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Abstract—Behavior models of applications are widely used
for diagnosing security incidents in complex web-based sys-
tems. However, Ajax techniques that enable better web ex-
periences also make it fairly challenging to model Ajax ap-
plication behaviors in the complex browser environment. In
Ajax applications, server-side states are no longer synchronous
with the views to end users at the client side. Therefore, to
model the behaviors of Ajax applications, it is indispensable
to incorporate client-side application states into the behavior
models, as being explored by prior work. Unfortunately, how to
leverage behavior models to perform security diagnosis in Ajax
applications has yet been thoroughly examined. Existing models
extracted from Ajax application behaviors are insufficient in a
security context. In this paper, we propose a new behavior
model for diagnosing attacks in Ajax applications, which
abstracts both client-side state transitions as well as their
communications to external servers. Our model articulates
different states with the browser events or user actions that
trigger state transitions. With a prototype implementation, we
demonstrate that the proposed model is effective in attack
diagnosis for real-world Ajax applications.

I. INTRODUCTION

Ajax is a technology that enables better performance and
user experience for web applications. In Ajax web appli-
cations (or Ajax applications for short), rich functionality
and prompt responsiveness to user actions are priorities in
their design and implementation. However, such smoother
experience comes from an evolution in the technology and
paradigm in web application programming, resulting in
a rather complex browser environment that supports the
functionalities required by Ajax applications. In fact, the
asynchronous nature of Ajax applications and the great
complexity of modern browsers make it a daunting task
to diagnose behaviors of Ajax applications under various
attacks.

With traditional web applications, such as static or CGI-
based web sites, it is straightforward to model their be-
haviors with HTTP requests sent to web servers. In those
applications, each HTTP request typically represents a tran-
sition to a different server-side state. For example, the server
of a webmail application may expect one request from
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a static HTML link to open the inbox, and a separate
request from another link to open emails in the sent folder.
Besides, these HTTP requests are only triggered when the
corresponding links are clicked by the user. Therefore,
behaviors of those applications can be simply modeled
using the requests sent to web servers. Unfortunately, the
situation is completely changed in Ajax applications, where
requests may no longer explicitly change the state of the web
application. Instead, HTTP requests in Ajax applications are
largely asynchronous, sending information to web servers
and fetching new data to the client side in the background.
As a separate thread of execution, the client-side code uses
the asynchronously fetched data to update the application
view presented to the user. Traditional request-based behav-
iors models [1]–[3] do not apply to Ajax applications, since
requests reveal little clue on the state transitions of Ajax
applications.

On the other hand, it seems plausible to incorporate client-
side information in modeling Ajax application behaviors. For
example, although an Ajax-version of webmail application
may not use separate requests to open the inbox and sent
folder, the client-side code must switch the views between
the two folders when the user clicks the corresponding tabs
in the application. Based on such observations, prior research
has explored constructing new models for Ajax applications
by monitoring changes in the Document Object Model trig-
gered by user clicks [4]. Such a model is helpful in crawling
Ajax application pages and testing Ajax applications for
various requirements [5]–[7].

However, such a model is constructed in a temporal order
when user clicks trigger state transitions, with a focus on
state exploration and reachability. It does not provide the
necessary analysis capacity for runtime behavior diagnosis.
As an example, when a cross-site scripting attack occurs
in an Ajax application due to the inclusion of a third-
party script, we need to trace its execution and identify
the culprit script that initiates the attack. Therefore, such
attack diagnosis requires precisely modeling the dependency
between asynchronous events during the execution of Ajax
applications. With such information, we can identify the root
cause and developments of attacks in the application. The



real challenge here is to extract necessary information to
build up the interdependency between events occurring dur-
ing execution of Ajax applications with the overwhelming
complexity of the browser.

In this paper, we propose a new approach to diagnose
attacks in Ajax applications by extracting contextual states
of Ajax application behaviors from the browser environment.
Despite the complexity of the browser runtime environment,
our model accurately and concisely captures the contexts
from where actions take place and the transitions between
contexts. By maintaining the internal correlation between
user interactions, browser internal events and application
actions, our approach identifies the precise program context
where any event or action is triggered, even in the asyn-
chronous runtime environment of Ajax web applications.
The constructed model can then be used to diagnose security
incidents in Ajax applications, providing sufficient details
from the entry of untrusted code, to the final attack action,
such as sending a malicious request. To verify the applica-
bility of our approach, we prototyped our solution in the
Firefox web browser, and evaluated its effectiveness with
several real-world web applications.

In summary, we make the following contributions in this
work.
• We propose a new model for diagnosing attacks in

Ajax applications with client-side modeling of the
application behaviors.

• To extract the proposed models for Ajax applications,
we develop a new approach that captures the detailed
and precise correlation and dependency among user
interactions, browser internal events, and application
actions during the execution of Ajax applications.

• We build a prototype of our approach, and successfully
apply it on behavior diagnosis of several real-world web
applications with low performance overhead.

II. BACKGROUND AND MOTIVATING EXAMPLE

There are various prevailing threats to web application se-
curity, and we mainly target diagnosing malicious JavaScript
that compromises the confidentiality and integrity of Ajax
applications in this paper. Next, we will briefly introduce the
security threats to web applications, and use a simple exam-
ple to demonstrate why traditional models fail to capture
Ajax application behaviors.

A. Security Threats to Web Applications

The basis of web application protection is the same-
origin policy (SOP), which ensures that resources of a
web application from one origin can only be accessed by
JavaScript from the same origin [8]. However, if attackers
manage to inject malicious JavaScript into a web application,
the injected script has full access to all resources from the
application’s origin, causing information leakage or issuing
unauthorized transactions in the victim application.
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Figure 1. A Motivating Example. It demonstrates why traditional request-
sequence-based models fail with Ajax applications.

To inject malicious JavaScript into web applications, at-
tackers have various attack vectors to achieve it as discussed
below.

Cross-Site Scripting (XSS) attacks [9]: The cross-site
scripting (XSS) attack is a common attack to web appli-
cations. In a typical XSS attack, the attacker exploits the
sanitization vulnerabilities in a web application, and thus
injects malicious JavaScript into web pages downloaded to
victim users. The script injection can be implemented by
crafting a URL with embedded scripts (reflected XSS), or
by implanting scripts into web server’s storage (persistent
XSS). In either way, the injected malicious scripts will be
executed in the victim web pages, and is granted with the full
privileges of the victim origin. They can therefore steal and
leak sensitive information, such as cookies or user inputs,
or issue requests to web applications to compromise their
integrity.

Malicious web mashups: Web mashups integrate
JavaScript code from different parties into a web page, such
as JavaScript libraries or advertisements. The included third-
party scripts have full access to the integrator’s origin. If
any of these integrated third-party scripts becomes malicious
in future, it can bring in malicious JavaScript into web
applications.

Network-level script injection: A network attacker can
also inject malicious scripts into non-HTTPS traffic to
launch attacks in the victim user’s browser. In this paper, we
do not distinguish such injections from injections by XSS
or web mashups, but focusing on behaviors after the script
injection.



<script>
function sendXHR(url, data) {

var req = new XMLHttpRequest();
req.open("GET", url, false);
// more configurations on request header
...
req.send(null, data);

}

sendXHR("http://www.email.com/listHeaders",
"folder=inbox");

for (var i = 0; i < 50; i++) {
sendXHR("http://www.email.com/fetchEmail",

"folder=inbox&index=" + i);
sendXHR("http://www.email.com/deleteEmail",

"folder=inbox&index=" + i);
}

</script>

Figure 2. An XSS Attack Example that Attempts to Mimic a Normal
Request Sequence

Summary Our goal is to propose a new model that captures
Ajax application behaviors for attack diagnosis, regardless of
the specific attack vectors used for the attacks. We show how
traditional request-sequence-based models fail to capture
Ajax application behaviors with the following example.

B. A Motivating Example

We present a simplified Ajax email application to illustrate
how a typical attack may occur in the application, and why
existing request-based models fail to effectively capture the
behaviors of Ajax applications.

Figure 1(a) shows the user interfaces of an Ajax-based
web email application. For simplicity, suppose it has only
two main tabs, Mailbox and Settings. After the user clicks
on the Mailbox tab, the application will display a page for
inbox, sent and trash email folders, and the user can navigate
among them by clicking through the links on the left panel.
Under this tab, the following requests may be sent to the
server:

http://www.email.com/sendEmail, for sending out an
email;

http://www.email.com/deleteEmail, for deleting an email;
http://www.email.com/fetchEmail, for fetching the content

of an email message;
http://www.email.com/listHeaders, for fetching the list of

email headers.
If the user clicks on the Settings tab, a page is pre-

sented to the user for preference settings, such as the
email account’s display name, reply-to address, email
signatures, etc. The application also requests the web
server for the user’s existing setting preferences with
http://www.email.com/loadSettings. When the user fills in the
necessary information and clicks the Save button, a request,
http://www.email.com/saveSettings, is sent to the server to
update server-side account preference data.

By its design, users interact with this email system by
clicking buttons or links on its web pages, which in turn
sends out corresponding requests to the web server. Existing
solutions model the behaviors of web applications with
automata of requests [10]. For example, in order to delete
an email from the user’s account, the user needs to first
login to the application, and by default the application opens
the inbox folder and loads email headers in that folder.
Then the user clicks on an email header (so the application
automatically fetches its content) before clicking the delete
button. The model of the above process of deleting an
email is shown in Figure 1(b). If the web email application
behaves normally, it is not possible to have a request of
/deleteEmail to the server without the preceding requests
shown in Figure 1(b).

However, the nature of Ajax applications renders the
above model ineffective in capturing the behaviors of Ajax
applications. For example, when the web server sees a
“fetch email” request followed by a “delete email” request,
it is not clear what actually has happened in the client-
side application. A model as in Figure 1(b) does not tell
anything on whether such requests are generated from user
interactions with the application or from JavaScript. In fact,
malicious JavaScript in Ajax applications can easily mimic
such sequences expected by the web server. Figure 2 shows
such a script. Consider a compromised Ajax application
http://www.email.com with injected malicious JavaScript.
After a user logs in, the malicious JavaScript will send
requests of listHeaders, fetchEmail, and deleteEmail in
the expected sequence. This way it bypasses request-based
server-side solutions, and deletes the user’s first 50 emails
in the Inbox folder.

From the above example, we can see that traditional
server-side request-sequence-based models do not incorpo-
rate sufficient information for diagnosing attacks in Ajax
applications. To compensate such insufficiency, we need to
incorporate client-side state information into the model.

Sample models: Figure 3 presents a sneak preview of
our model. As illustrated in the figure, our model includes
the triggering event for the state change between the tabs
of Mailbox and Settings, which represents the distinctive
contextual states (represented by rectangles in the figure)
where HTTP requests (represented by ovals) are generated.
The model captures and abstracts the attribution between
different events and actions for the execution of the email
example we discuss earlier. The figure demonstrates the
model captured for normal scenarios. When a mimicry attack
occurs, such as the one outlined in Figure 2, the triggering
events marked around the transitions between contextual
states will be the script, such as “inline script, line: 32” as
shown in Figure 4. Security analysts can then look up in the
source code for this particular piece of script in a map to find
the source code of the script. Further investigation will also
reveal the origin of this script. For example, it could have



Clicking on 
the “Delete” 

button

Mailbox State

Settings State

Clicking on the 
“Settings” tab Clicking on 

the email 
header

Request 
/listHeaders
folder=inbox

Email View State

Request /fetchEmail
folder=inbox

index=1

Request 
/deleteEmail
folder=inbox

index=1

Clicking on 
the email 
header

Inline script 
lineno: 15

Script Original Source Last Modifier

Script Lineno: 12 Inline none

Script Lineno: 15 Inline none

Inline script 
lineno: 12
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Figure 4. A Simple Sample of Our Model — Attack Diagnosis

been tampered with by an untrusted third-party JavaScript
advertisement.

III. DESIGN

We present the definition of our model for Ajax appli-
cation behaviors, and explain how the model captures the
key attribution and dependency information in event-driven
Ajax applications. We will show in Section V that such
information is critical in diagnosing the details of attacks
in Ajax applications.

A. Modeling Ajax Web Applications

We have illustrated our model using a small example, and
a formal definition of our model is presented below:

Definition 1: The model we propose for Ajax web appli-
cations is based on a finite state automaton (FSA) with a
quintuple (S, Σ, s0, δ, F), where:

S is a finite, non-empty set of states. ∀ s = (t, sid) ∈ S, t
∈ {APPLICATION STATE, ACTION STATE} and sid is
a string of state identifier.

Σ is a set of input strings. ∀ σ ∈ Σ, σ describes an event
that triggers a state transition, where φ ∈ Σ means the input
string is empty.

s0 ∈ S is an initial state.
δ is the state transition function: δ: S × Σ → S. For

sa, sb ∈ S and σ ∈ Σ, sb=δ(sa,σ) describes the state
transition from sa to sb triggered by input string σ.
• ∀ sa = (APPLICATION STATE, sida), sb = (AC-

TION STATE, sidb), if ∃ δ, s.t. sb = δ(sa, σ), then
sa = (sb, φ).

F is the set of accepting states, and F ⊂ S.
Definition 1 describes two types of states, APPLICA-

TION STATE and ACTION STATE, for modeling web
applications’ client-side states and web applications’ ac-
tions, respectively. Application states are abstractions of the
program contextual states at the client side, representing
the current client-side program and data states of the web
application. Action states denote actions of web applica-
tions, such as invoking JavaScript functions, changing web
page content, initiating particular HTTP requests, etc. In
this paper, we map client-side information, such as HTTP
requests and JavaScript call stack, to action states, with a
focus on outgoing HTTP requests. As those actions may not
necessarily change the application state, any transition from
an application state to an action state is automatically paired
with a reverse transition to return to the initiating application
state. Each action state must be initiated from an application
state as the program context for the corresponding action.

The state is static information that describes the current
status of the web application. The transitions between the
states with the specific input present the dynamic view of
the web application status. Transitions among both types of
states will not occur spontaneously, but must be triggered by
certain events. Some transitions occur as part of browsers’
standard logic, such as redirections, but sensitive operations
are generally triggered by users’ explicit interactions as
authorizations. As a result, a substantial portion of our
model is represented by the transitions between states, which
precisely describe the conditions where the transitions can
occur. Benefited from the full access to all client-side events
in web browsers, we are able to obtain the details of all kinds
of events at client-side, including user interactions on web
pages, and browsers’ internal events that load resources or
handle asynchronous events.

Next, we elaborate more on the state and transition
definitions as well as challenges we have solved in the
model.

B. Defining States in Ajax Web Application Models

In traditional desktop applications, program behaviors can
be modeled using a Finite State Automata (FSA) [11],
where each state is a distinct Program Counter (PC) value.
However, we cannot find a straightforward way to identify
similar states in Ajax applications.

One of the major differences between modeling desktop
programs and modeling Ajax applications is that behaviors
of desktop programs are mainly local to the system, while for



Ajax applications, both the client-side state information and
its communications with the web server are crucial for be-
havior modeling. Client-side state information conceptually
defines the context from which application behaviors occur.
Each web application behavior usually occurs from a finite
number of contexts. On the other hand, certain JavaScript
functions and subsequent requests are the interfaces to the
web application logic. Even for Ajax applications, requests
are still the communication channel for client side to make
any change to persistent application state stored at the server.

To comprehensively capture Ajax application behaviors,
our model integrates both client-side state information and
actions into states, as the two types of states.

1) Application states: abstraction from client-side state
information: We use application states to represent the
current state of the application, and the context from which
actions take place. Thus, we extract various client-side
state information available to web browsers to abstract the
client-side information into a state identifier. Specifically,
we consider the URL of the top-level document pUrl and
the Document Object Model structure (DOM ) to abstract
application states.

For traditional web applications, the URL of their top-
level document is closely associated with a previous request
that fetched the current page, so pUrl would directly reflect
their client-side state. However, Ajax technologies enable
applications to separate the client-side content from the
requests sent to the servers, and Ajax applications are not
obliged to update URLs of the current document. Pages can
be updated by fetching data from servers via asynchronous
XMLHttpRequests and modifying the content of any ele-
ment via Document Object Model interfaces. In the extreme
case, however an Ajax application changes its client-side
content displayed to users; its top-level URL may always
remain unchanged.

Nevertheless, this caused a serious weakness of Ajax web
applications, as they essentially became stateless, and users
could not use their browsers’ forward and backward buttons
to navigate among different parts of Ajax web applications.
Neither could they bookmark a particular page of Ajax
applications as of traditional web sites [12].

One popular solution is to associate each state of the appli-
cation with a distinct URL fragment identifier (the portion of
URLs following the “#”). The client-side code of the appli-
cation monitors the changes in the URL fragment identifier
of the current document, and registers with browsers’ history
management module every URL the user visits, including
the fragment identifier part. Today, this solution is widely
adopted by all popular Ajax web applications as well as Ajax
application frameworks such as Google Web Toolkit [13]
and Yahoo! YUI Library [14]. Similarly, Google proposes
using an additional exclamation mark for this purpose.

The widely used fragment identifiers in Ajax application
URLs bring them back to stateful applications as traditional

web applications, which also enable us to use the URL
information to determine the application state.

In case URLs do not indicate application states, we need
web developers to provide criteria to check part of the DOM
to decide the client-side application states. As such developer
effort will only be needed for application states, which
largely correspond to functional partitions of applications,
we envision the effort to be modest.

2) Action states: Action states represent major important
actions in web applications. The action states in our ap-
proach incorporate the destination URLs of HTTP requests,
the data field if it is a POST request, and other information
including the JavaScript functions on the JavaScript call
stack. Our approach collects such information, and maps it
to action states. For JavaScript that affects the generation of
HTTP requests, our approach further tracks all influencing
scripts as well, as detailed in Section III-D.

Each type of actions, as denoted by an action state,
should only be triggered by particular events in particular
application states. Next we explain transitions between states
in our model, which carry crucial information in determining
malicious behaviors.

C. Attributing Client-side State Transitions to Triggering
Events

The dependency between events in modern web applica-
tions provides unique strengths in diagnosing sophisticated
attacks in Ajax applications. It tells whether a final request
is triggered by user interactions, or from an untrusted
JavaScript library. Such information helps security analysts
to discern the nature of actions and trace back to the
initiating party in applications with mixed contents. In our
model, therefore, we mark transitions from one state to
another with the triggering events at client side.

State transitions can be triggered by user interactions
with web applications. For example, when a user clicks
“Compose New Email” button, enters recipient, subject, and
body text, and finally clicks “Send” button, a request will be
sent to server containing instructions and data to send that
Email. In this case, our model will have two state transitions.
The first transition reflects the change of application states
from the previous webpage to a page for Email composition,
and is marked with the click event on “Compose New Email”
button. The second transition represents an action to send a
new request to the server for email sending, which is marked
with the click event on “Send” button.

As we have discussed, both HTTP requests and changes
to document URLs can cause state transitions, so we monitor
them separately.

However, to make our model really work for flexible and
powerful Ajax applications, diverse issues need to be coped
with properly. In the rest of this section, we will introduce
more details of our approach on how to handle different



categories of events triggering state transitions and how to
extract precise attributions of asynchronous events.

D. Diverse Categories of Triggering Events

Our approach handles different categories of events that
trigger state transitions as follows:

Resource requests During page loading time, the web
browser parses the HTML of web pages. When it encounters
<img> or <script> tags with the src attribute pointing
to external resources, HTTP requests will be sent to fetch
these kinds of resources. Similar resource requests include
css background loading as well as loading favicons. How-
ever, conceptually these HTTP requests will not change the
current status of Web applications, so in this case, we will
create a new transition from current application state to a
new action state with the category mapped by the function
fc, and mark this transition with the HTML tag name that
triggers the HTTP request.

URL redirection Web servers sometimes respond with
status code 3xx [15] to redirect incoming requests to another
page. This case is easy to handle in our model. We just add
a new transition from current action state to a new one with
the information of the new destination redirected to.

Browsers’ own functionalities For example, web
browsers may communicate with its own or third-party
websites to update its databases of malicious websites.
Transitions of this category are handled similarly to resource
requests, and are optimized out as attacks in out threat model
would not trigger this type of requests.

User interactions User interactions are the most popular
types of events that trigger critical HTTP requests, so
they are especially important in detecting foreign behaviors
that initiate requests without users’ consent. So for new
HTTP requests triggered by user interactions, we mark the
transition to the new action state denoting the request with
the details of the triggering user interactions, for example,
a click on a button named “settings”.

JavaScript JavaScript in web applications can directly
issue HTTP requests, or generate simulated user interactions
that in turn trigger HTTP requests. We record all such
behaviors in our model. As illustrated earlier in Figure 4,
for each JavaScript (or timer as we explain below), we
track the source origin of the script and the origins of all
other scripts that modify it. For brevity, we record only the
last modifying script in this paper. The details of creator
and modifier information for scripts accompany the model
constructed.

Timers Another category of client-side events triggering
transitions of states are timers. Web browsers have internal
timers as part of their own implementation, and web appli-
cations can also use JavaScript to create timers to execute
certain script code after a period of time, or at every certain
interval. As timers themselves are not really the source of
the script code they trigger, in our model we trace back

to the creators of timers. For timer-triggered transitions to
new action states, we attribute them to the initial creators
of timers that finally trigger state transitions, for example, a
particular script tag.

E. Identifying Dependency between Asynchronous Events

To extract the attributions of HTTP requests, we need
to maintain the precise dependency between asynchronous
events, such as user interactions, timers, XMLHttpRequest
callbacks, etc. Such dependency cannot be based on the
chronological relations, which may vary from run to run.

Instead, we build a structure called virtual stack that
simulates the behavior of call stacks generated by debuggers.
In web browsers, events are handled by different functions
or by the same function with different arguments. We
push onto virtual stack the event information whenever the
corresponding function with relevant arguments starts to
execute, and pop it out just before the function returns. This
structure is by nature accurate in deciding the attribution of
events as long as the corresponding functions are included in
the virtual stack mechanism. To enable additional attribution
among events across different call stack instances, we also
use the objects shared by different functions or events as
targets to associate relevant client-side events.

For dynamically generated JavaScript, we track the orig-
inal script that generates it and the last script that modifies
it; for timers set up by web application script, we similarly
uses the original script that sets up the timer and the last
script that modifies it as the attributing objects. For these
cases, if an HTTP request is generated as a result, we use
the event(s) that triggers the execution of the original script
as the triggering event for the request. For example, if the
original script is a click event listener function, the triggering
event will be the click event and the JavaScript event listener
function.

F. Model Construction & Attack Diagnosis

The proposed model of Ajax applications is constructed
automatically by an in-browser monitoring system. During
the web sessions when users or security analysts interact
with the web applications, our system records the inter-
nal events occurring in the browser, and establishes the
attribution and dependency between them. Along with the
execution of Ajax applications, our system builds up the
behavior models with the event dependency information as
we explain earlier.

To diagnose attacks with such models, security analysts
can optionally run our system in a trusted environment to
obtain models for normal application behaviors. When a
security incident occurs and reported, security analysts can
retrieve the behavior models recorded for the corresponding
exploited session or date. Although in general it is hard to
search for attack points in the models, in practice, security
analysts can either compare them with normal behavior
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models or use reported attack information, such as the URLs
and parameters of malicious HTTP requests, to search in
the models. This way, our models help them understand the
causes and vectors of the attacks, which may be helpful in
proposing a quick fix to the vulnerability.

IV. IMPLEMENTATION

We implemented a proof-of-concept prototype of our
solution in Firefox 3.5 and 8.0. Our implementation is an
extension to a security framework for web browsers [16].
Figure 5 illustrates the architecture overview of our solution.
The Behavior Monitor is a run-time module in the web
browser, which monitors user interactions, network requests,
and asynchronous events generated by web applications or
the browser itself. It then extracts necessary information
of these events or actions, obtains information from the
Virtual Stack and build the dependency between them. Such
dependency is recorded into Dependency Record. During
the execution of Ajax applications, the Behavior Model
Builder constructs the models according to the information
monitored by the Behavior Monitor and stores them in the
file system.

In our Firefox-based prototype, the interception
of asynchronous events and actions are achieved
by hooking relevant functions in classes such
as nsEventListenerManager, nsWindow,
nsWebShell, nsDocShell, nsHttpChannel,
nsHTMLInputElement, nsXMLHttpRequest,
nsImageLoadingContent, nsFrameLoader,
nsScriptLoader, nsFormSubmission, nsCSSValue,
nsGlobalWindow, etc. Our approach is implemented in
C/C++, using libraries such as C++ STL to manipulate
strings and hash maps, and Boost libraries to perform
serialization and deserialization of our models constructed
between the memory and the hard disk.

Our core model, including the model itself, its basic
operations, the Virtual Stack and the Dependency Record, is
implemented in 1K SLOC C++ code. The functions handling
browser events, actions as well as invoking operations on the
model, counts around 4.4K SLOC C code.

V. EVALUATION

In order to evaluate the effectiveness of our solution
in modeling Ajax applications, we deploy our solution to
model the behaviors of open-source and popular Ajax web
applications, and demonstrate its capability in diagnosing
malicious behaviors with simulated code injection attacks on
those Ajax applications. In general, attackers can leverage
various vectors to introduce malicious scripts into web
applications, including exploiting their sanitization vulner-
abilities, compromising mashup content included by them,
or by setting up a malicious proxy. As our solution is
independent of the actual attack mechanisms, in our case
studies, we use browser extensions to inject scripts into web
applications.

A. Case Studies: Diagnosing Injection Attacks

We deployed our solution to evaluate the effectiveness
of malicious behavior diagnosis with an open-source Ajax
webmail application, Claros inTouch [17] and Twitter [18].

We simulated the mapping functions from URLs to appli-
cation and action states to facilitate our testing. For Claros
inTouch, we simulated the developer effort in mapping 7
URLs to 7 application states. This effort is trivial, and only
requires basic understanding of the application functionality,
such as inbox, compose, settings, etc. After manual browsing
with most of its functionalities, our system constructed a
model of 7 application states and 54 action states, and
203 different transitions between states. As for Twitter, our
system leveraged the fragment identifiers in its URLs to
obtain a behavior model of 30 application states, 185 action
states, and 644 transitions between states.

To verify the effectiveness of our solution, we tested with
four injection attacks.

Attacks on inTouch: The first attack attempts to delete
an email without the user’s consent, similar to the one in
Figure 2. The injected scripts automatically send an Ajax
request to delete a user email.

Figure 6 shows a fragment of an example model con-
structed for the inTouch webmail application. In the fig-
ure, rectangle states are application states, transitions from
whom require specific user actions as marked along the
arrowed lines. Oval states denote action states for requests
that automatically transit back to application states after the
requests are sent. Dashed lines indicate state transitions trig-
gered by user actions, while dotted lines denote automatic
state transitions from action states to stable states.

This example model fragment leverages users’ interac-
tions with the web application, and specifically includes in-
formation on how state transitions can happen, and requests
sent to the server at each state, transition from “State 2
Settings” to “Request /deleteEmail”, marked as “inline script
lineno: 78”, which was last modified by a browser extension.
The model shown in Figure 6 clearly illustrates the malicious
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Figure 6. Example Model Fragment for inTouch Attacks marked in dashed
rectangles.

request sent from an unexpected application state, triggered
by a script modified by a browser extension.

In the second case, the malicious script was injected
into the “Mailbox” page to send the email deletion request
(Attack 2). Thus, the model constructed for this scenario
contains a transition from “State 2 Mailbox” to “Request
/deleteEmail”. Although such a state transition also exists
with normal behaviors, they differ in the triggering events. In
normal cases, such an email deletion request is triggered by a
user click on the “Delete” button, while in our experimental
scenario, it was triggered by an inject script. Such infor-
mation can help security analysts to discern even carefully
crafted mimicry attacks.

Attack on Twitter: Similarly, Figure 7 illustrates a frag-
ment of a sample model for the behaviors of Twitter. We sim-
ulated a malicious script that posted a tweet secretly without
the user’s awareness (Attack 3). Twitter has a more sophis-
ticated authentication mechanism that requires the requests
posting tweets to contain certain HTTP headers as well as a
per-session secret token value as HTTP POST data. Thus, we
designed a more sophisticated attack script accordingly. The
injected script used prototype poisoning to intercept calls
to XMLHttpRequest. It also searched the page content for
the secret token value in a hidden HTML Input element.
Then it set up a timer with setInterval to wait for a
few seconds, so that Twitter called an XMLHttpRequest to
send normal requests to keep the session live. Such calls
were intercepted by the malicious script, which learned all
HTTP header values. Then the malicious script composed
a malicious request with the correct HTTP values as well
as the secret token in the POST data, to post a new tweet
automatically.

This attack example is rather stealthy and sophisticated.
However, since the malicious request was generated by a
JavaScript timer, our model still captured this malicious
behavior that is not seen in normal tweeting scenarios. It
differed from normal tweet-posting requests that are trig-
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Figure 7. Example Model Fragment for Twitter Attack marked in dashed
rectangles.

gered only when a user clicks on the “Tweet” button.
Diagnosing simulated clicks: JavaScript

code can simulate user clicks by invoking
document.CreateEvent("MouseEvent") and
dispatch it to any element in the web page. We compose
one more attack script that automatically fills in the
“Compose new Tweet” input box on Twitter page, and
simulates a click on the “Tweet” button (Attack 4). Our
system captures a fragment of behavior model shown in
Figure 8. The model constructed by our solution marks
the triggering event for the tweet-posting request as a
combination of the user click and the script that has
actually simulated the click. This tells the exact details of
the steps of the attack, without confusing security analysts
between simulated and real user clicks.
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Figure 8. Model for Simulated Click on the “Tweet” Button Attack marked
in dashed rectangles.

Summary With these attack examples, we demonstrate the
importance of client-side event dependency in attack diag-



Web Sites Original Firefox Our Prototype (Overhead)

Google 0.3835 0.4601 (19.97%)
Facebook 3.535 4.169 (17.93%)
YouTube 2.994 3.975 (32.77%)
Yahoo 3.234 3.592 (11.07%)
Baidu 3.667 4.167 (13.64%)
Wikipedia 6.739 6.850 (1.65%)
Blogger 2.079 2.113 (1.64%)
Windows Live 2.735 3.029 (10.75%)
Twitter 6.258 7.383 (17.98%)
Amazon 4.412 4.854 (10.02%)

Table I
AVERAGE PAGE LOAD TIME ON 10 RUNS, IN SECONDS

nosis for Ajax applications. It confirms that user interaction
details are crucial in investigating malicious behaviors in
web applications.

B. Performance Overhead

To evaluate the performance overhead of our prototype
system, we measured the average page load of the Alexa Top
10 web sites, which is a macrobenchmark on the processing
slowdown of the browser with our solution. Our experiments
were performed on an Ubuntu 11.10 32-bit desktop machine
with Intel R©CoreTM2 Duo CPU E6550 @ 2.33GHz and
4GB memory. Our results demonstrated around 10-30% of
performance overhead, which is reasonable for an analysis
tool.

Our evaluation compared the page load time with the
original Firefox 8.0 browser and with our instrumented
browser, and the result is shown in Table I. Instead of the
simple first pages, we logged into all web applications that
require authentication, such as Facebook, Blogger, Twitter,
etc., while the exception was for Windows Live, as its pages
after login are incompatible with our browser testbed.

C. Discussion on Mappings from URLs to Action States

We assume web developers will provide mapping func-
tions from URLs to action states, which means such mapping
tells our model of the category and purpose of each HTTP
requests. During our evaluation, we manually created less
than 20 simple regular expressions according to our experi-
ence and observation. A better way to handle this issue is
to develop or derive certain sets of heuristics for each web
application in a full- or semi-automatic way. This is possible
as many web applications share similar patterns and schemes
in forming their URLs.

VI. RELATED WORK

A. Applications of Program Behavior Models

Sekar et al. [11] proposed a finite state automaton (FSA)
based intrusion detection system (IDS). The model proposed
in their work defines state in FSA as distinct program
counter (PC) values at the point of system call invoca-
tions, while transitions as corresponding system calls. It

is deterministic during detection phase, thus affordable in
running time. Feng et al.’s work [19] supplemented [11] by
incorporating return address information in call stacks, and
generating abstract execution paths between two execution
points. The additional call stack information considered en-
ables this method to detect some attacks missed by previous
ones, like impossible path exploits.

IDS can also be deployed on network [20]–[22] to effec-
tively monitor network traffic. Similarly, with the popularity
of web applications and web-based attacks, network IDS
solutions are also adapted to the new web environment.
Pioneering work in this area [1]–[3] started to adapt network
IDS to monitor the behavioral state of web clients. These
research works share the same basic idea with us: leveraging
the power of anomaly IDS to detect web-based attacks.
However, they are not oriented to Ajax applications, and
do not observe Ajax application characteristics such as
asynchronous HTTP requests and user actions.

Guha et al. [10] proposed an approach that is based on
static analysis of client-side web application source code,
including HTML and JavaScript, which generates a non-
deterministic request graph. This graph will be used as
normal behavior constraints to detect runtime anomalies.
One major insufficiency of this solution is static analysis
cannot cover all dynamics of JavaScript language, so the
protection is not complete. Another issue is that although this
paper highlights the new challenges Ajax applications, i.e.,
asynchronous events and HTTP request, and dynamically
generated JavaScript code, it does not provide a complete
solution to these issues.

The dynamic nature of Ajax web applications has also
attracted researchers to tackle their challenges to other areas.
For example, Crawljax [4] proposes new frameworks to
crawl the pages of Ajax web applications, which enables
automatic software testing for Ajax applications [5]–[7].
Similarly, AjaxTracker [23] develops an automatic tool to
mimic human interactions to measure Ajax applications to
better understand their characteristics. Other works attempt
to identify program bugs by comparing the executions of
web applications in different browsers [24], [25]. The idea of
testing web applications by fuzzing user inputs has also been
examined by McAllister et al. [26]. Our solution differs with
them in focusing on handling Ajax application challenges to
diagnose the behaviors of attacks in these applications.

On the other hand, there are also several formal frame-
works [27]–[29] for modeling asynchronous complex sys-
tems. Our goal in this work differs with them. Instead
of capturing system behaviors and semantics in a holistic
manner, we are proposing a simple yet practical run-time
model that captures particular aspects that are critical in
security analysis: event contexts and dependency.



B. Detection and Prevention of Web-based Attacks

There has been extensive work on addressing security
threats in web applications. For example, Yue et al. [30] in-
strument Web browsers to obtain JavaScript execution traces
and performed offline analysis on these traces. Similarly,
Oystein et al. [31] propose a solution to audit JavaScript code
executions and analyze the traces using misuse IDS, based
on known signatures. Noxes [32] acts as a web proxy to
filter network connections of web applications with policies
generated automatically or specified manually. Other works
like [33]–[35] rewrite JavaScript code to make it more secure
or self-protecting.

On the other hand, server side solutions tend to auto-
matically find vulnerabilities in web applications by code
analysis [36] and/or runtime checking [37]–[39]. The work
of [37] combines static and dynamic techniques. By monitor-
ing information flow, a lattice-based static analysis is used
to identify sections of code with potential vulnerabilities.
Then these sections of code are instrumented with runtime
security guards.

Some other research collaborates the server and client
sides of web applications to detect and prevent web-based
attacks, such as BLUEPRINT [40] and Document Structure
Integrity (DSI) [41].

Our work in this paper focuses on analyzing the behaviors
of attacks on Ajax applications. It can be used in conjunction
with existing defenses solutions on web-based attacks, and
potentially improve the accuracy in attack detection.

VII. CONCLUSION

The event-driven, asynchronous Ajax applications pose
new challenges for modeling application behaviors, as re-
quired by diagnosis of security incidents in Ajax applica-
tions. In this paper, we propose a new behavior model for
Ajax applications. The model captures the contexts where
actions take place as well as attribution and dependency
between events. The proposed model provides the insight-
ful details on the root cause and developments of attacks
in Ajax applications. Our in-browser behavior monitoring
system automatically constructs the behaviors models for
security analysts to examine. We implement a prototype of
our solution in Firefox, and demonstrate its effectiveness
of attack diagnosis with case studies on real-world web
applications.
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