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Abstract. Browser extensions provide additional functionality and customiza-
tion to browsers. To support such functionality, extensions interact with browsers
through a set of APIs of different privilege levels. As shown in previous studies,
browser extensions are often granted more privileges than necessary. Extensions
can directly threaten the host system as well as web applications, or bring in indi-
rect threats to web sessions by injecting contents into web pages. In this paper, we
make an empirical study to analyze extension behaviors, especially the behaviors
that affect web sessions. We developed a dynamic technique to track the behav-
iors of injected scripts and analyzed the impact of these scripts. We analyzed the
behaviors of 2465 extensions and discussed their security implications. We also
proposed a solution to mitigate indirect threats to web sessions.

1 Introduction

Browser extensions are widely adopted by modern web browsers to allow users to cus-
tomize their web browsers. Browser extensions can change display of web pages, im-
prove browsers’ behaviors, and introduce new features. To support such functionalities,
extensions need to monitor and modify web contents, change browser behaviors and
appearances, access stored website passwords, cookies, etc. They can issue HTTP re-
quests on behalf of users, and open sockets to listen to connections or connect to remote
servers. They can even access the local file system and launch processes. On one hand,
all these privileges enable extensions to extend the functionality of browsers; on the
other hand, they increase the attack surface of users’ systems.

Threats from extensions can be categorized into two types: direct threats and in-
direct threats. Direct threats arise from extensions’ direct access to critical browser
resources or the local system. Extensions can read and write Document Object Mod-
ule (DOM) of any web page by which page contents and user keystrokes are visible
to extensions. By inserting new elements to DOM, extensions can easily push contents
to users at the extension developer’s will. They also can access browser components
directly, such as Firefox’s password manager. Extensions can also access network and
access local files with current system user’s privileges.

Indirect threats are threats to web sessions. By injecting code into a page, browser
extensions can easily take full control of a web session. Although this is an intended
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functionality of browser extensions, malicious extensions can take advantage of it to
carry out attacks against web sessions.

To limit extensions’ high privileges in browsers, several solutions have been devel-
oped. Ter Louw et al. proposed a solution [1, 2] to enhance browser extension security
by protecting the integrity of browser code base and the confidentiality and integrity of
user data. It provides an isolation mechanism to prevent one malicious extension from
compromising another. Google Chrome has adopted an extension system designed with
least privilege, privilege separation, and strong isolation [3]. Each extension is granted
a set of privileges at installation time and it cannot exceed the granted privileges dur-
ing execution time. A recent proposal [4] further divides privileges of Chrome exten-
sions into micro-privileges, to restrict extensions’ capabilities in cross-site requests and
DOM element accesses. It also introduces resources requesting new origins. To mitigate
threats from over-privileged extensions, Mozilla has developed a new extension devel-
opment framework Jetpack [5] to assist developers in building extensions following the
principle of least authority (POLA).

To gain a better understanding of dangerous behaviors in Firefox extensions, we
performed an empirical study of real-world Firefox extensions. Instead of looking for
vulnerabilities in browser extensions [6], our focus is on dangerous runtime behaviors of
browser extensions. We specifically study indirect threats to web sessions, and discuss
what are missing from existing solution in dealing with them.

We developed an automatic testing system based on instrumented Firefox to dynam-
ically investigate extension behaviors. Using this system, we studied Firefox extensions
hosted in the Mozilla Addons repository [7]. In total, 2465 extensions had been tested,
which were distributed in 13 different categories. We summarize our findings of danger-
ous behaviors in Firefox extensions, and discuss potential improvements in mitigating
indirect threats while maintaining usability.

This paper makes the following contributions:

1. We perform an empirical study of Firefox extension behaviors by monitoring their
runtime behaviors, with a focus on indirect threats. From our analysis, we propose
improvement to current solutions in mitigating indirect extension threats to web
sessions.

2. We designed and implemented an automatic testing system to monitor the browser
extension behaviors.

2 Threats from Extension

2.1 Browser Extensions

Browser extensions are tools to extend browsers to enhance their functionality. To ob-
tain highly customizable features, extensions are granted high privileges. They can ac-
cess almost all components in a browser. The extension privileges can be summarized
as follows:

– Monitoring and modifying web contents. All contents displayed in web page are
visible to extensions including user inputs. Extension can modify the page by mod-
ifying DOM.



– Accessing browser components. Extensions can access browsers’ password man-
agers, cookie files, etc.

– Accessing network. Extensions also have full access to network and sockets. It can
easily issue HTTP requests.

– Accessing local file systems. Extensions can access local file system with the priv-
ileges of the browser process.

– Launching processes. Extensions can launch processes through certain browser
API.

As discussed, extensions have powerful privileges. In the following subsections, we
will discuss what a malicious extension can do with these powerful privileges. In the
rest of the paper, we focus on Firefox extensions.

2.2 Direct Threats

Direct threats are threats from browser extensions, through directly accessing critical
resources of browsers or host systems.

– Direct DOM Access. Extensions can access all DOM structures in any page, in-
cluding contents browsed by users, contents in all forms filled and submitted by
users, and events on keystrokes and mouse clicks. They can also access all infor-
mation submitted to the server, including account names and passwords, personal
information, finance information, etc. They can not only read DOM, but also mod-
ify DOM to create new page contents.

– Browser Component Access. Extensions are capable to access all Firefox compo-
nents, including the password manager and the browsing history, etc. Consequently,
they can easily collect account information, such as passwords stored in the pass-
word manager and the browsing history.

– Arbitrary File Access. Extensions have the ability to access local file systems
without any restriction. Once a malicious extension is installed, the whole system
is controlled by attackers with the browser user’s privilege. Since extensions can
access arbitrary files and the extension system does not provide a mechanism to
protect the integrity of installed extensions, it is possible for a malicious extension
to change other benign extensions’ behaviors by modifying their installed files.

– Network Access. Extensions have variable ways to access the network, such as
sending XMLHttpRequest directly, or requesting resources like images or scripts
from arbitrary servers. By attaching information to requests, malicious extensions
can send out collected information.

– Launching Process. Launching a local process is considered highly dangerous,
because by running malicious code, an attacker can take full control of victims’
computers and make them part of a botnet.

– Dynamic Code Execution. Executing dynamic code is an important feature in the
JavaScript language, which enables the program to execute dynamically generated
strings as JavaScript code. The strings may originate from an attacker, allowing
them execute malicious code.

– Listening to Keyboard Events. Listening to keyboard events is common in exten-
sions, but an attacker can use this feature to steal users’ inputs.



The root cause of direct threats is the high privileges that a browser grants to ex-
tensions. Different browser vendors proposed different mechanisms to mitigate these
threats. Firefox browser adopts a Sandbox Review System to force all submitted exten-
sions to be manually reviewed before they are released to the public. Google Chrome
adopts a new extension system [3] with “least privileges” principle. The new system
requires developers to claim the minimal privileges their extensions need. When an
extension is installed, a prompt dialog pops up to warn the users what privileges the
extension claims, whether to continue installing or not is determined by users. At run
time, an extension cannot exceed privileges it claimed.

2.3 Indirect Threats to Web Sessions

Extensions introduce indirect behaviors through two steps. It first injects contents (script
code or HTML elements) into web sessions; The injected contents then result in subse-
quent behaviors, which may launch attacks against the web sessions. Extensions have
various ways to inject contents to web pages. They can call the write or writeln meth-
ods of DOM objects, appendChild or insertBefore methods of HTMLElement ob-
jects.

Unfortunately, current browsers lack the abilities to distinguish injected contents
from original ones. The indirect threats completely bypass permission checking on the
extension itself, and can launch attacks to web sessions. These attacks can be launched
in all pages, regardless they are vulnerable or not.

Let us use a scenario to demonstrate how it can be exploited by attacks. An extension
claims for privileges to access the browsing history and DOM, but it does not require
the privilege to access the network. It seems that this claim should be allowed because
although the extension may access users’ private data, it cannot send them to untrusted
third party through network APIs. However, direct access to network has been limited,
but this extension can still access network in an indirect way. The extension can modify
the DOM tree of benign web pages and inject <script>, <img> or <iframe> tags
into pages, which use a malicious site as its source, and attach users’ private data or
cookies of target web sites as parameters. Such indirect threats have not been well
studied by existing research work, and are also not constrained by existing browser
extension systems.

All the behaviors conducted by extensions are within the context of browsers. So,
it’s almost impossible for traditional general protection mechanisms (e.g., anti-virus
software or firewall) to judge certain behaviors are conducted by extensions or browsers
themselves, let alone to tell these behaviors are benign or not. The protection mecha-
nism again malicious extensions can only be deployed within browsers.

3 Design and Implementation

In this section, we present the design and implementation of our extension testing sys-
tem that can automatically download, install, and test browser extensions and obtain
their behavior information. We first illustrate the architecture of the system, then in-
troduce the design and implementation of modules in our system in detail, and finally
explain the testing process of browser extensions.



Fig. 1. System architecture of our Firefox extension testing system. The main components are in
grey color.

Although our approach and study are based on Firefox, our approach does not de-
pend on specific feature of Firefox, and our study is performed assuming the availability
of protection mechanism on all browsers. Our solution and study can be straightfor-
wardly extended to other browsers.

3.1 System Architecture

The system architecture is shown in Figure 3.1. There are six modules in our extension
testing system. Instrumented Browser monitors the execution of browser extensions.
It contains three sub-modules, Injected Object Tracker is a module to track whether
an HTML element or a piece of JavaScript is originated from web page or injected
by extensions; ExInfoEx is used for extracting the position information of items (such
as menu items) added by tested extension and offering them to simulating module for
triggering the events; XdoWrapper is a wrapper of Xdotool [8] that makes it easy to
simulate many kinds of events at the window level. Addon-Downloader is responsible
for downloading all the analyzable browser extensions to the local system. Controller
is a module that connects other modules together and makes the whole test process
automatic. We also created a test website to drive the testing of extensions.

3.2 Design and Implementation

We give the detailed introduction about the design and implementation of the major
components in our system.

Instrumented Browser In order to investigate the tested extension’s behaviors, we
intercept the interfaces or functions that are accessed by the tested extension at runtime
using an instrumented Mozilla Firefox 3.5.

In this customized browser, for detecting the direct threats of an extension, we in-
serted a series of hooks into the browser’s source code. We mainly hook four modules
of Firefox: the XPConnect module, the DOM module, the Content module, and the



JavaScript engine. XPCOM makes it possible for JavaScript to invoke methods pro-
vided by the browser. The XPConnect module is responsible for the communication
between JavaScript and XPCOM components. By inserting hooks into this module, we
can intercept the events of browser extension accessing XPCOM interfaces, and extract
the parameters. In the DOM module and the Content module, we inserted hooks to
intercept event listener registration and removal issued by a browser extension. Spider-
Monkey [9], the JavaScript engine in Firefox, is also instrumented to intercept several
security-related JavaScript native functions for analysis.

The instrumented browser contains three sub-modules:

Injected Object Tracker. To investigate the indirect behaviors of an extension, it is
necessary to track the contents injected into web pages by extensions and monitor their
subsequent behaviors. For this purpose, we design the Injected Object Tracker to track
the source of injected contents. We intercept interfaces used by extensions to inject new
contents to web pages. Once extensions inject any object into web pages, the injected
object is marked with the source “extension”. During behavior monitoring, we can find
out whether the behavior is from the original web page or from objects injected by
extensions.

ExInfoEx. ExInfoEx (Extension Information Extractor) is a browser extension that
identifies the browser user interface elements that are added by the tested extension
and transfer the position information of these elements to XdoWrapper module to trig-
ger the events targeted on them. However, due to the technology of “overlay”, how to
distinguish the elements added by an extension from the elements belonging to browser
itself becomes the biggest challenge we faced.

To resolve this problem, we modify the process of overlay loading. When the browser
creates elements defined in overlays in the process of loading, an extra attribute is added
to each element. The value of this attribute is set to the extension’s identifier that is still
retained by the browser at this time and can be easily extracted. With this attribute,
ExInfoEx can identify those elements by traversing the DOM tree of the browser user
interface.

XdoWrapper. For exposing as many behaviors of a browser extension as possible, we
need to simulate users’ behaviors to trigger the events in web pages and in the chrome
area. XdoWrapper is such a module that receives specific instructions from the ExIn-
foEx module to simulate these users’ behaviors, and provides the relevant information
about the windows of browser to the Controller module. It is a wrapper of xdotool [8],
which can conveniently generate various keyboard and mouse events at the window
level and easily manage and manipulate all the windows opened in the operating sys-
tem.

Controller The Controller module is used to connect other modules together and coor-
dinate the entire testing process. Specifically, it is mainly responsible for the following
work:

– Install/uninstall extensions. Controller is responsible for the installation and unin-
stallation of each extension.



– Start/shutdown the browser. During the whole test process, there are many cases
need to start or shutdown the browser.

– Configure/clean the testing environment. Before or after an extension is tested, the
testing environment needs to be configured with the corresponding information or
cleaned up by the controller module.

– Coordinate the whole process. All these processes (install, configure, test, and unin-
stall) should be connected together smoothly, and this is one of the main tasks of
Controller.

– Handling exceptions. Controller also handles unexpected issues, such as browser
crashes.

Addon Downloader The Addon Downloader module is responsible for downloading
all the testable browser extensions in the online repository. We utilize Htmlcxx [10] (a
lightweight HTML and CSS parser for C++) to parse an extension’s page and determine
whether the extension is testable, and then with the help of Libcurl [11](a client-side
file transfer library), download it to our system.

3.3 Testing Process

We first download all the testable browser extensions in the repository. Each extension
downloaded to the local system is then installed on the instrumented browser for test-
ing. After installation, essential information about the extension, such as name, ID (if
applicable) and installation path, is extracted from the browser profile and recorded into
a configuration file, which is used by the browser in the phase of monitoring extension’s
behaviors. We then restart the browser to begin the behavior monitoring process. At the
beginning of restart, the browser reads the information about the tested extension from
the configuration file. This information is indispensable for browsers to detect the be-
havior information of the tested extension. Once the browser obtains this information
during restart, the behavior monitoring process is automatically started. For exposing
more behaviors of the tested extension, the system first leads browser to visit a particu-
lar website designed by ourselves and simulates a variety of events in web pages, such
as click on links, keyboard input, and form submission. Then, the system goes through
the browser interface, detects the elements (such as menu items, context menu items
and status bar items) added by the tested extension, and generates events corresponding
to clicks on each these elements. If new windows pop up after clicks, they are simply
closed. After that, the browser is shut down, and the tested extension is removed. Rele-
vant configuration information related to this extension is also cleaned up. After all the
above procedures are over, the testing process for one extension is completed, and the
process for next extension can start.

4 Evaluation and Analysis

The experiment was conducted on a computer with Intel(R) Core(TM)2 Duo CPU at
2.33GH, 250GB 7200RPM disk, and 4GB RAM. Its operating system is Ubuntu 10.04,
with the instrumented Firefox 3.5 installed.



Rating Behaviors

high
Arbitrary file access; Process launching; Download; XPinstall; Network access via
XPCOM APIs; Update; DOM injection

medium
Password; Login; Cookie; Network access via XMLHttpRequest; Addons manage-
ment; Changing Firefox preferences; Profile

low History; Bookmark; Clipboard; Dynamic code execution

none

Accessibility; Browser core; Auto complete; Log to console; Searching; Spell
checking; DOM; Editor; Internationalization; Offline cache; XML parser; Net-
work utilities; RSS/RDF; Data types and structures; Streams; Memory manage-
ment; Thread management; Component management; Additional XPCOM ser-
vices; JavaScript core; JavaScript debugger; XPConnect; Authentication; Certifica-
tion; Cryptograph; Additional security interfaces; Document handling; Transaction
management; Web worker; Window management; Print; Database access; Images;
Zip/jar process; JVM; Plugins

Table 1. The ratings of extension behaviors

We first investigated the behaviors of Firefox extensions by analyzing the critical
XPCOM interfaces and JavaScript functions exposed to extensions, and classified them
into different levels according to their potential risks. Then we further studied Firefox
extension behaviors by testing 2465 extensions hosted on the Mozilla Addons web-
site [7] using our extension testing system, and analyzed the experimental data from
various perspectives.

4.1 Studying and Classifying Extension Behaviors

Through the analysis of critical XPCOM interfaces and JavaScript functions used by
Firefox extensions, we summarize them into 54 different behaviors. To investigate ex-
tension behaviors from a security perspective, all these behaviors are rated into four
levels according to their potential risks. This work is mainly based on Firefox security
severity ratings [12], Chromium’s severity guidelines for security issues [13] and the
work of Barth et al [3]. The ratings are described in Table 1.

Rating High includes the behaviors that can possibly download, install, or execute
a program. These behaviors are considered the most privileged and dangerous ones,
because they could be utilized by an attacker to compromise users’ entire operating
system. “DOM injection” is also classified into High because it can inject DOM con-
tents into web applications that in turn initiate network access. Rating Medium consists
of behaviors that may access users’ private information (e.g., the password or cookie),
or access network in a relatively safe way (like through XMLHttpRequest). The behav-
iors that may modify the critical data of the browser are also rated as this level. The
behaviors in Rating Low are those that may obtain limited information of users, such
as browsing history or bookmark, and those that are likely to cause a vulnerability with
low possibility, like executing a dynamically generated string. All other non-sensitive
behaviors are classified into Rating None. These ratings are used to investigate how
many browser extensions exhibit high privileged behaviors and how the distribution of
the usage of different behaviors looks like.



The Statistics of Extension Behaviors To better understand the behaviors of Fire-
fox extensions, we performed a study of statistics on their behaviors according to their
ratings. We four that 33% of them had the behaviors belonging to Rating High. The
extensions with the behaviors of Rating Medium accounted for nearly 16% of the total
and only 1% of the tested extensions possessed the behaviors of Rating Low. A large
number of the tested extensions, approximately 50% of them, only demonstrated the
behaviors with Rating None, which are invariably benign to users. Note that one ex-
tension with higher privileged behaviors does not indicate that it will definitely cause a
damage, but means that the extension has such capabilities that, if abused, will bring se-
vere threats to users’ data and/or the underlying operating system. We have known that
Firefox provides the browser extensions with excessive privileges, and from our ex-
periments we found that the extensions on Mozilla indeed utilize these high privileges
widely.

To investigate the extensions’ behaviors in detail from a security perspective, Table
2 lists the frequency of security-related behaviors of Ratings High, Medium and Low. In
Rating High, there were 37 (1.50%) extensions found to access files outside their instal-
lation directory. Four (0.16%) extensions launched a process on the local system, and
10 (0.41%) use the download API provided by XPCOM. None of the extensions were
found to install other addons through XPInstall API. The most widely used interfaces
in this group are XPCOM interfaces for network accessing, accounting for 29.66% of
the entire test set. Only one extension in our experiment uses the Update system. Ad-
ditionally, there were 108 extensions (4.38%) found to inject new contents into web
pages.

In Rating Medium, we found no extensions that access password information, while
the login and cookie information were found to be accessed by some extensions, ac-
counting for 1.78% and 2.80%, of the total number of extensions. There were 441
(17.89%) extensions issuing HTTP requests through the XMLHttpRequest object. The
number of extensions that used XPCOM APIs to manage addons (e.g., to search and in-
stall addon from the repository or to locate the installation location) were 139 (5.64%).
Although changing Firefox preferences may greatly annoy users, there were still 31
(1.26%) extensions doing so. In addition, one extension was observed to access the
profile information of the Firefox.

In Rating Low, there were 43 (1.74%) and 44 (1.78%) extensions found to access the
limited information, the browsing history and bookmarks. 49 of the tested extensions,
about 1.99%, were found to manipulate the clipboard through XPCOM APIs. To our
surprise, although Mozilla has highly recommended not to execute dynamic generated
strings with “eval()” or “Function()”, and several safer alternatives are also available,
there were still 145 extensions showing such behaviors, accounting for 5.88% of the
total number of extensions examined.

4.2 Extension’s Indirect Threats to Web Sessions

To investigate the indirect threats from browser extensions, our experiment paid spe-
cial attentions to indirect behaviors of extensions that inject new web contents into web
pages. As shown in Table 3, there were 108 browser extensions that inject new contents



Rating Behavior Quantity Frequency

High

Arbitrary file access 37 1.50%
Process launching 4 0.16%
Download 10 0.41%
XPInstall 0 0.00%
Network access via XPCOM API 731 29.66%
Update 1 0.04%
DOM injection 108 4.38%

Medium

Password 0 0.00%
Login 44 1.78%
Cookie 69 2.80%
Network access via XMLHttpRequest 441 17.89%
Addons management 139 5.64%
Changing Firefox preferences 31 1.26%
Profile 1 0.04%

Low

History 43 1.74%
Bookmark 44 1.78%
Clipboard 49 1.99%
Dynamic code execution 145 5.88%

Table 2. Frequency of security-related behaviors

Injected Element Quantity Total Ratio
script 14 108 12.96%
iframe 8 108 7.41%
a 8 108 7.41%
img 14 108 12.96%
object/embed 3 108 2.78%
others 95 108 87.96%

Table 3. Statistics of contents injected into webpages

into web pages, among which 14 extensions inserted “script” tags into pages, eight ex-
tensions inserted “iframe” tags into pages, and other 14 extensions inserted “img” tags.
There were some other elements that were also found to be injected into pages by ex-
tensions, such as “div”, “span” and so on. We focus our analysis on those cases that
extensions injected elements that are frequently exploited in attacks, including script,
iframe and img tags. By manually examining these cases, we conclude that all the ex-
tensions that inject new contents into web pages, were exempted from being malicious.

For the 14 extensions that injected “script” elements into web pages, six of them
directly injected JavaScript code into pages, while the remaining eight extensions in-
jected “script” elements that request external JavaScript from the developers’ websites
or third-party ones.

For the six extensions that directly injected code, the injected code’s behaviors were
rather simple. Three of them simply set certain JavaScript objects’ values to 1, as shown



<SCRIPT type=”text/javascript”>
window.script1309754027588=1;
</SCRIPT>

Fig. 2. JavaScript code to assign an object.

<SCRIPT id=”afterthedeadline−dispatchDisable”>
if (window.setTimeout)

window.setTimeout(function(){
if (”AtD” in window || ”AtDCore” in window) {

document.AtDdisabled = true;
var ev = document.createEvent(”HTMLEvents”);
ev.initEvent(”disableAtD”,true,false);
document.dispatchEvent(ev);
}

},100);
</SCRIPT>

Fig. 3. JavaScript code to disable extension

in Figure 2; two of them injected empty code; and one of them set a timer event to
disable itself, as shown in Figure 3. We also closely examined the eight extensions
that injected “script” elements with src attributes to refer external JavaScript. We found
that one of them accesses the cookie that was believed to belong to its own website.
In another case, the injected script called the insecure function “eval” to load dynamic
code. However, we have confirmed that this case is also benign.

In the eight extensions that injected “iframe” HTML elements into web pages, the
requested pages loaded by iframes all came from the corresponding extension’s official
website. For the behaviors of these injected pages in iframes, we also find two pages
that access the cookie of their own.

Other injection behaviors are also innocuous. All the “a” HTML elements injected
into web pages by the eight extensions do not link to other pages. The 14 extensions
inject “img” HTML element into web pages, using an image either from their chrome
areas or from other sites as the source of “img” tag. All these images used as normal
were icons and did not contain malicious event handlers. The three extensions that
injected “object” or “embed” HTML elements are to include flash files to web pages.

From the experimental results, we found that subsequent behaviors of web contents
injected into web sessions by extensions can be summarized in three groups.

– Network Access. Via script, img, iframe or embedded tags.
– Cookie Access. Via script tags.
– Others. Certain injected code assigns simple values to certain objects, or register

event listeners. None of these is security related.



Dangerous Practice Quantity Total Ratio
Accessing files beyond the directory of its own. 37 2465 1.50%
Launching a process. 4 2465 0.16%
Issuing HTTP requests via XMLHttpRequest. 441 2465 17.89%
Changing the preferences of the browser. 31 2465 1.26%
Capability of dynamic code execution(evel, Function). 145 2465 5.88%
Listening to the keyboard events targeted at web pages. 19 2465 0.77%
Preference names without “extensions.” prefix. 266 2465 10.79%

Table 4. Statistics of some dangerous functionalities and practices

4.3 Direct Threats

Dangerous Functionalities and Practices In our experimental analysis, we also fo-
cused on dangerous functionality and practices. Table 4 lists the statistical results of our
experiment.

Accessing files beyond the directory of its own. Browser extensions may have legit-
imate needs to access local files, so we focused on accesses to files outside the exten-
sions’ installation directories by monitoring the invocations to the “initWithPath” func-
tion of the “nsILocalFile” interface and its parameter. Among the 37 extensions with
such behaviors, 15 extensions access files from “/home/username”, and surprisingly
there are as many as 7 extensions found to access files from “/usr/bin”, 5 accessing
“/tmp”, and 2 accessing “/bin”. After manual inspection, all of them were confirmed to
be not malicious.

Launching a process. We monitor process launching by intercepting the “run” method
of the “nsIProcess” interface. In these four extensions that launch new processes, two
of them (KidZui and KidZui K2) executed the program “/usr/bin/xmodmap” to mod-
ify keymaps and pointer button mappings in the X system. Another extension (Zotero)
executed the program “/usr/bin/mkfifo” to create a named pipe. Moreover, the exten-
sion named “TTS for linux” executed a shell script, which is responsible for converting
text to speech by calling KTTSD (Kde Text To Speech Daemon) via DCOP (Desktop
COmmunication Protocol).

Issuing HTTP requests via XMLHttpRequest. We found 33 extensions sending cur-
rent page URLs to remote servers using XMLHttpRequest, which might be due to the
fact that browsers do not append the referrer header to the HTTP request generated
by extensions using XMLHttpRequest by default. Although no abuse of such informa-
tion was found, it is possible for malicious extensions to use this approach to collect
users favors or sense users’ behaviors that may not be acceptable for some users.

Changing the preferences of the browser. The modifications to some of the browser
preferences can lead to exploit or at least annoying users. To evaluate the situation
among Firefox extensions that how many extensions access the critical preferences of
the browser, we intercepted the “getBranch” method of the “nsIPrefService” interface
and logged its parameters. We found 20 extensions accessed “network.*” preferences,
8 accessed “general.useragent.*” accesses, etc.



Capability of dynamic code execution. We found that 145 (5.88%) extensions still
use the dangerous JavaScript features “eval()” or “Function()”, despite the existence
of safer alternatives. These dangerous practices could leave the door open to attackers.
Their existence showed that Mozilla’s review process does not completely eliminate
dangerous and vulnerable coding practices, although Mozilla’s Add-on Review Guide
[14] clearly states that any extension using “eval()” to evaluate remote code should be
rejected.

Listening to the keyboard events on web pages. We found 19 extensions that monitor
the user’s keyboard operations. However, after our manual reviewing, considering the
particular functionality these extensions need to implement, such event monitoring is
considered essential for their functional goals. For example, a translator extension “Nice
Translator” accelerates the query speed by recording the user input in real time. And
another extension “gleeBox” provides a keyboard-centric approach to navigating the
web, which also needs to monitor the keyboard events.

Preference names without the “extensions” prefix. Mozilla suggests that it is a good
practice to name extension preferences with an “extensions” prefix; otherwise, exten-
sion preferences’ names may pollute the namespace of the browser’s own preference
system and affect the stability of the browser. However, during our experiment, we still
found up to 266 extensions violating this rule, accounting for 10.79% of the total.

5 Discussion

5.1 Tracking Principals of Indirect Behaviors

Indirect threats to web sessions come from injected contents by browser extensions. A
recent proposal [4] introduces new permissions to have fine-grained control on accesses
to DOM elements and the capability to introduce new origins into web sessions. This is
a promising direction in mitigating indirect threats from browser extensions. However,
there are other cases of indirect threats other than introducing new origins via the src
attributes of “img” of “iframe” HTML tags. For example, things will get more compli-
cated when a script injected into a web session by a browser extension can dynamically
create another script, which in turn modifies the web page’s original JavaScript to tam-
per with their original XMLHttpRequest destinations.

We argue that instead of imposing an allow or disallow option for browser exten-
sions to introduce new origins into web sessions, we need a more systematic approach,
which tracks the principals of contents from different sources in web sessions. When
injected contents from browser extensions modify original contents in the web page, the
principal of the injected content should be propagated to the modified contents. As a re-
sult, additional security mechanisms, such as permission checking or access control can
be applied on the dynamic principals of different components in the same web session.
This approach would not only mitigate indirect threats to web sessions from browser ex-
tensions, but would allow legitimate interactions between browser extensions and web
sessions.



5.2 Coverage of Extension Behaviors

In our testing system, we setup a simple web site to simulate the real world web sites,
and we use XdoWrapper to simulate users’ click or keyboard strike events. However,
some extensions are designed to work only on specific web sites and some behaviors
will only be triggered by certain user actions. Since we are not able to simulate the
exact environments for them, it is possible that certain behaviors are not triggered in
our testing system. As our future work, we will work on solutions to achieve better
coverage of extension behaviors with assistance from static program analysis.

6 Related Work

We discuss research work related to browser extension security in the following cate-
gories.

A. Study of security and privacy in browser extensions. Martin Jr. et al [15] inves-
tigate privacy issues in IE 6 extensions, where they found some extensions monitoring
users’ behaviors or intercepting and disclosing SSL-protected traffic. A more recent
study [16] investigates privileges in 25 Firefox extensions that are necessary for ex-
tensions’ functionalities, and found that only 3 out of the 25 extension would actually
require the most powerful capabilities of the privileges Firefox extensions all have, vi-
olating the least privilege principle. Compared to them, our work focuses on dangerous
behaviors in Firefox extensions, and our study was conducted with an automatic testing
tool.

B. Securing browser extensions. Based on the weaknesses of the old Firefox ex-
tension system, Barth et el. [3] propose a new browser extension system for Google
Chrome, which is designed with least privilege, privilege separation and strong iso-
lation. However, Liu et al. [4] find that the original design of the Chrome extension
framework had still violated the principles of least privileges and privilege separation,
and they propose improvements to it with micro-privilege management and fine-grained
access control to DOM elements. Similarly, Mozilla develops a new extension frame-
work Jetpack [5] to make it easier to develop more secure browser extensions. The basic
idea of the new framework is to isolate extensions into a collection of modules, each of
which is expected to follow the principle of least authority (POLA). Karim et al. [17]
perform a static analysis on 77 core Jetpack framework modules and 359 extensions,
where they find 12 and 24 capability leaks, respectively. Although we propose potential
improvement to mitigate indirect threats to web sessions from browser extensions, we
do not aim for a redesign of browser extension frameworks in this paper. Our focus is
on the existing behaviors of Firefox extensions that are currently used by users today.

Sabre [18] is a system that analyzes the browser extensions by monitoring in-
browser information-flow. It produces an alert when an extension is found to access
some sensitive information in an unsafe way. A similar approach [19] is also used to
detect attacks against privilege escalation vulnerabilities in Firefox extensions. Another
recent work by Ter Louw et [1, 2] discusses techniques for runtime monitoring of ex-
tension behaviors. They try to reduce the threats posed by malicious or buggy Firefox
extensions by controlling an extension’s access to XPCOM. Similar to this work, to



protect users from spy add-ons, SpyShield [20] uses an access-control proxy to control
communications between untrusted add-ons and their host application. Some static ap-
proaches are also proposed to detect vulnerabilities in JavaScript-based widgets. GATE-
KEEPER [21] is a static approach for enforcing security and reliability policies for
JavaScript programs. VEX [6] is a framework for identifying potential security vulner-
abilities in browser extensions by static information-flow analysis.

Compared to the work above, our focus in this paper is on dangerous behaviors in
existing Firefox extensions, rather than detecting vulnerabilities or attacks.

C. Automatic event simulation. Some existing systems for web application testing,
such as Selenium [22], Watir [23] and [24] can simulate mouse and keyboard events on
webpages. However, they cannot trigger events in Firefox extensions. In this work, we
provide additional support for Firefox’s internal event simulation.

7 Conclusion

In this paper, we present a large-scale study on dangerous behaviors in Firefox exten-
sions. We focus on investigating the indirect threats posed by extensions by tracking
the behaviors of new web content injected by extensions. Through an automatic test-
ing system equipped with an injected object tracker, we tested over 2,465 extensions
in 13 different categories from the Mozilla Addon repository. We found that there are
108 extensions in total injecting various contents (such as scripts, iframes, images and
so on) into web pages. Although these cases are not malicious, they can be abused to
tamper with web sessions and should be tackled with special care. To mitigate this kind
of threats, we discuss a solution to apply principal tracking to constrain the behaviors
of injected content by extensions, while still maintaining usability for legitimate behav-
iors.
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