the jail
which handles the compression and writing of the compressed file, thus, the
overheads are small (∼ 5%). Decompression has a higher overhead as the main
program allocates the output buffer and ask the library to fill it. Thus, cj recv is
needed to copy the buffer. In total 298.9MB is copied, which is about the same
size of the decompressed file.

The overheads for tifftopnm with libtiff are due to transferring the pixel
buffer processed by the jail process to the main process using cj recv. For a 1MB
TIFF file, 1.1MB is copied using cj recv; and 34.3MB for a 32MB file.

8 It registers callbacks which are called for all XML nodes. 425931 callbacks for a
15MB XML and 960961 for 30MB.

7 Discussion

We discuss limitations and other issues of Codejail and its implementation.
Handling the fork system call. fork needs to be treated specially. Firstly, both

the main process and the jailed process have to be forked. They have to remain
in the same state of execution. Secondly, the shared memory and communication
socket has to be duplicated. In particular, Mm and Mj should be duplicated into
M ′

m and M ′
j . Modification in Mm should not be reflected in M ′

m. For simplicity,
our current implementation does not support fork. However, we support multi-
threading which does not need to handle new jail processes.

Inline function and macros. Inline library functions and macros cause binary
code to be generated in the main program which then execute in the trusted
context. The simplest solution is to ensure that they stay in the library by
turning them into functions and recompiling. This is not totally transparent but
is easy to do with source code. Of course, if these functions do not have any
security issues, then nothing needs to be done.

Efficient memory sharing. The cj recv function is implemented by reading
memory in the jailed process, sending it through socket, and writing it to main
process’ memory. We remark that there are further optimizations which are
possible but are not easily doable in a user-mode implementation. A kernel-
based implementation only needs to update memory if it has been changed in
the jail and copying costs is also more efficient than socket IPC.

Multiple untrusted libraries. Codejail can be extended easily to have multiple
untrusted contexts for multiple untrusted libraries if they do not interact with
each other, i.e., they only directly interact with the main program. Otherwise,
it is simpler to place them in the same untrusted context.

8 Conclusion

We presented Codejail, a novel solution that achieves partial isolation of un-
trusted libraries that require tight interaction with the main program. Codejail
transparently supports existing software and library binaries, working without
the need to rebuild them. The key techniques of Codejail is to use a separate con-
text to confine untrusted libraries with the Codejail memory model. Our Linux
prototype shows that Codejail works with real-world programs and libraries and
overheads are small except when there is excessive tight interactions.

References

1. A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: splitting applications
into reduced-privilege compartments. In Proc. of NSDI, 2008.

2. D. Brumley and D. Song. Privtrans: Automatically partitioning programs for
privilege separation. In Proc. of the USENIX Security Symp., 2004.

3. M. Castro, M. Costa, J.P. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P. Barham, and R. Black. Fast byte-granularity software fault isolation. In Proc.
of ACM SOSP, 2009.

4. J.R. Douceur, J. Elson, J. Howell, and J.R. Lorch. Leveraging legacy code to deploy
desktop applications on the web. In Proc. of OSDI, 2008.

5. Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G.C. Necula. Xfi: Software
guards for system address spaces. In Proc. of OSDI, 2006.

6. B. Ford and R. Cox. Vx32: Lightweight user-level sandboxing on the x86. In Proc.
of USENIX Annual Technical Conf., 2008.

7. K. Jain and R. Sekar. User-level infrastructure for system call interposition: A
platform for intrusion detection and confinement. In Proc. of NDSS, 2000.

8. D. Kilpatrick. Privman: A library for partitioning applications. In Proc. of the
USENIX Annual Technical Conf., FREENIX track, 2003.

9. R. Kumar, A. Singhania, A. Castner, E. Kohler, and M. Srivastava. A system for
coarse grained memory protection in tiny embedded processors. In Proc. of DAC,
2007.

10. Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M.F. Kaashoek. Software
fault isolation with api integrity and multi-principal modules. In Proc. of ACM
SOSP, 2011.

11. S. McCamant and G. Morrisett. Evaluating sfi for a cisc architecture. In Proc. of
the USENIX Security Symp., 2006.

12. N. Provos. Improving host security with system call policies. In Proc. of the
USENIX Security Symp., 2003.

13. N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation. In Proc.
of the USENIX Security Symp., 2003.

14. Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-
oriented programming: Systems, languages, and applications. ACM Trans. Info.
& System Security, 2012.

15. M.M. Swift, M. Annamalai, B.N. Bershad, and H.M. Levy. Recovering device
drivers. ACM Trans. on Computer Systems, 2006.

16. R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Graham. Efficient software-based
fault isolation. In ACM SIGOPS Operating Systems Review, 1994.

17. Z. Wang and X. Jiang. Hypersafe: A lightweight approach to provide lifetime
hypervisor control-flow integrity. In Proc. of IEEE S&P, 2010.

18. B. Yee, D. Sehr, G. Dardyk, J.B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native client: A sandbox for portable, untrusted
x86 native code. In Proc. of IEEE S&P, 2009.

19. B. Zeng, G. Tan, and G. Morrisett. Combining control-flow integrity and static
analysis for efficient and validated data sandboxing. In Proc. of ACM CCS, 2011.

