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In this paper, we present an approach for realizing a safe execution environment (SEE) that
enables users to “try out” new software (or configuration changes to existing software) without
the fear of damaging the system in any manner. A key property of our SEE is that it faithfully
reproduces the behavior of applications, as if they were running natively on the underlying (host)
operating system. This is accomplished via one-way isolation: processes running within the SEE
are given read-access to the environment provided by the host OS, but their write operations
are prevented from escaping outside the SEE. As a result, SEE processes cannot impact the
behavior of host OS processes, or the integrity of data on the host OS. SEEs support a wide
range of tasks, including: study of malicious code, controlled execution of untrusted software,
experimentation with software configuration changes, testing of software patches, and so on. It
provides a convenient way for users to inspect system changes made within the SEE. If these
changes are not accepted, they can be rolled back at the click of a button. Otherwise, the
changes can be “committed” so as to become visible outside the SEE. We provide consistency
criteria that ensure semantic consistency of the committed results. We develop two different
implementation approaches, one in user-land and the other in the OS kernel, for realizing a safe-
execution environment. Our implementation results show that most software, including fairly
complex server and client applications, can run successfully within our SEEs. It introduces low
performance overheads, typically below 10%.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection; H.4.0 [Information
Systems Applications]: General

General Terms: Systems, Security

Additional Key Words and Phrases: Isolation, One-way Isolation

1. INTRODUCTION

System administrators and desktop users often encounter situations where they need to ex-
periment with potentially unsafe software or system changes. A high-fidelitysafe execution
environment (SEE)that can support these activities, while protecting the system from poten-
tially harmful effects, will be of significant value to theseusers. Applications of such SEE
include:
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—Running untrusted software.Often, users run downloaded freeware/shareware or mobile
code. The risk of damage to the user’s computer system due to untrusted code is high,
yet a significant fraction of users seem to be willing to take this risk in order to benefit
from the functionality offered by such code. An SEE can minimize security risks without
negating the functionality benefits provided by such software.

—Vulnerability testing.System administrators may be interested in probing whethertheir
computer systems, in their specific configuration, are susceptible to the latest email virus
or other attacks. A high-fidelity SEE can allow them to perform such testing without the
risk of compromising production systems.

—Software updates/patches.Application of security patches is routinely delayed in large en-
terprises in order to allow time for compatibility and interoperability testing. Such testing
is typically done after shutting down production systems for extended periods, and hence
may be scheduled for weekends and holidays. In contrast, a high-fidelity SEE can allow
testing of updates to be performed without having to shutdown production systems. These
concerns apply more generally to software upgrades or installations as well.

—System reconfiguration. Administrators may need to reconfigure software systems, and
would ideally like to “test out” these changes before deploying them on production sys-
tems. This is currently accomplished manually, by saving backup copies of all files that
may be modified during reconfiguration. An SEE will automate this process, and more-
over, avoid pitfalls such as overlooking to backup some of the modified files.

1.1 SEE Requirements and the Need for New Approach

Consider an untrusted application that scans specified directories for image files and gener-
ates photo album files that are written to the same directories. (Several freeware programs
(e.g., [Picturepages ]) exist that provide this functionality.) The program also generates
thumbnail pictures from these files (for creating index files) and has the ability to mod-
ify/resize these files. Additionally, the program is untrusted, therefore may modify security
critical files of the user (e.g.,/home/joe/.ssh/authorized keys2) . In order to support this
application, an SEE must provide the following features:

—Confinement without undue restrictions on functionality.The untrusted photo album pro-
gram needs to be confined. On one hand, the effects of this program running within an
SEE should not “escape” the SEE and become visible to normal applications running out-
side. Otherwise, one cannot rule out the possibility of thisprogram altering the operation
of other applications running on the same system or elsewhere in the network. For in-
stance, inserting a public key into theauthorized keys2 file in the above example can
enable an attacker (who crafted this program) to login to theuser’s account without requir-
ing the user’s password. The system must therefore alert theuser to such security critical
changes. On the other hand, we cannot disallow file system modifications by the photo
album application; otherwise no album will be created.

—Accurate environment reproduction.For SEEs to be useful in the above application, it is
essential that the behavior of applications be identical, whether or not they operate within
the SEE. Specifically, the album program needs to access photos in the host system. Since
the behavior of an application is determined by its environment (contents of configuration
or data files, executables, libraries, etc.), it is necessary to reproduce, as accurately as
possible, the same environment within the SEE as the environment that exists outside
SEE.
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—Ability to commit results.Once a photo album is successfully generated by this application,
a user would like to retain it. Thus, the SEE must provide a mechanism to “commit” the
results of activities that took place within it, if the user is satisfied with the results. A
successful commit should have the same effect as if all of theoperations carried out within
the SEE actually took place outside.

Most existing approaches for safe execution do not satisfy these requirements. For instance,
sandboxing techniques [Goldberg et al. 1996; Dan et al. 1997; Acharya and Raje 2000; Prev-
elakis and Spinellis 2001; Scott and Davidson 2002; Provos 2003] intercept security-critical
operations made by a program, and disallow those operationsthat violate users’ security poli-
cies. Sandboxing achieves confinement, but does so by severely restricting functionality of
the sandboxed program.

File versioning systems [Santry et al. 1999; Zhu and Chiueh 2003; Muniswamy-Reddy
et al. 2004; Chutani et al. 1992; Quinlan and Dorward 2002; Roome 1991; Soules et al.
2002; Peterson and Burns 2003] can provide rollback capabilities, but they don’t provide a
mechanism to discriminate among changes made by different processes, and hence cannot
support selective rollback of the effects of untrusted process execution. For the same reason,
it is also hard to commit the “net” effect of the observed program back to host environment.

Virtual machines (VMs) and related approaches [Chen and Nobl 2001; Whitaker et al.
2002; Malkhi and Reiter 2000; Chiueh et al. 2000] execute programs in environments iso-
lated from users’ host system, so that access restrictions can be relaxed. As discussed in
detail in our related work section, VM approaches face difficulties in several areas. It is dif-
ficult to reproduce the exact host environment in the VM. VMs also have the difficulty to
isolate changes made to external file systems (such as NFS). Furthermore, tracking changes
made by untrusted processes from within is unreliable as theenvironment in a VM may be
compromised.

The concept ofisolation has been proposed as a way to address the problem of effect
containment for compromised processes in [Jajodia et al. 1998; Liu et al. 2000; Sekar et al.
1998]. Liu et al. [2000] proposedone-way isolationas an effective means to isolate the
effects of running processes from the point they are compromised (or suspected of being
compromised). But they do not consider the full range of applications of safe execution
environment described above. Moreover, their work is focused on high-level protocols for
realizing one-way isolation, and does not consider implementation issues that are central to
our approach, such as application transparency, efficiency, and the subtleties in defining and
implementing consistency criteria. We address these issues and present an efficient and easy-
to-use safe-execution environment calledAlcatrazthat can support the range of applications
discussed above.

1.2 Approach Overview

Our Alcatraz SEE is based on the concept of one-way isolation. Whereas VMs generally em-
ploy two-way isolation between the host environment and theenvironment that exists within
a VM, one-way isolation makes the host environment visible within the SEE. In this way, Al-
catraz processes see the environment of their host system, and hence accurate reproduction
of environment is assured. However, the effects of Alcatrazprocesses cannot escape Alcatraz
and interfere with the operation of processes outside Alcatraz.

In our approach, an SEE is created to run a process whose effects are to be shielded from
the rest of the system. One or more such SEEs may be active on the host OS. Any children
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created by processes within an SEE will also be confined to that SEE, and will share the same
consistent view of system state. Typically, users create a new SEE and carry out their tasks
within it. Our SEE presents users with the changes made within the SEE. Users examine the
changes from the host system, using helper applications, such as image or document viewers,
or arbitrary utility applications. Users can not only access the states inside an SEE, but also
the states in the host system, which is unaffected by the processes in the SEE. For example,
users can compare file modified in an SEE and the same file in the host system to see the
modification details. Finally, if users want to accept the changes made within the SEE, they
can commit the results. The commit process causes the systemstate, as viewed inside the
SEE, to be merged with the state of the host OS. We present consistency criteria aimed at
ensuring the correctness of the results of the commit process.

Two distinct implementation approaches are described in this paper. The first approach
is implemented entirely at the user-level. The resulting system has several benefits from an
end-user perspective. First, it empowers ordinary users (without administrative privileges)
so that they can benefit from safe execution of untrusted code. Second, the absence of OS-
resident components has the added benefit that it may be more readily ported, and more easily
adopted by users that may be concerned about the impact of OS modifications to system sta-
bility. However, in order to achieve these benefits, the approach has to trade-off performance
and flexibility. In particular, it typically introduces overheads of the order of 100%. More-
over, a user-level implementation makes it difficult to accurately reproduce the semantics of
certain operations involving directories, file permissions and ownerships. To overcome these
drawbacks, a complementary approach based on kernel-land implementation is described,
allowing accurate reproduction of isolation semantics, and reducing performance overheads
to under 10%.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 presents an overview of our ap-
proach. Section 3 presents the implementation details of this approach. Specifically, Sec-
tion 3.2 presents the user-land tool that implements this approach, and Section 3.3 describes
our kernel-land approach. Section 4 discusses the criteriaand algorithms for committing
changes made to the file system. A comparison of the two implementations as well as other
aspects of our approach are discussed in Section 5. Section 6provides an evaluation of
the functionality and the performance of our implementation. Related work is discussed
in Section 7, followed by concluding remarks in Section 8. The Alcatraz tool is available
for download athttp://seclab.cs.sunysb.edu/ in the software download section of the
website.

Note to the reviewers. This journal submission is a combined and revised version of
citations [Liang et al. 2003], which described the user-land approach, and [Sun et al. 2005],
which describes a kernel-land approach. In addition to revisions to these papers, section 4 has
been completely rewritten so as to provide a significantly more refined and detailed treatment
of commit criteria. A detailed comparison with virtual machines has also been included.
Additional experimental study has been performed, and the results are included in this paper.

2. OVERVIEW OF APPROACH FOR IMPLEMENTING SAFE EXECUTION ENVI-
RONMENT

The two functions of our SEE are (a) to provide one-way isolation, and (b) to support commit
operations. These two aspects of SEE are described in more detail below.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 5

Isolated Resources

SEE

Redirected Requests

Denied RequestsService 
Proxy 2

Service
Proxy 1

Confinement

Original Operating System

Isolated Program

Request

Allowed Requests

Fig. 1. Architecture of Alcatraz SEE. Alcatraz is a layer between the isolated program and operating system. It uses
restriction and redirection to achieve one-way isolation.

2.1 Achieving One-way Isolation

Figure 1 illustrates the overview of our Alcatraz SEE. Alcatraz is a layer between the iso-
lated program and the operating system, which is based on intercepting and manipulating the
requests made by the isolated program. The primary goal of this isolation layer iseffect con-
tainment:preventing the effects processes in SEE from affecting the operation (or outcome)
of processes executing outside the SEE1. This means that any “read” request (i.e., one that
queries the system state but does not modify it) may be performed by SEE processes. It also
means that “write” requests should not be permitted to keep system state from being affected.
There are two options in this context: one is torestrict the request, i.e., disallow its execution.
The second option is toredirectthe request to a different resource that is invisible outside the
SEE. Once a write request is redirected, it is important thatsubsequent read requests on the
same resource be redirected as well. This is handled by service-specific proxies.

By restriction, we mean that a request is prevented from execution. An error code may
be returned to the process, or the request may be silently suppressed and a success code
returned. In either case, restriction is easy to implement —we need only know the set of
requests that can potentially alter system state. In Alcatraz SEE, restriction is achieved using
theconfinementmodule, as is shown in Figure 1. The main drawback of restriction is that it
will likely prevent applications from executing successfully. For instance, if a program writes
to a file, it expects to get back the same content at a later point in the program when the file
is read. However, an approach based on restriction cannot dothis, and hence most nontrivial
applications will fail to run successfully under such restriction. For this reason, restriction is
a choice of last resort in our approach.

By redirection,we mean that any request that modifies some component of the host en-

1Note that we are interested in confinement [Lampson 1973] from the point of view of system integrity, rather than
confidentiality. As such, we do not deal with issues such as covert channels.
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vironment is instead redirected to a different component that is not accessed by the host OS
processes. Alcatraz SEE handles redirection by service-specific proxies, which redirect all
modifications to the system to components in theisolated resources(shown in Figure 1). For
instance, in the file system proxy, when an SEE process tries to modify a file, a copy of the
original file may be created in a “private” area of the file system, and the modification request
redirected to this copy. Redirection is intended to providea consistent view of system state
to processes in SEE, thereby allowing them to complete successfully.

Redirection can bestatic or dynamic. Static redirection requires the source and target
objects to be specified beforehand. It is ideal for network operations. For instance, one may
statically specify that requests to bind a socket to a portp should be redirected to an alternate
port p′. Similarly, one may specify that requests to connect to a port p on hosth should be
redirected to hosth′ (which may be the same ash) and portp′. By using such redirection,
we can builddistributed SEEs, where processes executing within SEEs on multiple hosts
can communicate with each other. Such distributed SEEs are particularly useful for safe
execution of a network server application, whose testing would typically require accesses by
nonlocal client applications. (Note, however, that this approach for distributed SEEs works
only when all cross-SEE communications take place directlybetween the SEE processes,
and not through other means, e.g., indirect communication through a shared NFS directory.)

Static redirection becomes infeasible if the number of possible targets is too large to be
enumerated in advance. For instance, it is hard to predict the files that may be accessed
by an arbitrary application. Moreover, there are dependencies among requests on different
file objects, e.g., a request to create a file has the indirect effect of changing the contents of
the directory in which the file is created. Simply redirecting an access on the file, without
correspondingly modifying accesses of the directory, willresult in an inconsistent file sys-
tem state. To handle such complexities, our approach supports dynamic redirection,where
the target for redirection is determined automatically during the execution of SEE processes.
However, the possibility of hidden dependencies means thatthe implementation of dynamic
redirection may have to be different for different kinds of objects. That is why redirection
is supported by service-specific proxies. The key challengein implementing such proxies
(including file system proxies and network proxies) is that,even though they buffer cer-
tain requests, they should provide a consistent view of system state to the SEE applications.
Specifically, if an SEE process “writes” to such a proxy and subsequently performs a “read”
request, the proxy should return the result that would have been returned if the write request
had actually been carried out.

In our current implementations, system call interpositionis used to implement restriction
and static redirection. We restrict all modification requests other than those that involve the
file system and the network. In the case of file system requests, all accesses to normal files
are permitted, but accesses to raw devices and special purpose requests such as mounting file
systems are disallowed. In terms of network operations, we permit any network access for
which static redirection has been set up. In addition, accesses to the name server and X-server
are permitted. (In reality, SEE processes should not get unrestricted access to X-server. Our
current implementation solves this problem by statically redirecting X requests to a separate
X-server that nested in the host X-server.)

Dynamic redirection is currently supported in our implementation only for file system
accesses by a proxy layer, called the Isolation File System (IFS). In our user-land imple-
mentation, it is implemented using system call interposition (described in Section 3.2). In
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our kernel implementation, this proxy is implemented at thevirtual file system layer, as de-
scribed in detail in Section 3.3.

2.2 Committing Changes

Modifications made by Alcatraz processes are held in isolated resources. Users can check the
“net” results of SEE processes using their security policies. Compared to traditional sandbox-
ing approaches, Alcatraz SEE facilitates access to a richerclass of information, e.g., detailed
list of modifications, system states before and after execution. If the modifications are desir-
able, they need to be committed to the original operating system, so that they are visible to
other processes. There are two key challenges in committing: one is to ensureconsistencyof
the resulting system state; the other isefficiency— to reduce the space and time overheads
for logging and re-running of operations to a level that provides good performance.

Some systems expertise is required in making these committing decisions. For users with
the expertise, such as system administrators, our SEE allows them to base their decisions
on more details about modifications inside SEE, such as the list of modified resources and
details of each modification. In addition, the system also has an option that prompts users
to select a subset of files from all those that were modified in the SEE and export them to a
specified directory, (e.g., a removable disk) without modifying original system files. In this
way, users keep results of an SEE session without propagating these changes to the main
system.

We now provide a high-level overview of the issues involved in committing results. The
key problem in terms of consistency is that a resource accessed within the SEE may have
been independently accessed outside of the SEE. This corresponds to concurrent access on
the same resource by multiple processes, some within SEE andsome outside. One possi-
ble consistency criterion is the serializability criterion used in databases. Other consistency
criteria may be appropriate as well, e.g., for some text files, it may be acceptable to merge
the changes made within the SEE with changes made outside, aslong as the changes involve
disjoint portions of the file. A detailed discussion of the issues involved in defining commit
criteria is presented in Section 4.1.

There may be instances where the commit criteria may not be satisfied. In this context, we
make the following observations:

—There is no way to guarantee that results can be committed automatically and produce
consistent system state, unless we are willing to delay or disallow execution of some ap-
plications on the host OS. Introducing restrictions or delays on host OS processes will
defeat the purpose of SEE, which is to shield the host OS from the actions of SEE pro-
cesses. Hence this option is not considered in our approach.

—If the results are not committed, then the system state is unchanged by tasks carried out
within the SEE. This means that these tasks can be rerun, and will most likely have the
same desired effect. Hopefully, the conflicts were the results of infrequent activities on the
host OS, and won’t be repeated this time, thus enabling the results to be committed.

—If retrying isn’t an option, the user can manually resolve conflicts, deciding how the files
involved in the conflict should be merged. In this case, the commit criteria identifies the
files and operations where manual conflict resolution is necessary.

As a final point, we note that if a process within an SEE communicated with another pro-
cess executing within a different SEE, then all such communicating SEEs need to be com-
mitted as if they were part of a single distributed transaction. Currently, our implementation
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Fig. 2. Illustration of IFS Layout on Modification Operations

does not support distributed commits. Our approach for committing the results of operations
performed within a single SEE is described in Section 4.

3. IMPLEMENTATION OF IFS

3.1 High-Level Overview

An intuitive way to realize dynamic redirection is to use copy-on-write: when a node in the
original file system is about to be modified, a copy of this nodeis created in a “private”
area of the file system, calledtemporary storage, which is part of the isolated resources in
Figure 1. The write operation, as well as all other subsequent operations on this node, are
then redirected to this copy. By doing so, the modification tothe operating system is actually
cached in the temporary storage, and the main file system remains unchanged. The isolated
program’s view of the file system is a combined view of the mainfile system and the changes
in the temporary storage.

We illustrate the operation of IFS using the example shown inFigure 2. Suppose that ini-
tially (i.e., step 1 in this figure), there is a directorya and a fileb under the root directory in
the main file system, with filesc andd within directorya. Step 2 of this figure illustrates the
result of modifying the file/a/c within the SEE. The copy-on-write operation on/a/c copies
the file /a/c from the main file system to the temporary storage, and remember the relation-
ship between the two files, we call the unchanged directory inits pathstubs. Subsequent
accesses are redirected to this copy in temporary storage.

The third step of Figure 2 shows the result of an operation that creates a file/a/e within the
SEE. Since this changes the directorya by adding another file to it, the directory is marked
changed. Next, the filee is created within the temporary storage under that directory. The
combined view of IFS reflects all these changes: accesses to file /a/c and/a/e are redirected
to the corresponding copies in the temporary storage, whileaccesses to file/a/d will still go
to the version in the main file system.

3.2 User-Level Implementation of IFS

3.2.1 Underlying mechanism.Our user-level IFS is based on a system call interceptor.
The system call interceptor is designed to be easily portable to other Unix variants. The
architecture of our interceptor is based on the design presented in [Jain and Sekar 2000],
which is implemented by Linux’sptrace system call.ptrace mechanism allows one process
to monitor another process. Monitoring capabilities include the ability to intercept system
calls made by the process in SEE, and examination or modification of its virtual memory.
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Fig. 3. Classification of file system related system calls.

3.2.2 Challenges and solutions.The key challenge in implementing the IFS to maintain
a consistent file system view to SEE processes after file system requests that affect other
requests implicitly. This is a challenging task because of the different kinds of file system
objects (regular files, directories, symbolic links, etc.)and the large number of file system
related operations (34 out of the 243 system calls in Linux kernel version 2.4.18). To tackle
this complexity, we aim to reduce the number of cases to be considered by classifying file
system objects and related system calls. We made the following observations about the types
of file system objects that need to be considered: regular files, directories, symbolic links,
and Inodes. (Inodes contain meta data about files, such as permission, ownership etc.) Mod-
ification requests may be different across these file types. For example, regular files are
viewed as a stream of bytes, and can be modified by seeking to any location (expressed as
a byte offset) within the file, and performing awrite system call. Directories, on the other
hand, are viewed as a sequence of directory entries, which are records containing information
about the files within the directory. For symbolic links, theonly modification is that of file
deletion, which is actually a directory modification. Thus,we need only consider three types
of objects of the file system: regular files, directories, andInodes.

Now consider the system call operations on the file system. For the isolation operation, we
need to consider mostly those system calls that are related to path names. System calls that
operate on file descriptors (e.g.,read , write andmmap) can be handled automatically by the
operating system once path-related calls are taken care of.The classification of those calls
are shown in Figure 3, based on how they modify file systems. Next, we describe how IFS is
achieved in each category.

Regular file modifications..Consider a process that opens a filef for writing. A natural
way to isolate the execution of the process is to create a new copyf ′ of f that is stored in the
temporary storage. All future accesses tof , whether they be modifications or reads, will be
redirected tof ′. To enable this redirection, a map associatingf with f ′ is remembered by
the temporary storage. As an optimization, we avoid copyingof files when a file is truncated
to zero length.

As a side effect, copying regular files may change its ownership. Consider the case when
the isolated process modifies a file that it does not own but hasthe write permission. The IFS
will copy the file into the temporary storage before making these changes. During copying
process, the operating system will automatically set the ownership of the copy to that of the
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owner of the isolated process. It would be preferable to change the ownership back to the
owner of the original file, but this may be disallowed by the kernel because the user may not
necessarily be the superuser. Therefore, if there is a change in ownership, then the related
operations, such as permission checking, need to be intercepted and performed in IFS.

Directory modifications..We observe that unlike a regular files, directories are accessed
in a structured manner using specialized directory operations such asmkdir andgetdents .
Thus, our approach is to modify these operations in a manner that achieves copy-on-write
semantics without having to perform actual copies of directory contents. In particular, mod-
ifications to directories, such as creation/deletion of newfiles or directories, are recorded in
the temporary storage, without copying the affected directories.

When the contents of such modified directories are read usingthe getdents operation,
we can apply the modification information recorded by temporary storage to the returned
directory entries. For each returned directory entry, IFS checks whether it is marked as
deleted in the temporary storage. If so, the entry is removedfrom the result. It is possible
that all the entries returned bygetdents may be deleted in this step. If, as a result of this,
no entries are returned to the isolated process, it would conclude that the end of the directory
has been reached. To solve this problem, IFS first retrieves all of the directory entries in
the directory, and applies the above changes to the directory entries. We then append new
directory entries that are recorded in the temporary storage but not present in the rest of the
file system. The result is returned to the SEE process.

Inode modification..Modification can also be made to Inodes which store file systemmeta
data. Inodes are associated with files and cannot be copied separately. Therefore, if the
modification is made to a file that has already been copied to the temporary storage (i.e., just
created or modified file), we can redirect this operation to its counterpart in the temporary
storage. If the modification is made to an unchanged regular file, we can again copy the file
into the temporary storage and proceed as in the previous case. If the Inode to be changed
belongs to a directory, Alcatraz stores the new Inode information in the temporary storage
to avoid copying the directory. One limitation of this approach is that the Inode data is not
visible to the system. Therefore, even if a permission is granted to a process, such as entering
a directory, the operation will still be denied as the original directory is not permitted for
access. This limitation is addressed in our kernel implementation.

Since the latest Inode information is held within the temporary storage, system calls to
access or manipulate meta data, such asstat , need to be intercepted to reflect the side effects
of previous Inode modifications.

The focus of user-level IFS is to facilitate applicability in situations where the user does not
have administrative privileges. However, as is discussed in previous section, the underlying
mechanism has difficulties in maintaining consistency on access privileges of file system
objects. Consequently, some tasks traditionally performed by the kernel were reimplemented
in user-level IFS, and as discussed this can be prone to errors. To address these problems with
the user-land implementation we discuss a kernel-level implementation of IFS, where IFS has
access to internal file system objects.

3.3 Kernel Implementation of IFS

3.3.1 Underlying mechanism.Our kernel IFS is implemented by interposing file system
operations within the OS kernel at the Virtual File System (VFS) layer. VFS is a common
abstraction in Unix across different file systems, and everyfile system request goes through
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this layer. Hence extensions to functionality provided at VFS layer can be applied uniformly
and transparently to all underlying file systems such asext2 , ext3 and NFS.

We realize VFS layer interposition using the stackable file system approach described in
[Zadok et al. 1999]. In effect, this approach allows one to realize a new file system that is
“layered” over existing file systems. Accesses to the new filesystem are first directed to this
top layer, which then invokes the VFS operations provided bythe lower layer. In this way,
the new file system extends the functionality of existing filesystems without the need to deal
with file-system-specific details.

3.3.2 Challenges and solutions.The description in Section 3.1 presented a simplified
view of the file system, where the file system has a tree-structure and consists of only plain
files and directories. In reality, UNIX file systems have a DAG(directed acyclic graph)
structure due to the presence of hard links. In addition, filesystems contain other types
of objects, including symbolic links and special device files. IFS usually does not allow
accesses to special device files. An exception to this rule ismade forpty ’s andtty ’s, as well
as pseudo devices like/dev/zero , /dev/null , etc. In these cases, access is redirected to the
corresponding device files on the main file system. A symboliclink is simply a plain file,
except that the content of the file is interpreted as the path name of another file system object.
For this reason, they don’t need any special treatment. Thus, we need only describe how IFS
deals with hard links (and the DAG structure that can result due to their use.)

When the file system is viewed as a DAG, its internal nodes correspond to directories, and
the leaves correspond to files. IFS does not look into the internal structure of files, and hence
we treat them as leaf objects in the DAG. All nodes in the DAG are identified by a unique
identifier called theInode number. (The inode number remains unique across deletion and
recreation of file objects.) The edges in the DAG arelinks, each of which is identified by
a name and the Inode number of the object pointed by the link. This distinction between
nodes and links in the file system plays a critical role in every aspect of IFS design and
implementation, in particular, the implementation of IFS commit operation as described in
Section 4.2.

IFS layer contains a table that maintains additional information necessary to correctly
support IFS operation. This table, which we call asinode table, is indexed by the inode
numbers of file system objects. It has a field indicating that whether the inode corresponds
an object in temporary storage (temp) or an object the main file system (main). Further, if
it is an object in the temporary storage, the flag indicates whether it is a stub object (stub).
A stub object is simply a reference to the version of the same object stored in the main file
system. In addition, auxiliary information needed for the commit operation is also present,
as described in Section 4.2.

In our IFS implementation, copy-on-write of regular files isimplemented using normal file
copy operations. In particular, when a plain filef is modified for the first time within the
SEE, a stub version of all its ancestor directories is created in temporary storage (if they are
not already there). Then the filef is copied into temporary storage. From this point on, all
references to the original file will be redirected to this copy in temporary storage.

After creating a copy off , we create an entry in the inode table corresponding to the
original version off on the main file system. This is done so as to handle hard links correctly.
In particular, consider a situation when there is a second hard link to the same file object, and
this link has not yet been accessed within IFS. When this linkis subsequently accessed, it will
be referencing a file in the main file system. It is necessary toredirect this reference to the
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copy off in temporary storage, or otherwise, the two links within IFSthat originally referred
to the same file object will now refer to different objects, thereby leading to inconsistencies.

The copy-on-write operation on directories is implementedin a manner similar to that
of files. Specifically, a stub version of the directory’s ancestor nodes are first created in
temporary storage. Next, the directory itself is copied. This copy operation is ashallow
copyoperation, in that only a stub version of the objects listed in the directory are created.
By performing this, the directory in temporary storage willhave the same meta data and
directory content as its main file system counterpart. So theredirected operation performed
on this directory will exhibit the same behavior. In principle, one can use shallow-copy on
files as well, thus avoiding the overhead of copying disk blocks that may not be changed
within the IFS. However, the internal organization of files is specific to particular file system
implementations, whereas we want to make IFS to be file-system independent. Hence files
are chosen to be copied in their entirety.

4. IMPLEMENTATION OF IFS COMMIT OPERATION

At the end of SEE execution, the user may decide either to discard the results or commit
them. In the former case, the contents of IFS are destroyed, which means that we simply
delete the contents of temporary storage and leave the contents of the main file system “as
is.” In the latter case, the contents of the temporary storage need to be “merged” into the
main file system.

When merging the contents of temporary storage and main file systems, note that conflict-
ing changes may have taken place within and outside the IFS, e.g., the same file may have
been modified in different ways within and outside the SEE. Insuch cases, it is unclear what
the desired merge result should be. Thus, the first problem tobe addressed in implementing
the commit operation is that of identifyingcommit criteriathat ensure that the commit oper-
ation can be performed fully automatically (i.e., without any user input) and is guaranteed to
produce meaningful results. We describe possible commit criteria in Section 4.1. Following
this, we describe an efficient algorithm for committing results in Section 4.2.

If the commit criteria is not satisfied, then manual reconciliation of conflicting actions that
took place inside the SEE and outside will be needed. The commit criteria will also identify
the set of conflicting files and operations. At this point, theuser can decide to:

—abort, i.e., discard the results of SEE execution. This course of action would make sense
if the activities performed inside SEE are longer be relevant (or useful) in the context of
changes to the main file system.

—retry, i.e., discard the results of SEE execution, create a new SEEenvironment, redo the
actions that were just performed within the SEE, and then tryto commit again. If the
conflict were due to activities on the host OS that are relatively infrequent, e.g., the result
of a cron job or actions of other users that are unlikely to be repeated, then the retry has a
high probability of allowing a successful commit. (Note that the retry will likely start with
the same system state as the first time and hence will have the same net effect as the first
time.)

—resolve conflicts, i.e., the user manually examines the files involved in the conflict (and
their contents) and determines if it is safe to commit; and ifso, what is the merged con-
tents of the files involved in the conflict. The commit criteria will identify the list of files
involved in the conflict and the associated operations, but the rest of the steps need to be
performed manually.
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In addition to committing all changes made in an IFS to the host system, our approach also
allows users to select a set of modified files, and export them to a specified directory (e.g.,
a removable disk). In this way, users can have the advantage of choosing the modifications
they want without worrying about security or making system-wide changes.

4.1 Commit Criteria

The commit criteria is a set of rules which determine whetherthe results of changes made
within an SEE can be committed automatically, and lead to a consistent file system state.
Since the problem of consistency and committing has been studied extensively in the context
of database transactions, it is useful to formulate the commit problem here in the terms used
in databases. However, note that there is no well-defined notion of transactions in the context
of IFS. We therefore identify the entire set of actions that took place within SEE in isolation
as a transactionTi and the entire set of actions that took place outside of the SEE (but limited
to the actions that took place during the lifetime of the SEE)as another transactionTh.

There are several natural choices for commit criteria:

—Noninterference. This requires that the actions contained inTi be unaffected by the
changes made inTh and vice-versa. More formally, letRS(T ) andWS(T ) denote re-
spectively the set of all filesystem objects read and writtenby a transactionT , respectively.
Then, noninterference requires that

RS(Ti) ∩ WS(Th) = φ

RS(Th) ∩ WS(Ti) = φ

WS(Ti) ∩ WS(Th) = φ

The advantage of this criteria is that it leads to very predictable and understandable results.
Its drawback is that it is too restrictive. For instance, consider a conflict that arises due to
a single filef that is written inTh and read inTi. Also suppose thatf was read within
the SEE after the time of the last modification operation onf in Th. Then it is clear that
Ti used the modified version off in its computation, and hence it need not be aborted, yet
the noninterference criteria will not permitTi to be committed.

—Serializability.This criteria requires that the effect of concurrent transactions be the same
as if they were executed in some serial order, i.e., an order in which there was no inter-
leaving of operations from different transactions. In the context of IFS, there are only two
possible serial orders, namely,TiTh andThTi. Serializability has been used very success-
fully in the context of database transactions, so it is a natural candidate here. However,
its use in SEE can lead to unexpected results. For instance, consider a situation where a
file f is modified inTi and is deleted inTh. At the point of commit, the user would be
looking at the contents off within the SEE and would expect this result to persist after
the commit, but if the serial orderTiTh were to be permitted, thenf would no longer be
available! Even worse, its contents would not be recoverable. Thus, serializability may be
too general in the context of SEE: if results were committed automatically whenTi and
Th were serializable, then there is no guarantee that the resulting system state would be as
expected by the user of the SEE.

—Atomic execution of SEE activities at commit time.If the state of main file system after the
commit were as if all of the SEE activities took place atomically at the point of commit,
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then it leads to a very understandable behavior. This is because the contents of the main
file system after the commit operation will match the contents of the IFS on every file that
was read or written within the IFS. The atomic execution criteria (AEC) is a restriction of
serializability criterion in that only the orderThTi is permitted, and the orderTiTh, which
led to unexpected results in the example above, is not permitted.

Based on the above discussion, we use AEC as the criteria for automatic commits in SEE.
In all other cases, the user will be presented with a set of files and directories that violate the
AEC, and the user will be asked to resolve the conflict using one of the options discussed
earlier (i.e., abort, redo, or manually reconcile).

In addition to providing consistent results, a commit criteria should be amenable to effi-
cient implementation. In this context, note that we don’t have detailed information about the
actions withinTh. In particular, the UNIX file system maintains only the last read time and
write time for each file system object, so there is no way to obtain the list of all read and
write actions that took place withinTh, or their respective timestamps. We could, of course,
maintain such detailed information if we intercepted all file operations on the main file sys-
tem and recorded them, but this conflicts with our design goalthat operations of processes
outside SEE should not be changed in any way. On the other hand, since we do intercept
all file accesses within the IFS, we can (and do) maintain moredetailed information about
the timestamps of the read and write operations that took place within the SEE. Thus, an
ideal commit criteria, from an implementation perspective, will be one that leverages the de-
tailed time stamp information we have aboutTi while being able to cope with the minimal
time stamp information we have aboutTh. It turns out that AEC satisfies this condition, and
hence we have chosen this criteria as the basis for fully automated commits in IFS.

In order to determine whether AEC is satisfied, we need to reason about the timestamps of
operations inTh andTi and show that their orders can be permuted so that all operations in
Th occur before the operations inTi, and that this permutation does not change the semantics
of the operations. We make the following observations in this regard:

—Any changes made within the SEE are invisible on the main filesystem, so the results of
operations inTh would not be changed if allTi operations were delayed to the point of
commit.

—A read operationR(f) performed inTi can be delayed to the point of commit and still
be guaranteed to produce the same results, provided the target f was unchanged between
the timeR was executed and the time of commit. This translates to requiring that the
last modification time off in the main file system precede the timestamp of the first read
operation onf in Ti.

—The results of a write operationW (f) performed inTi is unaffected by any read or write
operation inTh, and hence it can be delayed to commit time without changing its seman-
tics.

Based on the observations, we conclude that AEC is satisfied if:

the earliest read-time of an object within the IFS occurs after the last modifica-
tion time of the same object on the main file system.

Note that the latest modification time of an object on the mainfile system is given by the
mtime and ctime fields associated with that object. In addition, we need to maintain the
earliest read-time of every object within the IFS in order toevaluate this criteria.
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A slight explanation of the above criteria is useful in the context of append operations
on files. Consider a file that is appended by an SEE process is subsequently appended by
an outside process. Both appends look like a write operation, and hence the above commit
criteria would seem to indicate that it is safe to commit results. But if this were done, the
results of the append operation performed outside IFS wouldbe lost, which is an unexpected
result. Clearly, if the SEE process were run at the time of commit, then no information would
have been lost. However, this apparent problem is clarified once we realize that an append
operation really involves a read and then a write. Once this is taken into account, a conflict
will be detected between the time the file was read within IFS and the time it was modified
outside, thereby causing the AEC criteria to be violated. More generally, whenever a file is
modified within IFS without completely erasing its originalcontents (which is accomplished
by truncating its length to zero), we treat this as a read followed by a write operation for the
purposes of committing, and handle the above situation correctly.

4.1.1 Improvements to AEC.The above discussion of AEC classifies operations into two
kinds: read and write. The benefit of such an approach is its simplicity. Its drawback is that
it can raise conflicts even when there is a meaningful way to commit. We illustrate this with
two examples:

—System log files are appended by many processes. Based on earlier discussion about ap-
pend operations on files, the AEC criteria won’t be satisfied whenever an SEE process
appends an entrye1 to the log file and an outside process subsequently appends another
entrye2 to the same file. Yet, we see that the results can easily be merged by appending
bothe1 ande2 to the log file.

—Directories close to the root of the file system are almost always examined by SEE process
as part of looking up a file name in the directory tree. Thus, ifany changes were to be
made in such directories by outside processes, it will lead to AEC being violated. Yet, we
see that a name lookup operation does not conflict with a file creation operation unless the
name being looked up is identical to the file created.

These examples suggest that AEC will permit commits more often if we distinguished among
operations at a finer level of granularity, as opposed to treating them as read and write oper-
ations. However, we are constrained by the fact that we don’thave a complete record of the
operations executed by outside processes. Therefore, our approach is to try toinfer the oper-
ations by looking at the content of the files. In particular, letfo denote the (original) content
of a file system object at the point it was copied into temporary storage, andfh andfi denote
the content of the same file in the main file system and the IFS atthe point of commit. We
can then compute the differenceδ

f
h betweenfo andfh, and the differenceδf

i betweenfo and
fi. From these differences, we can try to infer the changes thatwere made within and outside
SEE. For instance, if bothδf

h andδ
f
i consist of additions to the end of the file, we can infer

that append operations took place, and we can apply these differences tofo.
In the case of directories, the situation is a bit simpler. Due to the nature of directory

operations,δf
h will consist of file (or subdirectory) creation and deletionoperations. LetFh

denote the set of files created or deleted inδ
f
h , and letFi be the set of names in this directory

that were looked up inTi. This information, as well as the time of first lookup on each of
these names, are maintained within the IFS. LetFc = Fh ∩ Fi. Now, we can see that the
AEC criteria will be satisfied if either one of the following conditions hold:

—Fc = φ, or
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—the modification time offo precedes all of the lookup times on any of the files inFc.

In the first case, none of the names looked up (i.e., “read”) within the SEE were modified
outside, thus satisfying AEC. In the second case, conflicts are again avoided since all of
the lookups on conflicting files took place after any of the modification operations involving
them in the main file system.

We point out that inferring operations from the state of the file system can be error-prone.
For instance, it is not possible to distinguish from system state whether a filea was deleted
or if it was first renamed intob and then deleted. For this reason, we restrict the use of this
approach to log files and directories. In other cases, e.g., updates of text files, we can use this
technique with explicit user input.

4.2 Efficient Implementation of Commit

After making a decision on whether it is safe to commit, the next step is to apply the changes
to the main file system. One naive solution is to maintain a complete log of all successful
modifications operations that were performed within the SEE, and replay them on the main
file system at the point of commit. This approach has the benefit of being simple and be-
ing correct in terms of preserving the AEC semantics. However, its drawback is that it is
inefficient, both in terms of space and time. In the worst case, the storage overhead can be
arbitrarily high. For instance, consider an application that creates and deletes many (tempo-
rary) files. In this case, a log-based approach will need to store all information about the write
operations that were performed, including those on files that were subsequently deleted.

We notice that the desired file system state is already accumulated in the temporary storage
of the SEE. It saves both time and space by simply copying themover to the host system.
However, this simple solution will treat a hard link as a standalone file. Therefore, we need
to treat links separately. For files, the commit action used in our approach involves simply
renaming (or copying) the file into the main file system. For operations related to links, it
records a minimal set of link-related operations that captures the set of links associated with
each file system object. In this sense, one can think of the approach as state-based, that main-
tains “condensed” logs that were discussed above, where redundant information is pruned
away. For instance, there is no need to remember operations on a file if it is subsequently
deleted. Similarly, if a file is renamed twice, then it would be enough to remember the net ef-
fect of these two renames. To identify such redundancies efficiently, our approach partitions
the logs based on the objects to which they apply. This log information is kept in the inode
table described earlier.

Operations that modify the contents of a file or change metadata (such as permissions)
on any file system object are not maintained in the logs, but simply applied to the object.
In effect, the state of the object captures the net effect of all such operations, so there is no
need to maintain them in a log. Thus, only information about file or directory creation and
deletion, and those that concern addition or removal of links are maintained in the log. In
addition, to simplify the implementation, we separate the effects of creating or deleting file
system objects from the effect of adding or deleting links. This means that the creation of
a file would be represented in our logs by two operations: one to create the file object, and
another to link it to the directory in which the object is created. Similarly, a rename operation
is split into an operation to add a link, another to remove a link, and a third (if applicable)
to delete the file originally referenced by the new name. As inprevious sections, file objects
involved in these operations are identified by inode numbersrather than path names.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 17

Specifically, the log contains one of the following operations:

—createanddeleteoperations denote respectively the creation of a file or a directory, and
are associated with the created file system object.

—addlinkandrmlink operations denote respectively the addition and deletion of a link from
a directory to a file system object. These operations are associated with the file system
object that is the target of the link, and have two operands. The first is the inode number
of the parent directory and the second is the name associatedwith the link.

The effect of some of these operations is superseded by otheroperations, in which case
only latter operations are maintained. For instance, a delete operation supersedes a create
operation. An rmlink operation cancels out a preceding addlink with the same operands.

In addition to removing redundant operations from the logs,we also reorder operations
that do not interfere with each other in order to further simplify the log. In this context,
note that two valid addlink operations in the log associatedwith any file system object are
independent. Similarly, any addlink operation on the object is independent of an rmlink
operation. (Both these statements are true only when we assume that operations that are
superseded or canceled by others have already been removed from the log.)

Based on this discussion, we can see that a condensed log associated with a file system
object can consist of operations in the following order:

—zero or one create operation. Since the file system object does not exist before creation,
this must be the first operation in the log, if it exists.

—zero or more rmlink operations. Note that multiple rmlink operations are possible if the file
system object was originally referenced by multiple links.Moreover, the parent directories
corresponding to these rmlink operations must all have existed at the time of creation of
SEE, or otherwise an addlink operation (to link this object to the parent directory) must
have been executed before the rmlink. In that case, the addlink and rmlink operations
would have cancelled each other out and hence won’t be present in the condensed log.

—zero or more addlink operations. Note that multiple addlink operations are possible if
the object is being referenced by multiple links. Also, there must be at least one addlink
operation if the first operation in the log is a create operation.

—zero or one delete operation. Note that when a delete operation is present, there won’t be
any addlink operations, but there may be one or more rmlink operations in the log.

Given the condensed logs maintained with the objects in the inode table, it seems straight-
forward to carry out the commit operation. The only catch is that we only have the relative
ordering of operations involving a single file system object, but lost information about the
global ordering of operations across different objects. This raises the question as to whether
the meanings of these operations may change as a result. In this context, we make the fol-
lowing observations:

—Creation and deletion operations do not have any dependencies across objects. Hence the
loss of global ordering regarding these operations does notaffect the semantics of these
operations.

—Rmlink operation depends upon the existence of parent directory, but nothing else. This
means that as long as it is performed prior to the deletion of parent directory, its meaning
will be the same as is it was executed in the global order in which it was executed originally.

ACM Journal Name, Vol. V, No. N, Month 20YY.



18 ·

—Addlink operation depends on the creation of the parent directory (i.e., the directory in
which the link will reside) and the target object. Moreover,an addlink operation involving
a given parent directory and link name has a dependency on anyother rmlink operation
involving the same parent directory and link names. This is because the addlink operation
cannot be performed if a link with the same name is present in the parent directory, and
the execution of rmlink affects whether such a link is present. Thus, the effect of addlink
operations will be preserved as long as any parent directorycreation, as well as relevant
rmlink operations are performed before.

Among operations that have dependency, one of the two possible orders is allowable. For
instance, an rmlink operation cannot precede the existenceof either the parent directory or
the target of the link. Similarly, an addlink operation cannot precede an rmlink operation
with the same parent directory and name components. (Recallthat we have decomposed a
rename operation into rmlink (if needed), addlink and an object delete (if needed) operations,
so it cannot happen that an addlink operation is invoked on a parent directory when there is
already another link with the same name in that directory.) This means that even though
the global ordering on operations has been lost, it can be reconstructed. Our approach is to
traverse the file system within the temporary storage, and combine the condensed logs while
respecting the above constraints, and then execute them in order to implement the commit
step.
Atomic Commits.As mentioned before, the committing of modifications shouldbe done
atomically in order to guarantee file system consistency. The natural way to do atomic op-
erations is through file-locking: to prevent access to all the file system objects that are to be
modified by the committing process. We use Linux mandatory locks to achieve this. Imme-
diately before the committing phase, a lock is applied to thelist of to-be-committed files, so
that other processes do not gain access to these files. Only when the committing is completely
done, the locks on these files are released.

5. DISCUSSION

5.1 Implementing Restriction at System Call Layer.

The actions of SEE processes are regulated by a policy enforcement engine that operates
usingsystem call interposition. This enforcement engine generally enforces the following
policies in order to realize SEEs:

—File accesses.Ensure that SEE processes can access only the files within theIFS. Ac-
cess to device special files are not allowed, except for “harmless” devices liketty ’s and
/dev/null .

—Network access.Network accesses for which an explicit (static) redirection has been set
up are allowed. The redirection may be to another process that executes within a differ-
ent SEE, or to an intelligent proxy for a network service. (Note that network file access
operations do not fall in this category — they are treated as file operations.)

—Interprocess communication (IPC).IPCs are not allowed to prevent an SEE process from
affecting host processes.

—Signals and process control.A number of operations related to process control, such as
sending of signals, are restricted so that a process inside an SEE cannot interfere with the
operation of outside processes.
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—Miscellaneous “safe” operations.Most system calls that query system state (timers and
clocks, file system statistics, memory usage, etc.) are permitted within the SEE. In addi-
tion, operations that modify process-specific resources such as timers are also permitted.

—Privileged operations.A number of privileged operations, such as mounting file systems,
changing process scheduling algorithms, setting system time, and loading/unloading mod-
ules are not permitted within SEE.

Note that the exact set of rules mentioned above may not suit all applications. For instance,
one may want to disallow all network accesses for an untrusted application, but may be will-
ing to allow some accesses (e.g, DNS and WWW) for applications that are more trusted.
To support such customization, we use a high-level, expressive policy specification language
called BMSL [Sekar and Uppuluri 1999; Uppuluri 2003] in our implementation. This lan-
guage enables convenient specification of policies that canbe based on system call names as
well as arguments. The kinds of policies that can be expressed include simple access control
policies, as well as policies that depend on history of past accesses and/or resource usage. In
addition, the language allows response actions to be launched when policies are violated. For
instance, it can be specified that if a process tries to open a file f , then the request should be
redirected to open another filef ′. Efficient enforcement engines are generated by a compiler
from these policy specifications. More details about this language and its compiler can be
found in [Uppuluri 2003].

In our experience, we have been able to specify and enforce policies that allow a range of
applications to function without raising exceptions, and the experimentation section describes
some of our experiences in this regard.

5.2 Support for Network Operations.

Support for network access can be provided while ensuring one-way isolation semantics in
the following cases:

—access to services that only provide query (and no update) functionality, e.g., access to
domain name service and informational web sites, can be permitted by configuring the
enforcement engine so that it permits access to certain network ports on certain hosts.

—communication with processes running within other SEEs can be supported by redirecting
network accesses appropriately. This function is also provided by the enforcement engine.

—accesses to any service can be allowed, if the access is madethrough an intelligent proxy
that can provide isolation semantics.

Currently, our implementation supports the first two cases.Use of distributed SEEs provides
an easy way to permit isolated process to access any local server — one can simply run
the server in isolation, and redirect accesses by the isolated process to this isolated server.
However, for servers that operate in a different administrative domain, or servers that in turn
access several other network functions, running the serverin isolation may not always be
possible. In such cases, use of an intelligent proxy that partially emulates the server function
may be appropriate.

Intelligent proxies may function in two ways. First, they may utilize service-specific
knowledge in filtering requests to ensure that only “read” operations are passed on to a server.
Second, they may provide some level of support for “write” operations, while containing the
effects within themselves, and propagating the results to the real server only at the point of
commit. For instance, an email proxy may be implemented which simply accepts email for
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delivery, but does not actually deliver them until commit time. Naturally, such an approach
won’t work in the case when a response to an email is expected.

Another limitation of our current implementation is that itdoes not provide support for
atomic commits across distributed SEEs.

5.3 User Interface.

Typically, an SEE is created with an interactive shell running inside it. This shell is used
by the user to carry out the tasks that he/she wishes to do inside the SEE. At this point, the
user can use arbitrary helper applications to analyze, compare, or check the validity of the
results of these tasks. For instance, if the application modifies just text files, utilities like
diff can point out the differences between the old and new versions. If documents, images,
video or audio files are modified, then corresponding document or multimedia viewers may
be used. More generally, users can employ the full range of file and multimedia utilities or
customized applications that they use everyday to examine the results of SEE execution and
decide whether to commit.

Before the user makes a final decision on committing, a compact summary of files modified
within the SEE is provided to the user. If the user does not accept the changes, she can just
roll them back at a click of button. If she accepts the changes, then the commit criteria is
checked. If it is satisfied, then the commit operation proceeds as described earlier. If not, the
user may still decide to proceed to commit, but this is supported only in certain cases. For
instance, if the whole structure of the file system has been changed outside the SEE during its
operation, there won’t be a meaningful way to commit. For this reason, overriding of commit
criteria is permitted only when the conflict involves a plainfile.

Optionally, the user can use a shell that has access to the same isolation context as the
untrusted process, and also has access to the original file system. Moreover, the children
of this shell are permitted to access X-windows, so that arbitrary helper applications (e.g.,
image viewers) can be launched by the user to view the modifiedfiles.

5.4 Attacks on SEEs

Attacks by modifying helper application input.Recall that SEEs may be used to run untrusted
and/or malicious software. In such cases, additional precautions need to be taken to ensure
that this software does not interfere with the helper applications, subverting them into pro-
viding a view of system state that looks acceptable to the user. For instance, the untrusted
process may interfere with the execution of the helper application. One way for the untrusted
program to accomplish this is to insert an alias into the.bashrc or a similar shell startup
file, and have the untrusted program execute its own version of the helper application (which
presumably will present false results to the user). The above situation illustrates the need
to ensure that untrusted processes cannot interfere with the operation of helper application
processes, or modify the executables, libraries or configuration files used by them. To en-
sure this, helper applications can be run outside of the SEE,but having a read-only access
to the file system view within the IFS using a special path name. This approach ensures that
the helper application gets its executable, libraries and config files from the host file system
which is unaffected. Another advantage of doing this is thatany modifications to the system
state made by helper applications do not clutter the user interface that reports file modifica-
tions that were carried out within the SEE. (While it may seemthat helper applications are
unlikely to modify files, this is not true. For instance, running the bash shell causes it to
update the.bash history file; running a browser updates its history and cache files; and so
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on.)
Attacks on system call interception.System call interception techniques can be points of

targets of subversion due to some of the pitfalls[Garfinkel 2003] in implementation. The user-
level interposition approach is more vulnerable to attacksthrough race conditions, which are
addressed as follows.

—Rogue processes may cause the interceptor to terminate. A malicious process may try to
terminate the process that is monitoring it. For instance, it can send a kill signal to the
monitoring process. However, this must again be done through a system call, which will
be intercepted and aborted by the monitoring process.

—Fork/clone race condition. When a monitored process executes afork system call, the
child process is not traced automatically. The monitoring process must explicitly request
tracing of the child process by invokingptrace with the child PID (process identifier) as
an argument. However, the child PID is unavailable until thefork system call returns to
the parent. By then, it is possible that the child process mayhave started running, and
executed system calls that the monitoring process would notpermit. To solve this problem
we adopt a clever trick that was originally devised in thestrace [Strace ] program. A
description of this idea can be found in [Liang et al. 2003].

—Argument race condition. There is a delay between the time when the arguments of a
system call is checked by the monitoring process and the timewhen the arguments are
actually read by the kernel. If the arguments are stored in a memory region shared by sev-
eral processes or threads, it is possible for these processes/threads to modify the arguments
during that time delay. We address this problem by moving security-critical arguments to
a random location on the stack [Jain and Sekar 2000]. In orderfor the attack to succeed
in spite of this change, collaborating threads (or processes) need to scan the entire stack
to find the location where the argument is stored, and this scan must be completed within
the short interval between the time when arguments are checked by the monitoring process
and the time they are used by the kernel. If the random number is chosen over a reasonably
large range, e.g.,107 or 108, then the likelihood of successful attacks becomes very small.

A completely in-kernel based approach does prevent some of these vulnerabilities from aris-
ing in the first place (such as argument copying related race conditions), and that is being
used in our kernel land approach.

Attacks through resource exhaustion.Another point of attack may be through exhaustion
of resources used by the SEE. For instance, SEEs make use of temporary storage to save the
modified/created version of files, directories, etc. Since this temporary storage is itself a part
of the main file system, there is a potential chance for attacks to intentionally exhaust the disk
space resources on a system. In general, such resource exhaustion attacks are usually dealt
with resource usage control or resource accounting. In the particular instance of the above
attack, a quota can be allocated for temporary storage and whenever disk space overuse
occurs, the user will be issued a warning. Our policy specification language [Sekar and
Uppuluri 1999; Uppuluri 2003] is capable of specifying suchresource usage policies.

Attacks through kernel vulnerability.Alcatraz relies on the underlying operating system
to serve redirected requests, and assumes its interface to the operating system is robust. If
the operating system kernel that Alcatraz runs on has a vulnerability, a malicious program
can exploit it to escape the SEE environment. This is true forall isolation approaches, which
assume their lower layer services to be robust. If the code implementing devices of vir-
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tual machines contains vulnerabilities, they can be exploited to escape the isolation environ-
ment [Ormandy ]. Similarly, when using our approach, no guarantees about integrity can be
made when the lower layer is already compromised [King et al.2006]. In this case, the host
system cannot detect malicious actions of the layer beneathit. Therefore, the host system
running Alcatraz SEE relies on a clean lower layer kernel with the latest patches that address
known vulnerabilities.

Detecting SEE Environment.Our SEE is not designed to be undetectable, i.e., it is pos-
sible for an untrusted program to detect that it is running inan SEE. However, this doesn’t
affect our goal of protecting system integrity. If a malicious program detects the SEE and
don’t show its malicious behavior, it cannot harm the host system even after its results are
committed. However, users should never trust a program based on its behavior in an SEE,
which is not designed to “certify” untrusted programs. An untrusted program should never
be executed outside an SEE.

6. EVALUATION

6.1 Implementation and Evaluation Environments

The user-land version of Alcatraz was implemented on the Linux operating system [Alcatraz
]. The implementation has been tested on Red Hat Linux 7.2 andRed Hat Linux 8.0 distribu-
tions. The performance figures given below were obtained on aPC running Red Hat Linux
7.2 on a 1.7GHz P4 processor with 1GB memory.

The in-kernel version of Alcatraz was implemented in the Linux operating system kernel
version 2.4.18-3. Performance results reported in this paper were obtained from a laptop
running Red Hat Linux 7.3 with a 1.0GHz AMD Athlon4 processor, 512MB memory and a
20GB, 4200rpm IDE hard disk.

6.2 Evaluation of Functionality

Untrusted applications.We describe two applications here: a file renaming utility free-
ware calledrta [Tiilikainen ], which traverses a directory tree and renames a large number
of files based on rules specified on the command line, and a photo album organizer freeware
calledpicturepages [Picturepages ]. These applications ran successfully within our SEE.
Our implementation includes a GUI that summarizes files modified in the SEE so as to sim-
plify user’s task of deciding whether the changes made by theapplication are acceptable.
Using this GUI, we checked that the modifications made by these applications were as in-
tended: renaming of many files, and creation of several files and/or directories. We were then
able to commit the results successfully.

To simulate the possibility that these programs could be malicious, we inserted an attack
into picturepages that causes it to append a new public key to.ssh/authorized keys . (This
attack would enable the author of the code to later log into the system on whichpicturepages

was run.) Using our GUI, it was easy to spot the change to this file. The run was aborted,
leaving the file system in its original state.

Our user-level implementation was tested with Picturepages and we observed similar re-
sults. Another application that we tested wasmpls , which takes a list of mp3 files and creates
a playlist sorted by artist, album, track, or title on the standard output. A directory containing
various mp3 files was used as the input. After the program finished execution, the user-
interface presented a report that summarized that no changes were made to the file system.
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Malicious code.Email attachments and WWW links are a common source of viruses and
other malware. We used an SEE to protect systems from such malware. Specifically, we
modified the MIME type handler configuration file used by Mozilla so that executables, as
well as viewers launched to process documents (e.g.,ghostscript andxpdf ) fetched over
the Internet, were run within SEE. We fetched sample malicious PostScript and Perl code
over the network using this approach. This code was executedinside the SEE. Using our
GUI, we were able to see that these programs were performing unexpected actions, e.g.,
creating a huge file in the user’s home directory. These actions were aborted. Also, recently,
there are several image flaw exploits (JPEG virus) that have captured the attention of many
researchers. Running such image viewers inside an SEE will help eliminate this potential
danger, because any malicious activity from the exploits will be isolated from affecting the
main system.

Some kinds of malicious code are written to recognize typical sandbox environments, and
if so, not display their malicious behavior. This can cause auser to develop trust in the
code and then execute it outside of sandbox, when the malcodewill deliver its payload.
With our approach, we point out that running the code inside SEE does not incur significant
inconvenience for the user, thereby making it easy for the user to always use it. In this case,
the code will always display benign behavior.

Software installation.Another experiment performed a trial installation ofmozilla browser.
During the installation, an incorrect directory name/usr/bin was chosen as the location for
installation, instead of the default directory/usr/local/mozilla . Under normal circum-
stances, this causes Mozilla to copy a number of files into/usr/bin , thereby “polluting”
the directory. After running the program in an SEE, the user interface indicated that a large
number of files (some are non-executables) were added to/usr/bin , which was not desir-
able. Aborting this installation, we ran the installation program a second time, this time with
/usr/local/mozilla as the location for installation. At the end of installation, we restarted
the browser, and visited several sites to make sure that the program worked as expected. (For
this experiment, the system call restriction layer was modified to allow all WWW accesses.)
Finally, we committed the installation, and from that pointon, we were able to use the new
installation of the browser successfully, outside of SEE.

We also tested the user-land implementation with the same browser installation. The pro-
gram modified three configuration files of a previous version of mozilla and installed all files
into a new directory. All these changes were captured by our tool and reported through the
user interface.

Upgrading and testing a server.Specifically, we wanted to upgrade our web server so
that it can support SSL. We started a command shell under SEE,and used it to upgrade the
apache software installation. We then ran the new server. Toenable it to run, we used static
redirection for network operations, so that a bind operation to port 80 was redirected to port
3080. We then ran a browser that accessed this server by connecting to this port. We verified
that the new server worked correctly. Meanwhile, the original server was still accessible to
every one. Thus, SEE allowed the software upgrade to be tested easily and conveniently,
without having to shutdown the original server.

After verifying the operation of the new server, we attempted to commit the results. Un-
fortunately, this produced conflicts on some files such as theaccess and error log files used
by the server. We chose to ignore updates to such output files that were made within the SEE,
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Fig. 5. Performance Results for In-kernel Implementation

and commit only the rest of the files, which could be done successfully.
In all examples in the above categories, the isolation operation guaranteed the safety of the

user’s resources, as well as provided the convenience of concise summaries on the outputs of
these executions.

6.3 Implementation Performance Results

In the results reported below, the primary metric was elapsed time.
For the user-land and in-kernel system performance evaluations, we considered the fol-

lowing common classes of examples:

—Utility programs. In this category, we studiedghostview and tar utilities. Specifically,
we ran ghostview on a 31M file, with no file modification operations; andtar to generate
a tarball from a 26M directory, and the only modification operations involved was the
creation of this archive. From Figure 5, we can see a 3-12% overhead incurred for such
applications for in-kernel implementation, while higher overhead (30-80%) overhead for
user-land implementaion from Figure 4.

—Servers. We measured the performance overhead for the two implementations on the
Apache web server using WebStone [Webstone ], a standard webserver benchmark. We
used version 2.5 of this benchmark, and ran it on a separate computer that is connected
to the server through a 100Mbps network. We ran the benchmarkwith two, sixteen and
thirty clients. In the experiments, the clients were simulated to access the web server
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Log-based Commit State-based Commit
Time Time Speedup

ghostview 0.03 0.03 1
tar 0.14 0.03 4.7

postmark 225 0.07 3214.3
Am-utils 16.9 0.35 48.3

Fig. 6. Comparison for Log-based Commit and State-based Commit. All numbers are in seconds.

concurrently. They randomly fetch html files whose size is from 500 bytes to 5M. The
benchmark was run for a duration of 30 minutes, and the results were averaged across
ten such runs. The results are shown in Figure 4 and Figure 5 for two implementations.
On average, in-kernel implementation incurred a 2% degradation and the degradation for
user-land implementation is around 40%.

—File system benchmarks.We usedPostmark [Katcher 1997] andAm-Utils [Pendry et al.
] benchmarks to get the benchmark data for IFS. Postmark is a file system benchmark to
measure the performance for file system used by Internet applications, such as email. In
this experiment, we configuredPostmark to create 500 files in a file pool, with file sizes
ranging from 500 bytes to 500KB. A total of 2000 file system operations were performed.
In total, 1515 files were created, 1010 files read, 990 file written, and 1515 files deleted.
The tests were repeated ten times. Overall, a 18% performance degradation is observed
for in-kernel implementaiton, while 34% degradation on user-land implementation, and
commit overheads for both are near zero.Am-Utils is a CPU-intensive benchmark result
by building the Am-Utils package, which contains 7.6M linesof C code and scripts. The
building process creates 152 files and 19 directories, as well as 6 rename and 8 setattr
operations. We ran this experiment in both original file system and IFS. The results, shown
in Figure 4 and Figure 5, indicate a low isolation overhead ofunder 2% for in-kernel
implementation and around 60% overhead for the user-land counterpart, and they both
incurred a negligible commit overhead.

In addition, we also collected results in Figure 6 to show theefficiency of our state-based
commit approach. An implementation that used log based committing was compared with
our state based committing implementation, and the performance of both of the approaches
were compared for applications such astar , postmark andAm-utils . The results project the
advantage of using a state based commit approach, particularly illustrating the advantage of
having accumulative effects for file objects. For instance,the large number of temporary files
created then deleted in Am-utils compilation and all the files created then deleted in Postmark
execution, are not considered in the committing stage as candidates, while log-based commit
still needs to perform the whole set of operations (e.g. write) to all these files, so there is a
significant difference between the two approaches in terms of commit time.

7. RELATED WORK

7.1 Sandboxing Approaches

Sandboxing based approaches [Goldberg et al. 1996; Dan et al. 1997; Acharya and Raje
2000; Prevelakis and Spinellis 2001; Scott and Davidson 2002; Provos 2003] involve observ-
ing a program’s behavior and blocking actions that may compromise the system’s security.
Safe Virtual Execution (SVE) [Scott and Davidson 2002] usesSoftware Dynamic Transla-
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tion, a technique for modifying binaries as they execute, isused to implement sandboxing.
Systrace [Provos 2003] is a sandboxing system that notifies the user about all system calls
that an application tries to execute and then uses the response from the user to generate a pol-
icy for the application. SoftwarePot [Kato and Oyama 2003] incorporates a secure software
circulation model that confines the behavior of the untrusted program. In this case, the soft-
ware to be run is encapsulated with a file system. The user mustencapsulate the complete list
of the file system resources needed by the program in order to make it execute successfully.
Furthermore, all the operations to the files are confined to the “pot” archive.

The main drawback of sandboxing based approaches is the difficulty of policy selection,
i.e, determining what actions are permissible for a given piece of software. Note that ma-
licious behavior may not only involve accessing unauthorized resources, but also accessing
authorized resources in unauthorized ways. For instance, aprogram that creates a compressed
version of a file may instead create a file that contains no useful data, which is equivalent to
deleting the original file. It is unlikely that a practical system can be developed that can allow
users to conveniently state policies that allow write access to the file while ensuring that the
file is replaced with its compressed version. In contrast, anSEE permits manual inspection,
aided by helper applications, to be used to determine if a program behaved as expected. This
approach is much more flexible. Indeed, it is hard to imagine that tasks such as verifying
whether a software package has been installed properly can even be formally specified using
any sandbox-type policy.

Another technique is to extend sandboxing by allowing operations to be disallowed silently,
i.e., by returning a success code to the program [Sekar et al.1998; Fakebust ]. The goal here
is deception, i.e., making a malicious program believe thatit is succeeding in its actions so
as to observe its behavior. In our terminology, these approaches use restriction rather than
redirection. As we observed earlier, use of restriction is likely to break many benign applica-
tions, as well as alert malicious applications very quicklyto the effect that their actions are
not succeeding. For instance, if a write operation is silently suppressed, the application can
easily detect this by reading back the contents.

7.2 Two-way Isolation Approaches

Several approaches including those that involve virtual machines employ the idea oftwo-
way isolation for security. The “playground” approaches developed for Java programs in
[Malkhi and Reiter 2000; Chiueh et al. 2000] realizes two wayisolation by running un-
trusted programs on a physically isolated system, while their display is redirected to the
user’s desktop. An important point to note here is that the file system on the user’s com-
puter cannot directly be accessed on the playground system.Covirt [Chen and Nobl 2001],
Denali [Whitaker et al. 2002] and Bochs [Bochs ] are researchefforts that support running
applications inside two-way isolated virtual machines. Commercial virtual machine soft-
ware such as VMWare [VMWare ] and VirtualPC [VirtualPC ] are convenient mechanisms
to realize two-way isolation.

Two-way isolation systems suffer from three main problems in realizing a SEE.

—Accurate environment reproductionFor applications like system reconfiguration testing, it
is necessary to duplicate the exact host environment insidea VM. This introduces problems
in usability and performance. Although recent tools, such as VMware Converter [VMware
], have been created to help user to duplicate host system into a VM, the task still takes
a non-trivial amount of time for duplication, in addition tothe time required to boot the
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duplicated VM for use. Furthermore, to keep the software in the VM system in “sync” with
the host system, this step needs to be done for each change (such as software updates), in
the host environment.

—Difficulty in examining guest OS stateFurthermore, examining changes made in a VM
is not straightforward: on the one hand, it is not reliable toinspect the changes from
inside of a VM because the VM may already be compromised. The other option is to
mount the file system from the VM in a trusted system and examine it. However, this
process of examining guest OS state from “outside” will display the changes made by
all processes running in the system (including system processes), not just the untrusted
process, and therefore may result in loss of precision in identifying changes made by a
piece of untrusted code.

—Difficulty in dealing with external file systemsExternal file systems (such as a user’s home
directory on a NFS mount volume) cannot be used in conjunction with a two-way isolation
approach. If used, changes made to an external file system will escape the boundary of the
two-way isolation approach. Therefore the approach taken by these systems is to disallow
use of external file systems. However, a one-way isolation approach is extremely useful
here – changes made to files in an external file system can be examined (and committed)
with ease.

7.3 Application Virtualization Approaches

Zap [Osman et al. 2002] creates a virtualization layer between processes and their operating
system to support process migration. File system virtualization in Zap is similar to IFS in
SEE in that both intercept system calls and map logical path names to physical ones. In
general, Zap is more comprehensive than our SEE in that it virtualizes a broader range of
system resources. However, SEE and Zap have different focuson supporting file system
operations. SEE prevents effects of SEE processes from being visible to other processes, and
allows modifications in SEE to be committed to host system. Incontrast, Zap’s file system
virtualization aims to provide the same file system view and state on a different physical
machine. It is implemented by static redirection and doesn’t prevent Zap session and the host
system (or two Zap sessions) from modifying the same file or directory.

There is also a recent line of products using software virtualization to reduce conflicts
among installed software, such as Altiris’s Software Virtualization Solution [SVS ] and Mi-
crosoft’s SoftGrid [SoftGrid ]. The focus of these approaches is pure isolation. Also, the
documentation on these tools do not suggest that these approaches allow users to commit
changes back to the host system.

7.4 One-way Isolation Approaches

Liu et al. [2000] presented a systematic development of the concept ofone-way isolationas
an effective means to isolate the effects of running processes from the point they are compro-
mised. They developed protocols for realizing one-way isolation in the context of databases
and file systems. However, they do not present an implementation of their approach. As
a result, they do not consider the research challenges that arise due to the nature of COTS
applications and commodity OSes. Moreover, they do not provide a systematic treatment of
issues related to consistency of committed results. FVM [Yuet al. 2006] virtualizes resources
of Windows operating system. The file system resources are virtualized using copy-on-write,
similar to our file system proxy. But FVM aims to duplicate resources without affecting the
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host operating system, instead of containing all effects ofa program. For example, network
operations are redirected without confinement. In contrast, our SEE ensures that the actions
of the isolated program cannot affect local or remote systems.

7.5 Recovery-Oriented Systems

The Recovery-Oriented Computing (ROC) project [ROC ] is developing techniques for fast
recovery from failures, focusing on failures due to operator errors. Brown and Patterson
[2003] presents an approach that assists recovery from operator errors in administering a net-
work server, with the specific example of an email server. Therecovery capabilities provided
by their approach are more general than those provided by ours. The price to be paid for
achieving more general recovery capabilities is that theirimplementation needs to be appli-
cation specific, and hence will have to be tailored for each specific application/service. In
contrast, we provide an application-independent approach. Another important distinction is
that with our approach, consistency of system state can be assured whenever the commit
proceeds successfully. With the ROC approach, which does not restrict network operations,
there is no way to prevent the effects of network operations from becoming so widely dis-
tributed in the network that they cannot be fully reversed. In the case of email service, they
allow a certain level of inconsistency, e.g., redeliveringan email that was previously read and
deleted by a client, and expect the user to manually resolve this inconsistency. This potential
for inconsistency is traded in favor of eliminating the riskof commit failures.

7.6 File System Approaches

Elephant file system [Santry et al. 1999] is equipped with fileobject versioning support, and
supports flexible versioning policies. Several other approaches [Chutani et al. 1992; Quinlan
and Dorward 2002; Roome 1991; Soules et al. 2002; Peterson and Burns 2003] use check
pointing technique to provide data versioning. Muniswamy-Reddy et al. [2004] implements
VersionFS, a versatile versioning file system. They use a stackable template file system as
ours, and use a sparse file technique to reduce storage requirements for storing versions of
large files. While all of these approaches provide the basic capability to rollback system state
to a previous time, such a rollback will discardall changes made since that time, regardless of
whether they were done by a malicious or benign process. In contrast, the one-way isolation
approach implemented in this paper guarantees selective rollback of the actions of processes
run within the SEE without losing the changes made by benign processes executing outside
of the SEE.

Repairable File System [Zhu and Chiueh 2003; Zhu 2003] makesuse of versioning file
system to bring repair facility to a compromised file server.The Taser intrusion recovery
system [Goel et al. 2005] also has a similar objective and uses audit analysis techniques
for recovery of a filesystem that is damaged due to an intrusion. Fastrek [Pilania and Chi-
ueh 2003] applies the similar approach to protect databases. These approaches can attribute
changes to malicious or benign process executions, and allow a user to rollback changes se-
lectively. However, since the changes made by (potentially) compromised processes are not
contained within any environment, “cascading aborts” can become a problem. Specifically,
a benign process may access the data produced by a compromised process, in which case
the actions of the benign process may have to be rolled back, as well as the actions of pro-
cesses that used the results of such a benign process and so on. The risk of such cascaded
aborts should be weighed against the risk of not being able tocommit in our approach. Thus,
these approaches as well as the ROC approach mentioned aboveare more suitable when the
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likelihood of rollbacks is low, and commit failures cannot be tolerated.
Loopback file system [Lofs ] can create a virtual file system from existing file system and

allow access to existing files using alternative path name. But this approach provides no
support for versioning or isolation.

3D file system [Korn and Krell 1990] provides a convenient wayfor software developers
to work with different versions of a software package. In this sense, it is like a versioning
file system. It also introduces a technique calledtransparent viewpathingwhich is based on
translating file names used by a process. It gives a union viewof several directory structures
thus allowing an application to transparently access one directory through another’s path.
As it is not designed to deal with untrusted applications, itneeds the cooperation from the
application for this mechanism to work. TFS [TFS ] is a file system in earlier distributions of
Sun’s operating system (SunOS), which allowed mounting of awritable file system on top of
a read-only file system. TFS also has a view similar to 3DFS, where the modifiable layer sits
on top of the read only layers. Pendry and McKusick [1995] describes a union file system
for BSD, that allows “merging” of several directories into one, with the mounted file system
hiding the contents of the original directories. The union mount will show the merger of
the directories and only the upper layer can be modified. All these file systems are intended
for software development, with the UnionFS providing additional facilities for patching read
only systems. However, they do not address the problem of securing the original file system
from untrusted/faulty programs; nor do they consider problems such as data consistency and
commit criteria.

8. SUMMARY

In this paper, we presented an approach and tool called Alcatraz for realizing safe execution
environments. We showed that the approach is versatile enough to support a wide range
of applications. A key benefit of our approach is that it provides strong consistency. In
particular, if the results of isolated execution are not acceptable to a user, then the resulting
system state is as if the execution never took place. On the other hand, if the results are
accepted, then the user is guaranteed that the effect of isolated execution will be identical to
that of atomically executing the same program at the point ofcommit. We also discussed
alternative commit criteria that exploit file semantics to reduce commit failures.

We presented two different implementations of Alcatraz: auser-landsolution and the
other employing an in-kernel approach. The user-land approach is a trade-off of stronger
commit guarantees and performance for the sake of usability, and is implemented as a tool
that can be used by desktop users without requiring administrator rights. Our in-kernel ap-
proach makes minimal modifications to the kernel in the form of modules that provide file
system isolation and policy enforcement. It requires no changes to applications themselves.
Our functional evaluation illustrates the usefulness of the approach, while the performance
evaluation shows that the approach is efficient, and incurs overheads typically less than 10%
for kernel implementation.
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