
HookFinder: Identifying and Understanding Malware Hooking Behaviors

Heng Yin†‡ Zhenkai Liang† Dawn Song§†

hyin@ece.cmu.edu zliang@cmu.edu dawnsong@cs.berkeley.edu

†Carnegie Mellon University, Pittsburgh, PA, USA
‡College of William and Mary, Williamsburg, VA, USA

§UC Berkeley, Berkeley, CA, USA

Abstract

Installing various hooks into the victim system is an

important attacking strategy employed by malware, in-

cluding spyware, rootkits, stealth backdoors, and others.

In order to defeat existing hook detectors, malware writ-

ers keep exploring new hooking mechanisms. However,

the current malware analysis procedure is painstak-

ing, mostly manual and error-prone. In this paper,

we propose the first systematic approach for automat-

ically identifying hooks and extracting hooking mech-

anisms. We propose a unified approach, fine-grained

impact analysis, to identify malware hooking behaviors.

Our approach does not rely on any prior knowledge of

hooking mechanisms, and thus can identify novel hook-

ing mechanisms. Moreover, we devise a method using

semantics-aware impact dependency analysis to provide

a succinct and intuitive graph representation to illus-

trate hooking mechanisms. We have developed a proto-

type, HookFinder, and conducted extensive experiments

using representative malware samples from various cat-

egories. We have demonstrated that HookFinder can

correctly identify the hooking behaviors of all samples,

and provide accurate insights about their hooking mech-

anisms.

1 Introduction

The arms race between malware writers and malware

defenders is escalating. In order to evade malware de-

fense techniques, malware writers are always striving to

explore novel attacking techniques. In response, mal-

ware defenders must accurately and responsively under-

stand malware’s attacking vectors to gain an upper hand.

One important malware attacking vector is its hook-

ing mechanism. Malicious programs implant hooks for

many different purposes. Spyware may implant hooks to

get notified of the arrival of new sensitive data. For ex-

ample, keyloggers may install hooks to intercept users’

keystrokes; password thieves may install hooks to get

notified of the input of users’ passwords; network snif-

fers may install hooks to eavesdrop on incoming net-

work traffic; and BHO-based adware may also install

hooks to capture URLs and other sensitive information

from incoming web pages. In addition, rootkits may

implant hooks to intercept and tamper with critical sys-

tem information to conceal their presence in the system.

Malware with a stealth backdoor may also place hooks

on the network stack to establish a stealthy communica-

tion channel with remote attackers.

Several tools [4, 13, 24] detect hooking behaviors by

checking known memory regions for suspicious entries.

However, they need prior knowledge of how existing

malware implants hooks. Therefore, they become fu-

tile when malware uses new hooking mechanisms. This

concern is not hypothetical. Recently, new stealthy ker-

nel backdoors (deepdoor [26] and uay [30]) are reported

to employ a novel hooking mechanism for intercepting

the network stack. To set up hooks, they overwrite only a

small portion in NDIS data block. Without knowing this

particular hookingmechanism, we can hardly notice this

kind of hooks. In fact, all existing hook detection meth-

ods have failed to detect this kind of hooks.

In response to rapidly evolving malware techniques,

we need an effective and efficient mechanism, to dis-

cover new hooking behaviors and understand their hook-

ing mechanisms. Unfortunately, the existing malware

analysis procedure is painstaking, mostly manual and

error-prone. Various code obfuscation techniques used

in malware make this manual process even more diffi-

cult. In this paper, we propose the first systematic ap-

proach to this research problem. In particular, given

an unknown malicious binary, we aim to identify if this

code installs any hooks into the system, and if so, pro-

vide detailed information about how it installs the hooks.

The intuition of our approach is that a hook implanted

by a piece of malicious code is one of the impacts (in

terms of memory and registers) that the malicious code

has made to the whole system, and this impact even-

tually affects the execution flow of the system to jump

into the malicious code. In order to capture this distinct

behavior, we propose a novel approach, fine-grained im-

pact analysis. It works by identifying all the impacts

made by the malicious code, and keeping track of the

impacts flowing across the whole system. If the con-

trol flow is affected by one of these impacts to jump into

the malicious code, then we determine that this transi-

tion is caused by a hook, which is installed by the mali-

cious code. To understand how this hook is implanted,

we devise a semantics-aware impact dependency analy-

sis mechanism. It performs dependency analysis on the

history of impact propagation, leveraged with OS-level

semantics.

We have prototyped our approach into a tool called

HookFinder, and evaluated it with eight malware pro-

grams. In the experiment, HookFinder identified hook-

ing behaviors of each malware sample within minutes.

For each identified hooking behavior, HookFinder gave

valuable insights and details about the underlying hook-

ing mechanism. The efficiency and effectiveness of

HookFinder makes it possible to automatically catego-

rize hooking behaviors of the large volume of malware

samples received by anti-virus companies everyday, and

instantly realize and respond to novel hooking mecha-

nisms.

In summary, this paper makes the following contri-

butions:

• We propose fine-grained impact analysis as a uni-

fied approach to identifying the hooking behavior

of malicious code. Since it does not rely on any

prior knowledge of hooking mechanisms, our ap-

proach is well suited for identifying novel hooking

mechanisms.

• In order to provide valuable insights about how

malware implants hooks, we devise a semantics-

aware impact dependency analysis method, which

provides a succinct and intuitive graphical repre-

sentation to help malware analysts understand the

hooking mechanism employed by a piece of mal-

ware.

• We have designed and developed HookFinder to

demonstrate the feasibility of our approach. We

have conducted extensive experiments with repre-

sentative malware samples from various categories,

and demonstrated that HookFinder could correctly

identify their hooking behaviors, and provide accu-

rate insights about their hooking mechanisms.

The paper is structured as follows. The next section

gives an overview of our approach. Section 3 describes

details on the design and implementation of HookFinder.

Section 4 presents the experimental results. Section 5

discusses some related issues. Section 6 surveys related

work and Section 7 concludes the paper.

2 Problem Statement and Our Approach

In this section, we formalize the problem of hook-

ing behavior detection and analysis, and give a brief

overview of our approach.

2.1 Problem Statement

Given a malware sample, our approach first deter-

mines whether it contains hooking behaviors. A hooking

behavior can be formalized as follows. A malicious pro-

gram C attempts to change a memory location L of the

operating system, to implant a hook H . When a certain

event happens, the operating system will load the hook

H , and then starts to execute malicious code F in pro-

gram C. We refer to the address of F as hook entry, and

L as hook site. Figure 1(a) shows a piece of pseudo code

that hooks an entry in the System Service Descriptor Ta-

ble (SSDT) of Windows system. This hooking mech-

anism is used in many kernel-mode malware samples,

such as the Sony Rootkit [27]. In this example, the hook

entry F is NewZwOpenKey, and the hook site L is the

entry for ZwOpenKey in the service descriptor table,

and the hook H is the address of NewZwOpenKey, as

illustrated in Figure 1(b).

If our approach detects hooking behaviors in a mal-

ware sample, it outputs a graph representation of the

hooking mechanism, hook graph. The hook graph tells

us two main characteristics of a hooking mechanism:

hook type and implanting mechanism.

#define SYSTEMSERVICE(_function) \

KeServiceDescriptorTable.ServiceTableBase \

[*(PULONG)((PUCHAR)_function+1)]

void HookSyscalls() {

...

OldZwOpenKey = SYSTEMSERVICE(ZwOpenKey);

SYSTEMSERVICE(ZwOpenKey) = NewZwOpenKey;

...

}
SSDT

L: Hook Site

C: Malicious Program
F: NewZwOpenKey

H: Hook

ZwOpenKey

(a) (b)

Figure 1. An SSDT Hooking Example. This code attempts to hook ZwOpenKey, by writing
the address of its own function NewZwOpenKey into the corresponding entry of the SSDT

KeServiceDescirptorTable.

Hook Type Depending how it is interpreted by the

CPU, a hook H can be either a data hook or a code

hook. A data hook is interpreted as data by the CPU,

and is used as the destination address of some control

transfer instruction to jump into the hook entry F . For

example, the hook in Figure 1 is a data hook, because

it is the address of the hook entry, and is interpreted as

the jump target. A code hook is interpreted as code by

the CPU. A code hook contains a jump-like instruction

(such as jmp and call), and is injected to overwrite

some system code (such as kernel modules and common

DLLs). When a code hook is activated, the execution is

redirected into the malicious code F . We need to detect

hooking behaviors in both cases, and we should be able

to tell what kind of hook it is when we detect one. As

we will see later, the policies used to detect hooking be-

haviors are different between these two categories due

to their different nature.

Implanting Mechanism Malware has two choices

to install H into L. First, it may directly write H

into L using its own code. Second, it may call a

function to achieve it on its behalf. Windows sys-

tem provides several APIs for applications to regis-

ter various event handlers (i.e., hooks). For example,

SetWindowsHookEx allows an application to regis-

ter a hook for certain Windows event, such as keystroke

events. Whenever a keystroke is entered into the sys-

tem, Windows will call the hook function provided by

this application. In addition, functions like memcpy and

WriteProcessMemory can overwrite a memory re-

gion on behalf of their callers. Thus, once we identify a

hook, we need to determine which method the malware

used to register the hook.

If the malware directly modifies L to install H , we

need to understand where L is, and how the malware

sample obtains L. Since L is usually not located in

a fixed place, malware has to find it from some static

point. This static point can be a global system sym-

bol, or the result of a function call. After obtaining

this static point, malware may walk through the data

structures referenced by it to eventually locate L. The

example in Figure 1 makes use of this method, and

the hook site L is calculated from a global symbol

KeServiceDescriptorTable. For this type of

implanting mechanism, the hook graph answers the fol-

lowing questions:

• Where is the static point?

• How does the malware obtain the static point?

• How does it infer the final locationL from the static

point?

If the malware invokes an external function to reg-

ister H , we need to identify the function’s address and

name. In addition, we need to know the actual argu-

ments that are used to call this function. The function

call and its argument list can give semantic information

about how the hook and what kind of hook is registered.

For example, if we identify that a malicious program

calls SetWindowsHookEx to register a hook, we are

able to tell from the first argument what type of hook is

registered. For this type of implanting mechanism, the

hook graph answers the following questions:

• What is the external function, including its entry

address and its name?

• What arguments does the malware use to invoke

this function?

2.2 Our Approach

Since most malware programs are equipped with var-

ious code obfuscation techniques to foil static analysis,

our approach is based on dynamic analysis. That is, we

actually monitor the execution of the malware in a spe-

cial environment, and use the obtained information to

derive how it implants the hook, and how the hook is

activated by the operating system. Note that our ap-

proach is designed for analysis, not on-line detection.

Our approach is divided into two steps: hook detection

and hooking mechanism analysis.

Hook Detection: Fine-grained Impact Analysis Our

approach is based on the following intuition. Malicious

code makes changes, including memory and the other

machine state changes, to the execution environment as

it runs. We call these changes impacts. Obviously, a

hook H is one of the impacts made by the malicious

code, and this impact finally redirects the execution con-

trol flow into the malicious code. Hence, if we are able

to identify all the impacts of the malicious code, and ob-

serve one of the impacts being used to cause the execu-

tion to be redirected into the malicious code, we can de-

termine a hook installed by the malicious code. Further-

more, we are also interested in how an impact is formu-

lated, for the purpose of understanding hooking mecha-

nism. Therefore, we identify initial impacts, the newly

introduced impacts by the malicious code, and then keep

track of the impacts propagating over the system.

Based on this intuition, we propose fine-grained im-

pact analysis. We mark all the initial impacts made by

the malicious code at byte level. The initial impacts in-

clude data written directly by the malicious code, and

data written by the external code (through function calls)

on its behalf. Then we keep track of the impacts propa-

gating through the whole system. During the execution,

if we observe that the instruction pointer (i.e., EIP in

x86 CPUs) is loaded with a marked impact, and the exe-

cution jumps immediately into the malicious code, then

we identify a hook. Furthermore, in this case, we have

determined that the jump target is the hook entry F , the

memory location that the instruction pointer is loaded

from is the hook site L, and the content within L is the

hookH .

Hooking Mechanism Analysis: Semantics-aware Im-

pact Dependency Analysis Once identifying a hook

H , we want to understand the hookingmechanism. Dur-

ing the impact propagation,we record into a trace the de-

tails about how the impacts are propagated in the system.

Therefore, from the trace entry corresponding to the de-

tected hook H , we can perform backward dependency

analysis on the trace. The result gives how the hookH is

formulated and installed into the hook site L. However,

such a result is difficult to understand, because it only

provides hardware-level information and sometimes can

be enormous. We combine OS-level semantics informa-

tion with the result, and perform several optimizations to

hide unnecessary details. The final output is a succinct

and intuitive graphical representation, assisting malware

analysts to understand its hooking mechanism.

Note that our approach would catch “normal” hook-

ing behaviors. Windows provides a number of APIs,

such as CreateThread and CreateWindow, for ap-

plications to register their callback functions. Windows

will invoke these callbacks on certain events. These

function calls that register normal hooks can be com-

piled into a white-list. Then if one of these normal

hooks is captured by our detection step, we can clas-

sify it as normal, by extracting its hooking mechanism

and comparing it with the white-list. In practice, we

find this white-listing approach very effective. Note that

“normal” hooks are not considered false positives in our

case, since our goal is to extract and analyze any hook-

ing mechanism which may be employed by the sample

of interest.

3 System Design and Implementation

To demonstrate the feasibility of our approach, we

design and implement a system, HookFinder, to identify

the hooking behavior and understand the hooking mech-

anism. In this section, we give an overview of Hook-

Finder and describe its components.

3.1 System Overview

The overview of HookFinder is illustrated in Fig-

ure 2. HookFinder is based on a whole-system emula-

tor. It emulates an x86 computer and runs a Windows

guest system on top of it. The malware to be analyzed

is executed in the Windows guest system. There are

two reasons why we employ a whole-system emulator.

First, it facilitates instrumenting CPU instructions in a

fine-grained manner. In particular, we are able to instru-

ment every CPU instruction executed in the Windows

guest system. Second, it provides an excellent protection

line between the analysis environment and the malware.

Windows

Whole−system Emulator

Malware
Detector

Extractor

Analyzer

Semantics

Hook

Impact

Engine

Impact Trace
Hook

Hook Graph and

Hooking Mechanism

Figure 2. System Overview

Therefore, it is relatively more difficult for malicious

code to interfere with our detection and analysis pro-

cedure and affect the analysis results. In the implemen-

tation, we develop HookFinder on top of TEMU [29],

which is the dynamic analysis component in the Bit-

Blaze project [2].

Within the emulator, we build three components: im-

pact analysis engine, semantics extractor, and hook de-

tector. The impact analysis engine is a central compo-

nent, which performs fine-grained impact analysis. It

marks the impacts made by the malware, and keeps track

of impacts propagating over the whole system. A whole-

system emulator only provides a hardware-level view of

the system, such as the states of CPU registers, physical

memory, and I/O devices. However, malware analysts

need to understand the malware and system behaviors at

the operating-system level. The semantics extractor im-

plements the functionality of extractingOS-level seman-

tics information from the emulated environment. For ex-

ample, it provides process and module information of

the current instruction executed. It can also provide in-

formation about external function calls. The hook detec-

tor behaves like a controller, cooperatingwith the impact

analysis engine and the semantics extractor to identify

hooks.

To analyze hooking mechanisms, the impact propa-

gation events, as well as necessary OS-level semantics

information, are recorded into a trace, called the impact

trace. The hook analyzer analyzes the impact trace and

generates a succinct and intuitive graphical representa-

tion, hook graph. The hook graph conveys essential in-

formation for malware analysts to easily understand the

hooking mechanism.

3.2 Impact Analysis Engine

The impact analysis engine performs fine-grained im-

pact analysis, and is composed of two sub-components:

impact marker and impact tracker. The impact marker

is responsible for marking the initial impacts made by

the malicious code, and the impact tracker keeps track

of the impacts propagation.

Impact Marker In the impact marker, we aim to iden-

tify all the initial impacts that can be used to install

hooks. This is important, because if we fail to mark

some initial impacts, malware writers may exploit this

fact to evade our detection.

First, we consider that an instruction from malicious

code directly makes an impact. When an executable bi-

nary is loaded into the system, a module space is allo-

cated for it, and the code and data segments from the

binary are copied into this module space and initialized.

The semantics extractor mentioned in Section 3.3 is able

to tell which module space belongs to the sample under

analysis. Then, for an instruction located in that mod-

ule, we need to mark its impact accordingly. That is, we

mark the destination operand, either a memory location

or a CPU register, if it is not marked already.

In addition, we consider that malicious code may

make an impact by calling an external function. For

example, it may call ReadFile to obtain the address

of the hook entry F from a configuration file, and then

install it as the hook H into the hook site L by calling

memcpy. If we do not consider this situation, H will

not be marked. Therefore, we need to mark the output

of that external function too. Again, we will discuss in

Section 3.3 how the semantics extractor determines if an

instruction is executed under the context of an external

function call.

To identify the impacts made in an external function,

we treat memory writes and register writes differently.

For memory writes, we mark a memory location if it is

written under the context of the external function call,

and it is not a local variable on the stack. To determine

a local variable, we obtain the stack range for the cur-

rent thread from the semantics extractor, and compare

the memory location with the value of ESP on the en-

try of the external function call: if the memory location

is smaller than the value of ESP and within the stack

range, then it is a local variable. For register writes,

we only need to consider EAX. According to the func-

tion calling conventions (i.e., cdecl and stdcall)

in Windows, EAX contains the return value when appli-

cable, while the other general-purpose registers (except

the stack pointer ESP) remain unchanged. Now we need

to determine if EAX contains the return value and mark

it accordingly. We save the value of EAX on the entry

of an external function call, and then on the exit of the

function, check if EAX is changed. If so, we mark this

EAX.

Furthermore, malware may dynamically generate

new code. Since self-generated code is also part of im-

pacts made by the malicious code, the memory region

occupied by it must have already been marked. Thus,

we can determine if an instruction is generated from

the original malicious binary by simply checking if the

memory region occupied by that instruction is marked.

If so, we also treat that code region as malicious code,

andmark the inputs taken by the self-generated code too.

Impact Tracker The impact tracker keeps track of

the impacts propagating throughout the system. It

tracks data dependencies between source and destina-

tion operands. That is, if any byte of any source operand

is marked, the destination operand is also marked. In

addition, for a memory source operand, if its address

becomes marked, we also mark the destination operand.

This policy enables us to track how the malicious code

walks through a data structure, starting from a marked

pointer to the data structure. These two policies are sim-

ilar to those in the dynamic taint analysis systems [7,

10, 11, 22, 33]. Note that the impact tracker keeps track

of impacts propagating over the whole system, includ-

ing the disk. It still keeps track of the impacts that

are swapped out to disk, or written to the registry and

filesystem. Therefore, HookFinder is able to detect the

hooks that are registered through the registry and filesys-

tem.

What makes the impact tracker different from dy-

namic taint analysis is the way it checks immediate

operands. That is, if an instruction has an immediate

operand, the impact tracker checks if the memory re-

gion occupied by this immediate is marked and if so,

propagates the impact accordingly. In contrast, the dy-

namic taint analysis systems treat immediate operands

as clean. In our scenario, the malicious code may over-

write the system code with manipulated immediate num-

bers in the instructions. For example, in the code hook

case, the malicious code may inject into the system code

a jump instruction with a hard-coded target address, to

redirect the execution to the malicious code. This im-

mediate operand is a crucial impact that is deliberately

injected by the malicious code to set up a hook. There-

fore, we need to check immediate operands.

To enable dependency analysis, the impact tracker

performs an extra operation during the impact propa-

gation. That is, we assign a unique identifier to each

marked byte of the destination operand. We refer to

this identifier as dependency ID. Then for each instruc-

tion that creates or propagates the marked data, we

write a record into the impact trace. The record con-

tains the relationships between the dependency IDs of

marked source and the destination operand, associated

with other detailed information about that instruction.

3.3 Semantics Extractor

The semantics extractor bridges the semantic gap be-

tween the hardware-level view and the software-level

view. Specifically, the purposes of the semantics extrac-

tor are three-fold: (1) determine the process, thread, and

module information for the current instruction; (2) deter-

mine if an instruction is executed in the context of an ex-

ternal function call, and if so, resolve its function name

and arguments; and (3) determine the symbol name if a

memory read is to a symbol.

Several previous systems [10, 14–16, 33] have dis-

cussed extracting OS-level semantics from a virtual ma-

chine monitor or a whole-system emulator. There are

mainly two types of approaches. First, we can directly

examine the guest system states from outside, with com-

plete knowledge of crucial data structures [10, 14, 15].

Second, we can insert a kernel module into the guest

system to collect the necessary information [16,33]. Our

implementation is based on TEMU, which combines

these two approaches.

Process, Thread, and Module Information The

other two systems [16,33] that are also based on TEMU

have described how we extract process, thread and mod-

ule information. To summarize, the kernel module

loaded in the guest system registers several callback rou-

tines. Whenever a process is created or deleted or a mod-

ule is loaded into a process memory space, the corre-

sponding callback routine is invoked. The callback rou-

tines gather the information such as the value of CR3

for each process and the memory region for each mod-

ule, and then pass it to the underneath emulator via a

predefined I/O port. Obtaining thread information is

fairly straightforward, as the data structure for the cur-

rent thread is mapped into a well-known virtual address

in Windows. We can simply read the thread information,

such as the thread ID and stack base and size, directly

from outside.

External Function Call Previous systems [10, 33]

have also discussed how to determine external functions

called by the malicious code, by comparing the stack

pointers. The intuition is that the malicious code has to

push the arguments and the return address onto the stack

to call an external function. Thus by comparing the stack

pointer when the execution enters the malicious code,

and the one when the execution leaves, we can deter-

mine if the execution jumping out of the malicious code

is because of an external function call.

Then given the entry address of an external function,

we want to resolve its function name. We achieve this by

parsing the PE header of a module whenever it is loaded

into the system. Each binary in the PE format contains

an export table that for each of its exported functions

maps its name with its offset within the binary. Combin-

ing the offset with the base address that the module is

actually loaded in, we can infer the actual address of an

external function.

Symbol Name When an instruction reads a memory

location, we want to determine if it is reading a sym-

bol, and if so, resolve the symbol name. This is useful

in generating an OS-level hook graph. Similarly to re-

solving external function name, we parse the PE header

of a module whenever it is loaded into the system. We

extract symbol names with their offsets in both export

table and import Table, and infer the actual address of a

symbol using the module base address and its offset.

3.4 Hook Detector

The hook detector works by checking if the con-

trol flow is affected by some marked value, which redi-

rects the execution into the malicious code. More pre-

cisely, we observe whether the instruction pointer EIP

is marked, and the execution jumps immediately from

the system code into the malicious code region, or the

code region generated from the malicious code. If the

conditions are satisfied, we identify a hook: the jump

target is the hook entry F , the memory location that EIP

is loaded from is L, and the content in L is H .

The above policy functions properly for identifying

data hooks, but is problematic for code hooks. This is

because a code hook is a piece of code generated by the

malicious code, and thus is treated as malicious code by

the above policy. Therefore when the code hook redi-

rects the execution to the malicious code, the above pol-

icy will not raise an alarm because it sees the execu-

tion being transferred from malicious code to malicious

code. To solve this problem, we extend the above pol-

icy such that the execution transitions from a code hook

region into malicious code will raise an alert.

Then the question is how to distinguish code hook

regions with other self-generated code regions. Self-

generated code usually remains in the module space of

the malicious code, or stays in a region that is not occu-

pied by any module (such as in heap), whereas a code

hook region is a piece of code that overwrites a code re-

gion in a different module. Therefore, during execution,

if the currently executed basic block is marked and from

a different module, and EIP is marked and jumps into

the malicious code, we identify it as a code hook.

3.5 Hook Analyzer

Once a suspicious hook is identified, the hook ana-

lyzer is able to extract essential information about its

hookingmechanism by performing semantics-aware de-

pendency analysis on the impact trace. The procedure

consists of the following three steps: (1) from the hook

H , perform backward dependency analysis on the im-

pact trace, and generate hardware-level hook graph; (2)

with the OS-level semantics information, transform the

hardware-level hook graph into an OS-level hook graph;

and (3) if necessary, simplify the hook graph by hiding

unnecessary details and merging similar nodes. We de-

tail these steps respectively.

Hardware-level Hook Graph A hook graph repre-

sents dependencies among malware’s instructions that

are used to implant a hook. A node of a hook graph cor-

responds to an instruction involving hooking behavior;

an edge of a hook graph points from an instruction set-

ting an operand to an instruction using the operand as

source.

Recall that each record in the impact trace has de-

pendency information. With the hook H identified by

our hook detector, we create the first node in our hook

graph, representing the instruction that activates H . We

then obtain the hook’s dependency ID IDh, and locate

the record that defines IDh in the impact trace. Finally,

we search backwards in the impact trace to add depen-

f8ab1ee6: mov 0xf8ab20a0, %edi

M[0xf8ab20a0]=0x804dd6e3

f8ab1f56: mov 0x1(%edi), %eax

Impacted Address

f8ab1f59: mov 0xf8ab20b4, %ecx

M[0xf8ab20b4]=0x80559b80

f8ab1f5f: mov (%ecx), %ecx

f8ab1f61: movl $0xf8ab166e, (%ecx,%eax,4)

M[0x804e2efc]=0xf8ab166e

804df051: mov (%edi,%eax,4), %ebx

804df069: call *%ebx

aries.sys+ee6: mov ZwOpenKey, %edi

[aries.sys+10a0]=0x804dd6e3

aries.sys+f56: mov 0x1(%edi), %eax

Impacted Address

aries.sys+f59: mov KeServiceDescriptorTable, %ecx

M[aries.sys+10b4]=0x80559b80

aries.sys+f5f: mov (%ecx), %ecx

aries.sys+f61: movl aries.sys+66e, (%ecx,%eax,4)

M[ntoskrnl.exe+e2efc]=0xf8ab166e

ntoskrnl.exe+8051: mov (%edi,%eax,4), %ebx

ntoskrnl.exe+8069: call *%ebx

(a) Hardware-level hook graph (b) OS-level hook graph

Figure 3. Hardware­level and OS­level hook graphs for a hook in Sony Rootkit.

dency information. Specifically, for each recordR in the

impact trace, if it creates a new dependency ID id that is

used in the hook graph, we added a nodeN representing

the instruction correspondingR, and add edges from N

to other nodes that uses id as source operands in their

corresponding instructions. We perform this backward

search recursively until we reach the beginning of the

trace. Besides the dependency information, each record

contains detailed information about an instruction, such

as its address and the values of its operands. If the in-

struction is executed under the context of an external

function, the record also contains the entry address of

that external function, and the value of ESP on the entry

of call. We also put these details into the corresponding

nodes. The resultant graph is the hardware-level hook

graph.

Figure 3(a) shows a hardware-level hook graph built

from a hook in Sony Rootkit [27], which employs the

same hooking mechanism as the sample shown in Fig-

ure 1. A rectangle node denotes an instruction propagat-

ing malware’s impacts. A diamond node denotes that its

successor’s destination address is affected by the mal-

ware’s impacts. Note that to save space, we only dis-

play really important information for each node, such

as the instruction address and the disassembled instruc-

tion. For each memory operand, we show its address and

value. If the instruction is executed under the context of

an external function call, we also show the entry of the

function call and the ESP value on the entry.

OS-level Hook Graph With the OS-level semantics

information provided by the semantics extractor, we

can transform a hardware-level hook graph into an OS-

level hook graph. Given the address of an instruc-

tion, we can show which module it belongs to and

its offset to the module base. Similarly for memory

access, we can determine if it falls into any module

space. If the memory access is to a symbol, we can

even resolve its symbol name. Given the entry ad-

dress of an external function, we can resolve its function

name. Then, the resulting graph is an OS-level hook

graph. Figure 3(b) illustrates the OS-level hook graph

transformed from Figure 3(a). We can see that Fig-

ure 3(b) correctly reflects the hook registration proce-

dure shown in Figure 1. That is, symbols ZwOpenKey

and KeServiceDescriptorTable are used to cal-

culate the hook site L (shown in the diamond-shaped

node), and an address (aries.sys+66e) is written into L.

This is the hookH , the address of the hook entry F .

In addition to resolving function names, HookFinder

also extracts function arguments from an impact trace.

Since pushing arguments onto the stack is also part of

the impacts made by a malware sample, the information

about these arguments is already recorded in the impact

trace. To extract a function’s arguments, HookFinder lo-

cates the first record R of the activation of the function.

The records preceding R contain function arguments,

but may also contain other non-argument impacts made

by the malware. As the impacts trace has information

about the value of register ESP at the beginning of the

function’s activation, we only include the impacts within

a certain distance to the value of ESP. In the current im-

plementation, we search for up to 10 four-byte words

following the location of ESP as arguments.

Graph Simplification The resulting hook graph can

be very complex in some cases. For better readability

and clarity, we simplify it using the following criteria:

(1) if two adjacent nodes belong to the same external

function call, we merge them into a single virtual node;

(2) if two adjacent nodes are direct-copy instructions,

such as mov, push, and pop, we merge them into a sin-

gle node, because these instructions propagate the same

value without modification. We apply these two crite-

ria repeatedly on our hook graph until no nodes can be

merged. The result is often a graph much clearer to be

interpreted.

4 Evaluation

In this section, we present details on the experimental

results of HookFinder, by evaluating it with real-world

malware samples. We first give a summary of the ex-

perimental results over these samples, and then present

details on two of them. In all our experiments, we run

HookFinder on a Linux machine with a dual-core 3.2

GHz Pentium CPU and 2GB RAM. On top of Hook-

Finder, we install Windows XP Professional SP2 with

512M of allocated RAM as the guest operating system.

4.1 Overview

Our sample set consists of eight malware samples,

which are obtained from public resources (such as [20,

23]) and collaborative researchers. In Table 1, we char-

acterize these samples according to whether they are

packed, whether they are kernel or user threats, and

which categories they belong to. We include Uay back-

door to verify the capability of HookFinder in identify-

ing novel hooks 1.

In the experiment, HookFinder has successfully iden-

tified hooks for all the samples. We summarize the re-

sults in Table 2. In the second column of Table 2, we list

the elapsed time for each sample. It breaks down into

two parts: the runtime for running the sample in the em-

ulated environment (shown as the first number), and the

runtime for generating hook graphs (as the second num-

ber). After executing a sample, we wait for 2-3 minutes

to make sure it has fully started. In order to trigger po-

tential hook behavior, we then perform a series of simple

1Since deepdoor is not released by its author, we cannot include it

in our experiment.

interactions with the emulated system, including listing

a directory, and pinging a remote host, which may cost

another 2 or 3 minutes. The runtime for generating hook

graphs varies from 2 seconds to 33 minutes, depending

on the trace size, the number of hooks, and other factors.

In total, HookFinder spends up to 39 minutes on a sam-

ple during the evaluation, which is efficient compared to

manual malware analysis that can last hours or days.

The third column lists the size of the impact trace for

each sample. As we can see, the maximum size in the

table is 14G, which is acceptable for a complex program

executing millions of instructions.

The fourth and fifth column shows the number of sus-

picious hooks and the total number of identified hooks,

for each sample. We found some normal hooks regis-

tered by the following functions: EVENT SINK AddRef,

FltDoCompleteProcessingWhenSafe, StartServiceDis-

patcherA, CreateThread, CreateRemoteThread, and

PsCreateSystemThread. Note that our approach does not

distinguish the intent of a hooking behavior. Thus, we

will identify all hooks in the first place; then we check

normal hooks by comparing them with our white-list.

The last column gives essential information about

the hooking mechanism. We found that three sam-

ples installed code hooks. All three samples derive

the hook sites by calling GetProcAddress. Vanquish

directly writes the hooks into the hook sites, whereas

AFXRootkit and Hacker Defender call WriteProcess-

Memory and NtWriteVirtualMemory respectively to

achieve it. The other six samples installed data hooks,

four of which call external functions to install the

hooks. In particular, CFSD calls FltRegisterFilter,

and Trojan/Keylogg-LF and Troj/Thief call SetWindow-

sHookEx. We also extracted arguments for these func-

tion calls, and we found that Trojan/Keylogg-LF in-

stalled a WH KEYBOARD LL hook, and Trojan/Thief

installed a WH CALLWINDPROC hook. The remain-

ing two samples directly write hooks into hook sites.

The static points are KeServiceDescriptorTable and

NdisRegisterProtocol for Sony Rootkit and Uay Back-

door, respectively.

4.2 Detailed Analysis

Here we present detailed results for two malware

samples: Uay Backdoor and Vanquish.

Uay backdoor HookFinder identified five data hooks

in total for this sample. We reviewed the generated hook

graphs, and we found that three of them were installed

by PsCreateSystemThread. This kernel function creates

Sample Size Packed? Kernel/User Category

Troj/Keylogg-LF 64KB Y User Keylogger

Troj/Thief 334KB N User Password Thief

AFXRootkit [1] 24KB Y User Rootkit

CFSD [6] 28KB N Kernel Rootkit

Sony Rootkit [27] 5.6KB N Kernel Rootkit

Vanquish [31] 110KB N User Rootkit

Hacker Defender [12] 96KB N Both Rootkit

Uay Backdoor [30] 212KB N Kernel Backdoor

Table 1. Malware Samples in Our Experiment

Sample Runtime Trace Hooks Hooking Mechanism

Total Mal

Troj/Keylogg-LF 6m+9m 3.7G 2 1 Data, Call:SetWindowsHookEx(WH KEYBOARD LL,...)

Troj/Thief 4m+3s 143M 1 1 Data, Call:SetWindowsHookEx(WH CALLWINDPROC,...)

AFXRootkit 6m+33m 14G 4 3 Code, Call:WriteProcessMemory

CFSD 4m+2m 2.8G 5 4 Data, Call:FltRegisterFilter

Sony Rootkit 4m+2s 25M 4 4 Data, Direct, Static Point:KeServiceDescriptorTable

Vanquish 6m+12m 4.4G 11 11 Code, Direct, Static Point:GetProcAddress

Hacker Defender 5m+27m 7.4G 4 1 Code, Call:NtWriteVirtualMemory

Uay backdoor 4m+25s 117M 5 2 Data, Direct, Static Point:NdisRegisterProtocol

Table 2. Summarized experimental results

a system thread with the thread entry provided by the

caller. Thus, these three hooks are normal hooks. The

other two are suspicious, and their hook graphs are sim-

ilar. We show one graph in Figure 4. We also show

the original hardware-level graph in Figure 6 in the Ap-

pendix.

As we can see in Figure 4, there are two branches

at the bottom. The left branch describes how the hook

site L was inferred, and the right branch presents how

the hook H was formulated. From the top of the right

branch, we can see thatH originated from the output of

a function call NdisAllocateMemoryWithTag. This ker-

nel function is used to allocate a memory region in the

kernel space. According to the function’s semantics, this

output has to be the address of the allocated memory re-

gion. This address is finally implanted into the hook site

L.

From the top of the left branch, we observe that L

is derived from the output of a function call NdisReg-

isterProtocol. This kernel function registers a network

protocol. According to the function semantics, we be-

lieve this output is the protocol handle in the second ar-

gument. This handler points to an internal data structure

maintained by theWindows kernel. Then we can see the

instruction (at uay.sys+1695) reads a field with the off-

set 0x10 in this data structure. The obtained value (v1)

is then used as a pointer to read another value (v2) from

the offset 0x10 in the data structure pointed by v1, in the

subsequent instruction (at uay.sys+16a0). Then, the in-

struction (at uay.sys+1589) adds v2 with 0x40, and the

resulting value is eventually used as the hook site L. We

believe that this sample actually walks into this internal

data structure that it obtains from NdisRegisterProtocol,

and locates the designated hook site L. Interestingly, the

definition of the data structure for the protocol handle

created from NdisRegisterProtocol is not released in any

documentation fromMicrosoft, but this malware sample

seems to be able to understand this data structure, and

knows how to locate the desired hook site from it.

The hook graph for another suspicious hook is very

similar to this one, except that it adds v2 with 0x10. With

the knowledge of how this internal structure is defined,

we would be able to tell which two functions this mal-

ware sample actually hooked.

By analyzing this sample using HookFinder, we are

able to unveil a novel mechanism for intercepting the

NDIS.sys+829a: mov %ecx,0x10(%ebx)

Call: NdisRegisterProtocol

[0x81dd0f38]=0x81e95ca8

uay.sys+1695: mov 0x10(%eax), %esi

uay.sys+16a0: mov 0x10(%esi), %esi

NDIS.sys+22faa: call *0x40(%eax)

uay.sys+1589: lea 0x40(%esi), %eax

Simple Propagation

Impacted Address

NDIS.sys+115b: mov %eax, (%ecx)

Call: NdisAllocateMemoryWithTag

[0xf56f2cc4]=0x81e563a8

Simple Propagation

uay.sys+fcd: mov %eax, (%esi)

[0x81ed3548]=0x81e563a8

Simple Propagation

NDIS.sys+827f: mov 0xc(%ebp), %eax

Call: NdisRegisterProtocol

Impacted Address

NDIS.sys+828c: mov %ebx, (%eax)

Call: NdisRegisterProtocol

[0xf56f2d68]=0x81dd0f28

uay.sys+168d: mov 0xfffffffc(%ebp), %eax

Figure 4. Hook Graph for Uay

network stack employed by malware. That is, malware

can tamper with the function pointers in some kernel

data structures associated with registered network pro-

tocols. With this important understanding, we can ver-

ify and protect the integrity of these data structures, to

defend against this kind of hooking mechanism.

Vanquish HookFinder identified 11 code hooks in to-

tal for Vanquish. After reviewing the hook graphs, we

found that Vanquish hooked four unique APIs: Reg-

CloseKey, LoadLibraryExW, RegEnumKeyW and Re-

gEnumKeyExW. Thus, multiple hooks may correspond

to one API hooking, because Vanquish installs one hook

per process for that API.

We show a hook graph for hooking RegCloseKey in

Figure 5. The other hook graphs are similar. First, we

can see the bottom node. This is the actual instruc-

kernel32.dll+119ab4: mov %eax, (%esi)

Call: GetProcAddress

[0x61f81c]=0x77dd6bf0

kernel32.dll+ac81: mov 0xc(%ebp), %eax

Call: GetProcAddress

Simple Propagation

vanquish.dll+2170: sub 0x8(%ebp), %edx

vanquish.dll+1ea7: add $0x1,%eax

vanquish.dll+2834: push $0x1ae4c22

[0x61f824]=0x1ae4c22

vanquish.dll+216d: mov 0xc(%ebp), %edx

advapi32.dll+6bf0: jmp 0x89d0e032

vanquish.dll+2173: sub $0x5, %edx

vanquish.dll+2176: mov %edx, 0xfffffff8(%ebp)

[0x61f810]=0x89d0e02d

vanquish.dll+217f: mov 0xfffffff8(%ebp), %ecx

vanquish.dll+2182: and $0xff, %ecx

vanquish.dll+218b: mov %cl, 0x1(%edx)

[0x1ae928d]=0x2d

vanquish.dll+1ea0: mov (%ecx), %dl

Simple Propagation

Impacted Address

vanquish.dll+1ea2: mov %dl, (%eax)

[0x77dd6bf1]=0x2d

Figure 5. Hook Graph for Vanquish

tion Vanquish injected into the system code to set up

the hook. It is a jmp instruction, and its address is the

entry point of RegCloseKey. The rest of the graph shows

how the jump target of this instruction is formulated.

Here the address of this jump target (i.e., 0x77dd6bf1)

is the hook site L, and the content in L is H (i.e.,

0x89d0e032). Again, the left branch represents how L

was inferred, and the right branch indicates how H was

formulated.

The left branch starts with the output of function call

GetProcAddress. This function returns the actual func-

tion address, given a function name. Therefore, the

source of the left branch is the address of a function

call, and the actual value is 0x77dd6bf0, which is the

address for RegCloseKey. As we follow the links down,

we can see this address is added by 1 and used as L.

Obviously, the offset 1 is for the opcode of jmp. Now

for the right branch, we can see that it originates from

an immediate (0x1ae4c22) pushed onto the stack. This

value is first subtracted by the address for RegCloseKey,

and then subtracted by 5. Then the value is “and” with

0xff to get the lowest byte, and this byte is written to the

hook site L directly. Obviously, these steps are used to

calculate the relative address for the jmp instruction.

5 Discussion

In this section, we discuss the resilience of our system

to various evasion techniques that malware writers may

exploit.

Exploiting Control Dependency The basis of our ap-

proach is to identify all impacts made by the malicious

code, and keep track of the impact propagation via data

dependency. It is natural for malware writers to think of

exploiting control dependency, to evade our detection.

For example, the malicious code may embed a complex

switch statement like below to cut the data dependency

between a and b.

switch(a) {

case 1: b=1; break;

case 2: b=2; break;

...

}

This evasion is not viable. This is because in the im-

pact marker, we thoroughly mark all the initial impacts

(i.e., memory and register writes) made by the malicious

code. Thus, the output b will be marked anyway.

Not Exhibiting Hooking Behaviors When Tested

Malware may not exhibit hooking behavior during our

dynamic analysis. It may detect that it is running in our

analysis environment and stay inactive if indeed. For

example, it may run a redpill test [25], observe consid-

erable slowdown on performance, or perform more so-

phisticated methods to determine this fact. Moreover,

some malware only performs malicious behavior under

certain conditions, such as on a specific date. This is a

common shortcoming of dynamic analysis. The current

implementation of HookFinder can deal with some com-

mon detection methods. We specially instrument several

instructions like sidt to return deceitful results to mal-

ware, in order to bypass the redpill test. We also slow

down the frequency of the PIT timer in QEMU to dis-

guise the performance slowdown of our emulated sys-

tem. A more comprehensive solution to this problem

would be to explore multiple execution paths that de-

pend upon certain conditions. Some research work has

been done in this direction. Moser et al. [17] and Brum-

ley et al. [3] also used QEMU to build malware analysis

systems, which are able to uncover hidden behaviors of

malware by exploring multiple execution paths. We will

leave incorporating these techniques into HookFinder as

future work.

Evading through “return-into-libc” In this paper,

we consider that malware registers a function in its own

code as a hook. Potentially, malware may not neces-

sarily register its own function. It can put the address

of certain function in system code into the hook site,

exploiting the functionality of that function to perform

some tasks, without being detected by HookFinder. This

potential evasion resembles “return-into-libc” in buffer

overflow attacks [18]. We do not consider this kind of

evasion in the current implementation of HookFinder, as

it is generally difficult to realize, in terms of finding good

candidate functions and preparing compatible stack lay-

out. We would like to extend our detection strategy to

cope with this potential evasion in our future work.

Subverting or Misleading HookFinder Built on top

of an emulator, HookFinder provides strong isolation

such that it is unlikely for the malware running inside

to interfere with HookFinder and the host system. How-

ever, some study shows the possibility of subverting the

entire emulated environment by exploiting buffer over-

flows and integer bugs [21]. This problem can be ad-

dressed by fixing these bugs. HookFinder may also be

misled. HookFinder identifies and analyzes hooks by

examining both hardware-level and OS-level informa-

tion. Hardware-level information can be trustworthy,

because the underlying hardware relies on it to run the

guest system. However, OS-level information can be

spurious. Malware can find numerous methods to hijack

the semantics extractor. Especially, the kernel module

inserted into the guest system can be an obvious tar-

get. In the future release of HookFinder, we are going

to develop a more robust and secure semantics extractor.

More specifically, we will reason about OS-level seman-

tics completely from outside, using reliable and faithful

states of the emulated system.

6 Related Work

Hook Detection Researchers have developed several

tools, such as VICE [4], System Virginity Verifier [24],

and IceSword [13], to detect the existence of hooks in

the system. With prior knowledge how malicious code

usually set hooks, these tools examine known memory

regions for suspicious entries. The common examined

places are system service descriptor table (i.e., SSDT)

exported by the OS kernel, interrupt descriptor table

(i.e., IDT) that stores interrupt handlers, import address

tables (i.e., IAT) and export address tables (i.e., EAT)

of important system modules. Assuming that important

systemmodules do not modify their code (with a few ex-

ceptions), System Virginity Verifier checks if code sec-

tions of important system DLLs and drivers remain the

same in memory as those in the corresponding binaries

on disk. In nature, these tools fall into misuse detection,

and thus cannot detect hooks in previously unknown

memory regions. In comparison, our approach captures

the intrinsic characteristics of hooking behaviors: one of

the malware’s impacts has to be used to redirect the sys-

tem execution into the malicious code. Therefore, it can

identify unknown hooking behaviors. Moreover, it also

provides insights about the hooking mechanisms.

Dynamic Taint Analysis The fine-grained impact

analysis resembles the dynamic taint analysis technique,

which is proposed to solve and analyzemany other secu-

rity related problems. Many systems [8,9,19,22,28] de-

tect exploits by tracking the data from untrusted sources

such as the network being misused to alter the control

flow. Other systems [7, 10, 33] make use of this tech-

nique to analyze how sensitive information is processed

by the system. Chow et al. applies dynamic taint anal-

ysis to understand the lifetime of sensitive information

(such as password) in operating systems and large pro-

grams [7]. Egele et al. utilize this technique to ana-

lyze BHO-based spyware behavior [10]. Yin et al. also

make use of dynamic taint analysis to detect and analyze

privacy-breaching malware [33]. Moreover, dynamic

taint analysis is used for other applications, such as au-

tomatically extracting protocol message formats [5], and

preventing cross-site scripting attacks [32].

7 Conclusion

In this paper, we presented a novel dynamic analy-

sis approach, fine-grained impact analysis, to identify

malware hooking behaviors. This approach character-

izes malware’s impacts on its system environment, and

observes if one of the impacts is used to redirect the

system execution into the malicious code. Since it cap-

tures the intrinsic characteristics of hooking behavior,

this technique is able to identify novel hooks. Moreover,

we devised a semantics-aware impact dependency anal-

ysis method to extract the essential information about

the hooking mechanisms, which is represented as hook

graphs. We developed a prototype, HookFinder, and

conducted extensive experiments using representative

malware samples from various categories. The exper-

imental results demonstrated that HookFinder can cor-

rectly identify the hooking behaviors for all the samples,

and the generated hook graphs provide accurate insights

about their hooking mechanisms.

8 Acknowledgement

We would like to thank our shepherd, Niels Provos,

and the anonymous reviewers for their detailed sugges-

tions and insightful comments.

This material is based upon work partially supported

by the National Science Foundation under Grants No.

0311808, No. 0433540, No. 0448452, No. 0627511,

and CCF-0424422. Partial support is also provided by

the U.S. Army Research Office under the Cyber-TA Re-

search Grant No. W911NF-06-1-0316, and under grant

DAAD19-02-1-0389 through CyLab at Carnegie Mel-

lon. Moreover, this work is also supported in part by

the KoreanMinistry of Information and Communication

(IMC) and the Korean Institute for Information Technol-

ogy Advancement (IITA) under program [2005-S-606-

02, Next Generation Prediction and Response Technol-

ogy for Computer and Network Security Incidents]. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Sci-

ence Foundation.

References

[1] Afxrootkit. http://www.rootkit.com/

project.php?id=23.
[2] BitBlaze: Binary analysis for COTS protection and

malicious code defense. http://bitblaze.cs.

berkeley.edu/.
[3] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song,

and H. Yin. Botnet Analysis, chapter Automatically

Identifying Trigger-based Behavior in Malware. 2007.
[4] J. Butler and G. Hoglund. VICE–catch the hook-

ers! In Black Hat USA, July 2004. http://www.

blackhat.com/presentations/bh-usa-04/

bh-us-04-butler/bh-us-04-butler.pdf.

[5] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:

Automatic extraction of protocol message format using

dynamic binary analysis. In Proceedings of the 14th

ACMConferences on Computer and Communication Se-

curity (CCS’07), October 2007.

[6] Clandestine file system driver. http://www.

rootkit.com/vault/merlvingian/cfsd.

zip.

http://www.rootkit.com/project.php?id=23
http://www.rootkit.com/project.php?id=23
http://bitblaze.cs.berkeley.edu/
http://bitblaze.cs.berkeley.edu/
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/bh-us-04-butler.pdf
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/bh-us-04-butler.pdf
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/bh-us-04-butler.pdf
http://www.rootkit.com/vault/merlvingian/cfsd.zip
http://www.rootkit.com/vault/merlvingian/cfsd.zip
http://www.rootkit.com/vault/merlvingian/cfsd.zip

[7] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and

M. Rosenblum. Understanding data lifetime via whole

system simulation. In Proceedings of the 13th USENIX

Security Symposium (Security’04), August 2004.

[8] M. Costa. Vigilante: End-to-end containment of internet

worms. In Proceedings of the 20th ACM Symposium on

Operating Systems Principles (SOSP’05), October 2005.

[9] J. R. Crandall and F. T. Chong. Minos: Control data at-

tack prevention orthogonal to memory model. In Pro-

ceedings of the 37th International Symposium on Mi-

croarchitecture (MICRO’04), December 2004.

[10] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song.

Dynamic Spyware Analysis. In Proceedings of the 2007

Usenix Annual Conference (Usenix’07), June 2007.

[11] A. Ho, M. Fetterman, C. Clark, A. Watfield, and

S. Hand. Practical taint-based protection using demand

emulation. In EuroSys 2006, April 2006.

[12] Hacker defender. http://www.rootkit.com/

project.php?id=5.

[13] IceSword. http://www.antirootkit.com/

software/IceSword.htm.

[14] X. Jiang, X. Wang, and D. Xu. Stealthy malware de-

tection through vmm-based ”out-of-the-box” semantic

view reconstruction. In Proceedings of the 14th ACM

conference on Computer and Communications Security

(CCS’07), October 2007.

[15] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Antfarm: Tracking processes in a virtual ma-

chine environment. In USENIX Annual Technical Con-

ference, General Track, 2006.

[16] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hid-

den code extractor for packed executables. In Proceed-

ings of the 5th ACM Workshop on Recurring Malcode

(WORM’07), Oct. 2007.

[17] A. Moser, C. Kruegel, and E. Kirda. Exploring multi-

ple execution paths for malware analysis. In Proceed-

ings of the 2007 IEEE Symposium on Security and Pri-

vacy(Oakland’07), May 2007.

[18] Nergal. The advanced return-into-lib(c) exploits

(PaX case study). http://www.phrack.org/

archives/58/p58-0x04.

[19] J. Newsome and D. Song. Dynamic taint analysis for au-

tomatic detection, analysis, and signature generation of

exploits on commodity software. In Proceedings of the

12th Annual Network and Distributed System Security

Symposium (NDSS’05), February 2005.

[20] Offensive computing. http://www.

offensivecomputing.net/.

[21] T. Ormandy. An Empirical Study into the Secu-

rity Exposure to Host of Hostile Virtualized Envi-

ronments. http://taviso.decsystem.org/

virtsec.pdf.

[22] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an

emulator for fingerprinting zero-day attacks. In EuroSys

2006, April 2006.

[23] rootkit.com. http://www.rootkit.com/.

[24] J. Rutkowska. System virginity verifier: Defining the

roadmap for malware detection on windows systems.

In Hack In The Box Security Conference, September

2005. http://www.invisiblethings.org/

papers/hitb05_virginity_verifier.ppt.

[25] J. Rutkowska. Red Pill... Or How To Detect VMM

Using (Almost) One CPU Instruction. http://

invisiblethings.org/papers/redpill.

html, 2006.

[26] J. Rutkowska. Rootkit hunting vs. compromise

detection. In Black Hat Federal, January 2006.

http://www.invisiblethings.org/

papers/rutkowska_bhfederal2006.ppt.

[27] Sony’s DRM Rootkit: The Real Story. http://www.

schneier.com/blog/archives/2005/11/

sonys_drm_rootk.html.

[28] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure

program execution via dynamic information flow track-

ing. In Proceedings of the 11th International Conference

on Architectural Support for Programming Languages

and Operating Systems (ASPLOS’04), October 2004.

[29] TEMU: The BitBlaze dynamic analysis component.

http://bitblaze.cs.berkeley.edu/temu.

html.

[30] UAY kernel-mode backdoor. http://uty.512j.

com/uay.rar.

[31] Vanquish. https://www.rootkit.com/vault/

xshadow/vanquish-0.2.1.zip.

[32] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,

and G. Vigna. Cross-Site Scripting Prevention with Dy-

namic Data Tainting and Static Analysis. In Proceeding

of the Network and Distributed System Security Sympo-

sium (NDSS’07), February 2007.

[33] H. Yin, D. Song, E. Manuel, C. Kruegel, and E. Kirda.

Panorama: Capturing system-wide information flow for

malware detection and analysis. In Proceedings of the

14th ACM Conferences on Computer and Communica-

tion Security (CCS’07), October 2007.

http://www.rootkit.com/project.php?id=5
http://www.rootkit.com/project.php?id=5
http://www.antirootkit.com/software/IceSword.htm
http://www.antirootkit.com/software/IceSword.htm
http://www.phrack.org/archives/58/p58-0x04
http://www.phrack.org/archives/58/p58-0x04
http://www.offensivecomputing.net/
http://www.offensivecomputing.net/
http://taviso.decsystem.org/virtsec.pdf
http://taviso.decsystem.org/virtsec.pdf
http://www.rootkit.com/
http://www.invisiblethings.org/papers/hitb05_virginity_verifier.ppt
http://www.invisiblethings.org/papers/hitb05_virginity_verifier.ppt
http://invisiblethings.org/papers/redpill.html
http://invisiblethings.org/papers/redpill.html
http://invisiblethings.org/papers/redpill.html
http://www.invisiblethings.org/papers/rutkowska_bhfederal2006.ppt
http://www.invisiblethings.org/papers/rutkowska_bhfederal2006.ppt
http://www.schneier.com/blog/archives/2005/11/sonys_drm_rootk.html
http://www.schneier.com/blog/archives/2005/11/sonys_drm_rootk.html
http://www.schneier.com/blog/archives/2005/11/sonys_drm_rootk.html
http://bitblaze.cs.berkeley.edu/temu.html
http://bitblaze.cs.berkeley.edu/temu.html
http://uty.512j.com/uay.rar
http://uty.512j.com/uay.rar
https://www.rootkit.com/vault/xshadow/vanquish-0.2.1.zip
https://www.rootkit.com/vault/xshadow/vanquish-0.2.1.zip

Appendix: Hardware-level Hook Graphs

f83e2faa: call *0x40(%eax)

f5b5c583: mov (%edi), %esi

f5b5c589: lea 0x40(%esi), %eax

f5b5c58c: push %eax
[0xf56f2cc4]=0x81ed3548

f5b5bf13: mov 0xc(%ebp), %esi

806f447f: push %esi
Callee: 0x0 ESP: 0xf56f2ca8

804df993: pop %esi
Callee: 0x0 ESP: 0xf56f2ca8

8054b051: push %esi
Callee: 0xf83c1145 ESP: 0xf56f2c9c

[0xf56f2c38]=0x81ed3548

8054b12f: pop %esi
Callee: 0xf83c1145 ESP: 0xf56f2c9c

f5b5bfcd: mov %eax, (%esi)

f83c115b: mov %eax, (%ecx)
Callee: 0xf83c1145 ESP: 0xf56f2c9c

[0xf56f2cc4]=0x81e563a8

f5b5bfc5: mov 0xc(%ebp), %eax

f5b5bfcd: mov %eax, (%esi)
[0x81ed3548]=0x81e563a8

f5b5bf44: push %edi

f5b5bfcf: pop %edi

[0xf56f2ca0]=0xf56f2cc4

f83c1158: mov 0x8(%ebp), %ecx
Callee: 0xf83c1145 ESP: 0xf56f2c9c

f5b5bf4f: push %eax

f83c115b: mov %eax, (%ecx)
Callee: 0xf83c1145 ESP: 0xf56f2c9c

[0xf56f2c8c]=0x81ed3548

Callee: 0xf83c817d ESP: 0xf56f2cdc

Callee: 0xf83c817d ESP: 0xf56f2cdc

[0xf56f2cec]=0x81ef2218

Callee: 0x0 ESP: 0xf56f2cd4

[0xf56f2cac]=0x81ef2218

f5b5c60d: push %eax

[0xf56f2ce4]=0xf56f2d68

f83c827f: mov 0xc(%ebp), %eax

f83c828c: mov %ebx, (%eax)
Callee: 0xf83c817d ESP: 0xf56f2cdc

f83c828c: mov %ebx, (%eax)
Callee: 0xf83c817d ESP: 0xf56f2cdc

[0xf56f2d68]=0x81dd0f28

f83c829a: mov %ecx, 0x10(%ebx)

[0x81dd0f38]=0x81e95ca8
f5b5c68d: mov 0xfffffffc(%ebp), %eax

f5b5c695: mov 0x10(%eax), %esi

f5b5c511: push %esi
[0xf56f2cd8]=0x81e95ca8

f5b5c5bc: pop %esi

f5b5c6a0: mov 0x10(%esi), %esi

f5b5c511: push %esi
[0xf56f2cd8]=0x81e68d50

f5b5c69a: push %esi

f5b5c513: mov 0x8(%ebp), %edi

8056c91a: mov %edi, %edi

8056c938: push %edi

[0xf56f2ca8]=0x81ef2218

8056c987: pop %edi
Callee: 0x0 ESP: 0xf56f2cd4

Figure 6. Hardware­level hook graph for Uay backdoor

7c919ab4:	mov	%eax,(%esi)
Callee: 0x7c80ac28 ESP: 0x61f814

[0x61f81c]=0x77dd6bf0

7c80ac81:	mov	0xc(%ebp),%eax
Callee: 0x7c80ac28 ESP: 0x61f814

1ae12e0:	mov	%eax,0xfffffffc(%ebp)
[0x61f820]=0x77dd6bf0

1ae12e3:	mov	0xfffffffc(%ebp),%eax

1ae2823:	mov	%eax,0x1ae92d0
[0x1ae92d0]=0x77dd6bf0

1ae2839:	mov	0x1ae92d0,%edx

1ae282a:	push	$0x1ae928c
[0x61f82c]=0x1ae928c

1ae2188:	mov	0x14(%ebp),%edx 1ae21d7:	mov	0x14(%ebp),%ecx

1ae2834:	push	$0x1ae4c22
[0x61f824]=0x1ae4c22

1ae216d:	mov	0xc(%ebp),%edx
1ae283f:	push	%edx
[0x61f820]=0x77dd6bf0

1ae2170:	sub	0x8(%ebp),%edx 1ae21db:	mov	0x8(%ebp),%edx

77dd6bf0:	jmp	0x89d0e032

1ae2173:	sub	$0x5,%edx

1ae2176:	mov	%edx,0xfffffff8(%ebp)
[0x61f810]=0x89d0e02d

1ae217f:	mov	0xfffffff8(%ebp),%ecx

1ae2182:	and	$0xff,%ecx

1ae218b:	mov	%cl,0x1(%edx)
[0x1ae928d]=0x2d

1ae218b:	mov	%cl,0x1(%edx)

1ae1ea0:	mov	(%ecx),%dl

1ae21da:	push	%ecx
[0x61f800]=0x1ae928c

1ae1ead:	mov	0xc(%ebp),%ecx

1ae21de:	push	%edx
[0x61f7fc]=0x77dd6bf0

1ae1ea4:	mov	0x8(%ebp),%eax

1ae1ea7:	add	$0x1,%eax

1ae1eaa:	mov	%eax,0x8(%ebp)
[0x61f7fc]=0x77dd6bf1

1ae1e9a:	mov	0x8(%ebp),%eax

1ae1eb0:	add	$0x1,%ecx

1ae1eb3:	mov	%ecx,0xc(%ebp)
[0x61f800]=0x1ae928d

1ae1e9d:	mov	0xc(%ebp),%ecx

1ae1ea2:	mov	%dl,(%eax)

1ae1ea2:	mov	%dl,(%eax)
[0x77dd6bf1]=0x2d

Figure 7. Hardware­level hook graph for Vanquish

	Introduction
	Problem Statement and Our Approach
	Problem Statement
	Our Approach

	System Design and Implementation
	System Overview
	Impact Analysis Engine
	Semantics Extractor
	Hook Detector
	Hook Analyzer

	Evaluation
	Overview
	Detailed Analysis

	Discussion
	Related Work
	Conclusion
	Acknowledgement

