
19

DARWIN: An Approach to Debugging Evolving Programs

DAWEI QI, ABHIK ROYCHOUDHURY, and ZHENKAI LIANG, National University of Singapore
KAPIL VASWANI, Microsoft Research India

Bugs in programs are often introduced when programs evolve from a stable version to a new version. In this
article, we propose a new approach called DARWIN for automatically finding potential root causes of such
bugs. Given two programs—a reference program and a modified program—and an input that fails on the
modified program, our approach uses symbolic execution to automatically synthesize a new input that (a) is
very similar to the failing input and (b) does not fail. We find the potential cause(s) of failure by comparing
control-flow behavior of the passing and failing inputs and identifying code fragments where the control
flows diverge.

A notable feature of our approach is that it handles hard-to-explain bugs, like code missing errors, by
pointing to code in the reference program. We have implemented this approach and conducted experiments
using several real-world applications, such as the Apache Web server, libPNG (a library for manipulating
PNG images), and TCPflow (a program for displaying data sent through TCP connections). In each of these
applications, DARWIN was able to localize bugs with high accuracy. Even though these applications contain
several thousands of lines of code, DARWIN could usually narrow down the potential root cause(s) to less
than ten lines. In addition, we find that the inputs synthesized by DARWIN provide additional value by
revealing other undiscovered errors.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—Debugging
aids, symbolic execution; D.3.4 [Programming Languages]: Processors—Debuggers

General Terms: Experimentation, Reliability

Additional Key Words and Phrases: Software debugging, software evolution, symbolic execution

ACM Reference Format:
Qi, D., Roychoudhury, A., Liang, Z., and Vaswani, K. 2012. DARWIN: An approach to debugging evolving pro-
grams. ACM Trans. Softw. Eng. Methodol. 21, 3, Article 19 (June 2012), 29 pages.
DOI = 10.1145/2211616.2211622 http://doi.acm.org/10.1145/2211616.2211622

1. INTRODUCTION

The development of any large-scale software system is a gradual process. Starting
from an initial design, the system evolves as new features are introduced, the system
is optimized, and defects are fixed. Often, changes are made concurrently by a number
of developers. It is during such changes that subtle defects are introduced. As a result,
ensuring that the system continues to meet its requirements in the presence of such

An initial version of this article [Qi et al. 2009] was published in the Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC-FSE).
This work was partially supported by a Ministry of Education research grant MOE2010-T2-2-073 (R-252-
000-456-112 and R-252-100-456-112) from Singapore.
Authors’ addresses: D. Qi and A. Roychoudhury (was on sabbatical leave to Microsoft Research India during
part of this work), and Z. Liang, School of Computing, National University of Singapore, Computing 1, 13
Computing Drive, Singapore 117417; email: {dawei, abhik, liangzk}@comp.nus.edu.sg; K. Vaswani, Microsoft
Research India, 196/36, 2nd Main, Sadashivnagar, Bangalore 560080, India; email: kapilv@microsoft.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1049-331X/2012/06-ART19 $15.00

DOI 10.1145/2211616.2211622 http://doi.acm.org/10.1145/2211616.2211622

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:2 D. Qi et al.

changes is a huge problem. The effort spent in validating software as it evolves accounts
for a large fraction of the overall maintenance costs, which often ends up being much
larger than the cost of development. The cost of maintaining a software system and
managing its evolution is said to account for more than 90% of the total cost, prompting
authors to call it the “legacy crisis” [Seacord et al. 2003].

To tackle the ever-growing problem of software evolution and maintenance, soft-
ware testing methodologies have been studied extensively. Regression testing is a well-
known concept employed in most software development projects. In its simplest form,
it involves re-testing a test suite as a program changes from one version to another.
In the past, the problem of detecting which tests in a given test suite do not need to
be re-tested has been thoroughly studied [Chen et al. 1994]. However, even among the
tests which are tested in both the old and the new program versions, how do we find the
root cause of a failed test input? For any large software development project, finding
root causes of these regression bugs is a challenging problem.

Problem Statement. The problem we address can be summarized as follows. Consider
a program P accompanied by a test suite T , such that the observable output of P for
all the tests in T is as expected by the programmer, that is, all the tests pass. We call
P the stable or reference program. Suppose P changes to a new program P ′ and certain
tests in T now fail. Let t ∈ T be such a test. Our goal is to identify code fragments
that potentially explain why t fails in P ′, while passing in P. Of course, we would like
to identify as few code fragments as possible, while still localizing the cause of failures
with high accuracy.

Existing Solutions. To motivate our solution, we first discuss the difficulties in using
existing approaches to solve this problem.

—Differencing Methods. Program differencing methods (e.g., Horowitz [1990]) have
been proposed as a way of identifying semantic differences between program versions
by comparing their program dependence graphs. Since we are investigating the
behavior of a specific test case in two program versions, we cannot directly use
these methods. Interestingly, our conversations with development teams revealed
that they often perform differencing of traces (not programs) for finding root causes
of regression bugs. Given a test t which passes in program P and fails in program
P ′, one may compare the path traced by t in P vis-a-vis the path traced by t in P ′.
However, a structural comparison of paths of two different programs PandP ′ is likely
to be ineffective, because it does not explicitly consider the semantics of the changes
between P and P ′.

—Change Inspection. If we assume that defects are often introduced as part of changes,
one way for finding the root cause is to find the specific change that induces failure
(e.g., Zeller [1999]). While this approach is appealing, it is ineffective for a class of
bugs known as unmasking regressions. These are bugs that already existed in the ref-
erence version of the program but are exposed by the change. For example, a pointer
which is mistakenly set to null in the reference version but never de-referenced is in-
dicative of such a situation. The mistake may only be observed after a change which
introduces a pointer de-reference. An accurate root-cause analysis tool should isolate
the location where the pointer is mistakenly set to null, not the location where it is
de-referenced. Moreover, a search for failure-inducing changes will not work if P and
P ′ are wildly different implementations (say two Web server implementations both
implementing the HTTP protocol), since then the set of program changes from P to
P ′ is hard to enumerate.

—Trace Comparison. In the last decade, trace comparison methods have been success-
fully used for localizing error causes in programs. Given a buggy program P ′, the

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:3

Failed input tTest Input t passes here

Buggy
Old stable

New input t’

program P’
program P

Path condi�on f Path condi�on f’

Path π
for test tPath σ

Path π’
for test t’

2. Compare π and π’ to get poten�al
root causes

1. Solve f ∧∧ ¬f’ to get another input t’

Fig. 1. Rough description of the debugging method.

trace produced by a failed input t is compared to the trace produced by a passing
input t′. Techniques have been developed to determine (a) which passing input to use
(e.g., Guo et al. [2006]), and (b) how to compare and report the differences between
two program executions (e.g., Zeller [2002]). The effectiveness of these approaches
depends critically on the availability of a passing input t′ that is very similar to the
failing input t.

Our Approach. In this article, we propose an approach (called DARWIN) for automat-
ically finding root-causes regression failures. A pictorial description of our approach
appears in Figure 1. In the sequel, we use the term test and input interchangeably.
Given a reference program P, a buggy program P ′, and a input t which passes in P and
fails in P ′, we first synthesize a new input t′ satisfying the following properties: (i) t′ and
t follow the same program path in P, and (ii) t′ and t follow different program paths in
P ′. Such an input t′ can be found using a combination of concolic execution [Godefroid
et al. 2005] and constraint solving [Brummayer and Biere 2009; de Moura and Bjorner
2008; Barrett and Tinelli 2007; Bruttomesso et al. 2008; Ganesh and Dill 2007]. We
then compare the trace produced by t in P ′ with the trace produced by t′ in P ′. Since t′
and t follow the same program path in P, we say that t and t′ are similar (with respect
to the reference program P). However, since t and t′ follow different program paths in
P ′, their behavior differs in P ′ (the buggy new version). The key insight of our approach
is that the difference in behavior of t and t′ in the buggy program often indicates the
potential cause(s) of failure.

However, as we will describe later, because of the way we generate the alternative
input, trace comparison is not strictly necessary. From the input generation phase itself,
our method will know where the traces of t and t′ will differ, and these differences can
constitute the potential root causes without going through trace comparison. The main
advantage of such an approach is that we avoid any heuristics in the trace comparison.
Our method is thus based completely on construction and solving of quantifier-free
first-order logic formulas.

Contributions. We propose DARWIN, an automated and scalable solution to the prob-
lem of locating causes of regression bugs. The method uses symbolic execution (on

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:4 D. Qi et al.

1 int x, y;// x and y are both input variables
2 int o; // o is the output variable
3 scanf("%d",&x);
4 scanf("%d",&y);
5 if (x > 0){
6 y = y +1;
7 if (y > 0){
8 o = 10;
9 }else{
10 o = 20;
11 }
12 }else{
13 o = 30;
14 }

Fig. 2. An example program which is used to illustrate path condition computation.

both failing/passing program versions) to produce alternate inputs, and compares the
behavior of such alternate inputs with the failing input in the buggy program. We
demonstrate the efficacy of our approach using four real-world applications (libPNG,
TCPflow, miniWeb, and Apache). Further, we find that the alternate inputs generated
by our method can be used for purposes other than localizing a given observable error.
These alternate inputs can point to new undiscovered errors, as demonstrated by our
experiments.

2. BACKGROUND

Path condition [Godefroid et al. 2005] serves as the basis of our approach. The compu-
tation of path condition is critical to understanding many aspects of our approach. In
the following, we give background on path conditions and their calculation.

2.1. Path Condition

Consider a program P, a program input t, and the path πt executed by t in P. The path
condition of t in program P is a quantifier-free first-order logic formula ϕt over input
variables of P, such that any input satisfying ϕt follows the path πt in program P, and
any input not satisfying ϕt does not follow the path πt in program P.

Thus, the path condition of a given path serves as the precise logical characterization
of the set of inputs tracing the path. Needless to say, if a path is infeasible (no input
can trace it), its path condition is the logical formula f alse. Similarly, if all program
inputs trace the same path, its path condition is the logical formula true.

2.2. Example of Path Condition Calculation

Next, we use an example to illustrate the process of computing a path condition. The
example program is shown in Figure 2. We use input 〈x == 1, y == 1〉 as an example
to show how a path condition is computed. We use xs and ys to denote the symbolic
inputs of this program.

The computation is shown in Table I. After executing each line, we show the concrete
stores and the symbolic stores of the variables. In the last column, we show the path
condition gathered up to the corresponding line. If a conditional branch is executed,
the generated branch constraint is accumulated into the path condition, as shown in
the last column.

For example, after line 6 is executed, the accumulated path condition is (xs > 0).
Since line 7 is a conditional branch, the branch constraint (ys +1 > 0) is generated and
added into the path condition. So after executing line 7, the path condition becomes

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:5

Table I. Process of Computing Path Condition for the Program in Figure 2

Execution trace of
〈x == 1, y == 1〉 Concrete stores Symbolic stores Path condition
3 scanf (“%d”, &x); {x → 1, y → undef } {x → xs, y → undef } true
4 scanf (“%d”, &y); {x → 1, y → 1} {x → xs, y → ys} true
5 i f (x > 0){ {x → 1, y → 1} {x → xs, y → ys} (xs > 0)
6 y = y + 1; {x → 1, y → 2} {x → xs, y → ys + 1} (xs > 0)
7 i f (y > 0){ {x → 1, y → 2} {x → xs, y → ys + 1} (xs > 0) ∧ (ys + 1 > 0)
8 o = 10; {x → 1, y → 2} {x → xs, y → ys + 1} (xs > 0) ∧ (ys + 1 > 0)

(xs > 0) ∧ (ys + 1 > 0). The final path condition is simply the conjunction of all the
branch constraints. In this example, two branch constraints (xs > 0) and (ys + 1 > 0)
are generated from lines 5 and line 7, respectively. Taking the conjunction of the two
branch constraints, the final path condition is simply pc = (xs > 0) ∧ (ys + 1 > 0). The
path condition computed in this way only contains input variables. The path condition
can guarantee that any input satisfying the path condition will follow the same path
as 〈x == 1, y == 1〉.

Although path condition is a conjunction of branch constraints, the assignments
executed in the trace are also taken into consideration in the path condition. As we
can see in the example, the assignment in line 6 is considered when computing path
condition. The assignment in line 6 first affects the symbolic store of y. When y is
used in the condition in line 7, the symbolic store of y is used to compose the branch
constraints. If there is an error in line 6, the error can affect the branch constraint
generated in line 7 and, therefore, affect the path condition.

2.3. Mechanism for Computing Path Conditions

Overall, the path condition is computed through symbolic execution. During symbolic
execution, we interpret each statement and update the symbolic store to represent the
effects of the statement on program variables.

Note that a path is given by a sequence of program statements in the source code.
First, we transform the source code such that every statement is either an assignment
or a branch statement. Then, we traverse forward along the sequence of statements in
the given path, starting with a null formula and gradually building it up.

At any point during the traversal of the path, we maintain a set of symbolic expres-
sions for the symbolic store and a logical formula for the path condition. During the
forward traversal, we update the symbolic store and path condition as follows.

—For every assignment encountered, we only update the symbolic assignment store.
—For every branch statement encountered, we conjoin the branch condition with the

path formula. While doing so, we use the symbolic assignment store for every variable
appearing in the branch condition.

The formula thus obtained upon reaching the end of the path is the path condition.

3. OVERALL APPROACH

In this section, we first present an overview of our approach using an illustrative
example. Consider a program fragment P (Figure 3) with an integer input variable
inp. We assume that P is the stable reference program where all test cases pass. Note
that g and h are functions invoked from P. The code for g and h is not essential to
understanding the example.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:6 D. Qi et al.

int inp, outp;
scanf("%d", &inp);

int inp, outp;
scanf("%d", &inp);

if (inp !=1){
outp = g(inp);
} else{
outp = h(inp);

scanf(%d , &inp);
if (inp !=1 && inp !=2){
outp = g(inp);
} else{
t h(i)outp h(inp);

}
printf("%d", outp);

Program P

outp = h(inp);
}
printf("%d", outp);

Program P’g

1 1,2 0 1 2Explain inp == 21 0,-1, -2,…,
2,3,4,…

1,2 0,-1, -2,…,
3,4,…

Explain inp == 2

using inp == 3

Fig. 3. Two example programs P and P ′ and their input-space partitioning. The behavior of input 2 changes
during the change P → P ′. We choose an input 3 to explain the behavior of the failing input 2, since 2 and 3
are in the same partition in P but in different partitions in P ′.

Suppose the program P is changed to the program P ′, shown in Figure 3, thereby
introducing a bug. Due to this bug, certain inputs which passed in P may fail in P ′.
One such input is inp == 2, whose behavior is changed from P to P ′. Let us assume
this input is found during regression testing, and we now want to localize the cause for
failure. Our approach works as follows.

—We symbolically execute the program P for test input inp == 2 and derive a path
condition f , a formula representing the set of inputs which exercise the same path
as inp == 2 in program P. In our example, path condition f is inp �= 1.

—We symbolically execute the program P ′ for input inp == 2 and calculate the path
condition f ′, a formula representing the set of inputs which exercise the same path
as inp == 2 in program P ′. In our example, path condition f ′ is (inp �= 1∧ inp == 2).

—We solve the formula f ∧¬ f ′. By construction, any satisfying instance of the formula
is an input which follows the same path as the failing input inp == 2 in the reference
program P but follows a different path than failing input in the new program P ′. In
our example, f ∧ ¬ f ′ is

(inp �= 1 ∧ ¬(inp �= 1 ∧ inp == 2)) ≡ (inp �= 1 ∧ inp �= 2).

A solution to this formula is any value of inp other than 1 or 2, say inp == 3.
—We could compare the trace of inp == 3 in buggy program P ′ with the trace of

the failing input inp == 2 in P ′. Instead, we show how trace comparison could be
avoided and could be replaced by formula manipulation instead. During the process
of finding a satisfying instance for the formula f ∧¬ f ′, we find that ¬ f ′ is equivalent
to ¬(inp �= 1∧ inp == 2) that is, inp == 1∨ inp �= 2. These are the possible deviations
from f ′. The first deviation, when conjoined with f , produces inp �= 1 ∧ inp ==
1, which is unsatisfiable. The second deviation, when conjoined with f , produces
inp �= 1 ∧ inp �= 2. Hence we highlight the source-code location corresponding to this
constraint as the potential reason for the input inp == 2 failing in program P ′.

In general, in trying to derive the potential cause by solving f ∧ ¬ f ′, we note that f ′
is a conjunction of primitive constraints, say f ′ ≡ ψ1 ∧ψ2 ∧· · ·∧ψm. We then enumerate
all possible deviations of f ′, namely ¬ψ1, ψ1 ∧ ¬ψ2, . . . , ψ1 ∧ ψ2 ∧ · · · ∧ ψm−1 ∧ ¬ψm.
We then conjoin each of these deviations with f , producing m formulas (where m is the
number of primitive constraints in f ′). For each of the m formulas that are satisfiable,
we consider the corresponding branch as a potential root cause. In other words, if

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:7

int inp, outp;
scanf("%d", &inp);

int inp, outp;
scanf("%d", &inp);

if (inp >=1){
outp = g(inp);
if (inp>9){

outp=g1(inp);

scanf(%d , &inp);
if (inp >= 1){

outp = g(inp);
/* if (inp>9){

t 1(i)outp g1(inp);
}

} else{
outp = h(inp);

outp=g1(inp);
} */

} else{
outp = h(inp);

}
printf("%d", outp);

Program P

p p
}
printf("%d", outp);

Program P’

1,2,..,9
10,11,…

1,2,…,9,
10,11,…Explain inp == 100

using ??
0,-1,-2,.. 0,-1,-2,…

Fig. 4. Two example programs P and P ′ and their input-space partitioning. The behavior of input 100
changes during the change P → P ′. How to find an input to explain its behavior?

f ∧ ψ1 ∧ ψ2 ∧ . . . ψi−1 ∧ ¬ψi is satisfiable, we consider the program branch contributing
to the constraint ψi as a potential root cause.

The example in Figure 3 clarifies the intuition behind our method. For the inputs
common to P and P ′ (in this example, the two programs have exactly the same input
space), we consider the partitioning of program inputs based on paths—-two inputs
are in the same partition if and only if they follow the same path. Then, as P changes
to P ′, certain inputs migrate from one partition to another. Figure 3 illustrates this
partitioning and partition migration. The behavior of the failing input inp == 2 is
explained by inp == 3. The two inputs are in the same partition in the old program P
but in different input partitions in P ′.

Sometimes, given two program versions P and P ′ and a failing input t, we may
not find any alternate input by solving f ∧ ¬ f ′. Consider the example programs in
Figure 4 and their associated input-space partitioning. In this case, we have a code-
missing error; the code

if (inp > 9) {outp = g1(inp);},

is left out by mistake. Suppose we have the task of explaining the behavior of inp ==
100.

The path condition f of inp == 100 in P is (inp ≥ 1 ∧ inp > 9), that is, inp > 9. The
path condition f ′ of inp == 100 in P ′ is inp ≥ 1. So, in this case,

f ∧ ¬ f ′ ≡ (inp > 9 ∧ ¬(inp ≥ 1 ∧ inp > 9)) ≡ (inp > 9 ∧ ¬(inp ≥ 1)),

which is unsatisfiable! The reason is simple. All inputs sharing the same partition as
that of inp == 100 in the old program, also share the same partition with inp == 100
in the new program.

The solution to this dilemma lies in focusing our debugging effort on the reference
program. If we find that f ∧ ¬ f ′ is unsatisfiable, we can solve f ′ ∧ ¬ f . This yields an
input t′ which takes a different path than that of the failing input t in the reference
program.

In our example Figure 4, we have

f ′ ∧ ¬ f ≡ (inp ≥ 1 ∧ ¬(inp ≥ 1 ∧ inp > 9)),

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:8 D. Qi et al.

that is, 1 ≤ inp ≤ 9. The solutions to this formula are the values 1, 2, . . . , 9 for the
variable inp.

Once again, while solving f ′ ∧ ¬ f , we enumerate the deviations from f first. Since
f ≡ (inp ≥ 1 ∧ inp > 9), the deviations from f the following.

—¬inp ≥ 1 that is, inp < 1.
—inp ≥ 1 ∧ ¬inp > 9 that is, 1 ≤ inp < 9.

The first deviation, when conjoined with f ′, produces inp ≥ 1∧ inp < 1, which is unsat-
isfiable. The second deviation, when conjoined with f ′, is satisfiable. So, we consider the
corresponding branch, namely inp > 9, as a potential root cause. Indeed, this branch
is the check which was missing in the buggy program P ′, points us the code-missing
error in this example.

The reader may consider the preceding situation as odd. When a test fails in a buggy
program, we may point to a fragment of the reference program as a potential root
cause! But, indeed this is a key feature of our approach. Code fragments in the refer-
ence program often help the programmer comprehend the change from the reference
program to the buggy program, thereby helping him/her comprehend the source of the
failure.

In summary, the outline of our method is as follows. Given a reference program
version P, a new, buggy program P ′, and a test input t which passes in P and fails in
P ′, our method proceeds as follows.

(1) Compute f , the path condition of t in P.
(2) Compute f ′, the path condition of t in P ′.
(3) Check whether f ∧ ¬ f ′ is satisfiable. If yes, it yields a test input t′ as well as a

constraint ψ ′
i in f ′. The constraint ψ ′

i is the reason why f ′ is not satisfied and is
considered as a potential root cause. As we have explained, the constraint ψ ′

i are
obtained by enumerating the deviations of f ′ and conjoining them with f . Details
of the procedure for obtaining ψ ′

i are describe in Section 4.
Since we perform approximations while computing the path conditions, we also
check that the solution t′ indeed follows the same path as that of t in P and a
different path from that of t in P ′. This is done by concrete execution of input t′.

(4) If f ∧ ¬ f ′ is unsatisfiable, find a solution to f ′ ∧ ¬ f . This again produces an input
t′ and a constraint ψi. The code to ψi is considered a potential root cause.
We also check t′ against f ′ ∧ ¬ f (i.e., it follows the same path as that of test t in
program P ′ and follows a different path in program P). This is done by concrete
execution of test input t′.

In the event (f ∧¬ f ′)∨ (f ′ ∧¬ f) is unsatisfiable, we fail to find a potential root cause.
This situation is unlikely, since this would mean that f ⇔ f ′ is valid, which means
that the input partition of the failing input remains unchanged while going from the
stable program to the buggy program. We also never encountered this situation in our
experiments.

4. DETAILED METHODOLOGY

In this section, we elaborate on different aspects of our approach, that is, input gener-
ation, formula simplification, input validation, and finally bug reporting.

4.1. Generating Alternate Inputs

In this phase, we execute the failing input t in both the program versions. We first
concretely execute t for each program binary, record a trace, and then perform symbolic
execution on the recorded trace. Our symbolic execution engine models each byte of
the program’s input as a symbolic variable. For each program variable, the engine also

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:9

stores a symbolic formula over the input variables that represents the set of values
that can be assigned to this variable in the concrete execution. This mapping between
program variables and expressions represents the symbolic state.

We compute the path condition using the method explained in Section 2. Two path
condition formulas f and f ′ are computed for input t in P and P ′, respectively.

A key component of the symbolic execution engine is the constraint solver. The pre-
cision of symbolic execution depends, to a large extent, on the ability of the constraint
solver to symbolically reason about computations in the program. For example, for a
program branch if (x * y > 0), we need to add the constraint x * y > 0 to the path
condition. This may be problematic if our constraint solver is a linear programming
solver and does not reason about operations, such as multiplication. An approach com-
monly used by most symbolic execution engines [Godefroid et al. 2005] to overcome
limitations of the constraint solver is to under-approximate the path condition. Usu-
ally, such an under-approximation is achieved by instantiating some of the variables in
the actual path condition. For example, to keep the path condition as a linear formula,
we may under-approximate the condition x * y > 0 by instantiating either x or y with
its value from concrete program execution.

Recall that we need to solve the formula f ∧ ¬ f ′ for getting an alternate programs
input, where f and f ′ are the path conditions of the input t being examined in the
reference and buggy programs respectively. Let fcomputed, f ′

computed be the computed
path conditions in the reference and buggy programs, respectively. In general, the
computed f and f ′ will be an under-approximation of the actual path conditions. Thus,
fcomputed ⇒ f , and f ′

computed ⇒ f ′. However, due to the negation, fcomputed ∧ ¬ f ′
computed is

not guaranteed to be an under approximation of f ∧ ¬ f ′. Consequently, a solution to
fcomputed ∧ ¬ f ′

computed may not satisfy the required properties, namely, t and t′ follow the
same program path in the reference program and follow different paths in the buggy
program. Hence, after solving fcomputed ∧ ¬ f ′

computed, if we find a solution t′, we validate
t′. Such a validation can be performed by concretely executing the test inputs t and t′ in
the old and new program versions and checking if our criteria are satisfied. Similarly,
if we need to solve the formula f ′ ∧ ¬ f , we validate the test input obtained by solving
f ′ ∧ ¬ f .

Choosing Alternate Inputs. Note that since f and f ′ are path conditions, they are
conjunctions of primitive constraints, that is, f ′ = (ψ1 ∧ ψ2 ∧ · · · ∧ ψm), where ψi are
primitive constraints. Thus, instead of solving f ∧¬ f ′, we solve the following mformulas
{ϕi | 0 ≤ i < m}, where

ϕi
de f= f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1.

Each ϕi is a conjunction. A solution to any ϕi is a solution for f ∧ ¬ f ′. We solve each ϕi
separately and obtain any one solution of ϕi (if one exists). Thus, we obtain at most m
solutions to the formula f ∧¬ f ′. Each of these are inputs which now undergo validation,
that is, we check via concrete execution whether they follow the same path as that of
t in P and follow a different path from that of t in P ′. The reader may note our choice
of ϕi, the formulas dispatched to the solver. Each ϕi denotes a deviation from the path
condition f ′ in exactly the ith branch condition of f ′. Thus, any alternate input we get
by solving ϕi can be expected to produce a trace which differs from the trace of the
buggy input in exactly the ith branch position. Moreover, by solving the different ϕi,
we consider all possible ways of deviating from the path denoted by path condition
f ′. Thus, our alternate inputs are witnesses to deviations from the path denoted by
path condition f ′—one alternate input for each possible deviation point in the path.
Finally, note that if f ∧ ¬ f ′ is unsatisfiable, we solve f ′ ∧ ¬ f similarly. Thus, if f is

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:10 D. Qi et al.

a conjunction of k primitive constraints θi, say f = (θ1 ∧ θ2 ∧ · · · ∧ θk), we solve the k
formulas f ′ ∧ θ1 ∧ . . . θi ∧ ¬θi+1, where 0 ≤ i < k.

4.2. Formula Simplification

A crucial component of our debugging method is the generation of alternate test in-
puts. This is achieved via checking satisfiability using satisfiability modulo theory
(SMT) solvers. Thus, the scalability of our method depends on the scalability of for-
mula solving. We propose several techniques for improving the efficiency of formula
solving specific to our problem domain.

Checking for Unsatisfiable Subformula. Recall that we are trying to solve formulas
of the form f ∧ ¬ f ′, where f and f ′ are the path conditions collected from two pro-
gram versions for a given test input t. Assuming f ′ def= (ψ1 ∧ ψ2 . . . ∧ ψm), we solve
the m formulas ϕi

de f= f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1. The key problem we face now is that
the SMT solver may take substantial time to solve each of the ϕi formula. We note
that common programming practices may make ψ1 ∧ . . . ψi ∧ ¬ψi+1 unsatisfiable. For
example, consider a check c being repeated many times in a program code. Clearly, if
ψ j (for some j ≤ i) and ψi+1 are both c, an SMT solver would very quickly conclude
that ψ1 ∧ . . . ψi ∧ ¬ψi+1 is unsatisfiable. In such a situation, we do not need to solve
the larger formula f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1. Overall, instead of directly dispatching ϕi
to the SMT solver (to check the satisfiability of ϕi), we first dispatch ψ1 ∧ . . . ψi ∧ ¬ψi+1
to the SMT solver and try to see whether the SMT solver declares it to be unsatisfiable
within a short time bound. Our experience indicates that this is often the case, and in
such a situation, we do not need to solve the bigger formula ϕi ≡ f ∧ψ1 ∧ . . . ψi ∧¬ψi+1.

Slicing out Unrelated Symbolic Variables. Second, using dynamic slicing, we could
find the subset of symbolic input bytes that could affect the only branch (contributing
to ψi+1) that we want to execute differently in both program versions. For unrelated
symbolic input bytes, we use their value from the concrete execution, which guarantees
that we are making minimal changes to the failing input. This is useful in practice,
since for structured program inputs, the processing of two different portions of the
input is often independent. Using concrete values for certain portions of our input
greatly simplifies the formulas we need to solve and reduces the burden on the SMT
solver.

Formula Simplification Steps. We now describe the steps we employ to reduce the
amount of time taken in checking the satisfiability of ϕi.

(1) We impose a short time bound (say ten seconds), and within this time bound, we
let the solver check whether ψ1 ∧ . . . ψi ∧ ¬ψi+1 is satisfiable. If the solver says that
ψ1 ∧ . . . ψi ∧¬ψi+1 is unsatisfiable, clearly ϕi is not satisfiable. If the solver does not
terminate within the time bound or says that ψ1 ∧ . . . ψi ∧ ¬ψi+1 is satisfiable, we
continue with the following steps.

(2) We perform slicing on the (assembly-level) execution trace π ′ corresponding to path
condition f ′ to find out the set of input bytes that ψi+1 is dependent on. This is done
as follows. Note that ψi+1 is a primitive constraint corresponding to some branch
instance b in the execution trace. Due to traceability links between subformula in
the path condition and branches contributing to these formulas, we can find the
branch b contributing to ψi+1. Let l be the control location corresponding to b and
V ars be the variables appearing in the constraint ψi+1. We perform dynamic slicing
[Korel and Laski 1988; Agrawal and Horgan 1990; Wang and Roychoudhury 2004]
with respect to the slicing criterion (l, V ars) on the assembly-level execution trace
π ′ corresponding to path condition f ′. During the traversal of the execution trace,

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:11

the dynamic slicing algorithm maintains (i) a set of instruction instances (the slice),
and (ii) a set of variables δ whose values need to be explained. At the end of the
slicing, we inspect the set of input fields (or bytes) which appear in δ. These are the
input bytes on which ψi+1 depends in the trace for f ′. Let this set of input bytes be
Ini+1.

(3) We assign all input bytes not appearing in Ini+1 to the actual values used in the
concrete execution of the test input t being debugged. We also use forward constant
propagation along the execution trace π ′ to propagate these concrete values to
other program variables (which do not correspond to program input). This greatly
simplifies f as well as ψ1∧. . . ψi ∧¬ψi+1, since many of the variables in the formulas
get instantiated to concrete values. Let the simplified formulas be called fsimpli f ied
and (ψ1 ∧ . . . ψi ∧ ¬ψi+1)simpli f ied.

(4) Finally, we solve the simplified formula fsimpli f ied ∧ (ψ1 ∧ . . . ψi ∧ ¬ψi+1)simpli f ied
using an SMT solver. After concretizing the input bytes other than those in Ini+1
and propagating constants, the formulas to be solved are greatly simplified owing
to instantiation. This leads to a greatly reduced solution time.

4.3. Backward Traceability and Input Validation

Recall that to solve f ∧ ¬ f ′, we solve m formulas

ϕi = f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1 0 ≤ i < m,

where

f ′ ≡ ψ1 ∧ ψ2 ∧ . . . ∧ ψm.

Since f ′ is a path condition, it is a conjunction of primitive constraints. In other words,
each ψi appearing in f ′ is a primitive constraint contributed by a branch in the program
P ′.

Suppose the branch corresponding to ψi+1 is bi+1, and the execution path of input t
in program P is π (P, t). If we can get a solution t′ of ϕi, π (P, t′) and π (P, t) are expected
to be the same. The execution paths π (P ′, t′) and π (P ′, t) are expected to be the same
before bi+1 and differ at bi+1. Instead of comparing the execution traces π (P ′, t′) and
π (P ′, t) to get bi+1, we can straightaway report bi+1 as a potential root cause, provided
we can guarantee that t′ and t follow different paths in P ′, differing at branch bi+1, and
that t′ and t follow same path in P. This can be validated by concrete execution of tests
t, t′ in programs P, P ′.

Note that this validation is necessary, because the computed path conditions are
approximations of the exact path conditions. If the input t′ is successfully validated,
we can directly report bi+1 as a potential root cause.

4.4. Putting It All Together

Given an input t and two program versions P and P ′, we compute the path conditions
f, f ′ of input t in programs P, P ′, respectively. First, we try to solve f ∧ ¬ f ′. Instead of
directly solving the formula (which may have many solutions), we choose the solutions
as follows. Let f ′ = ψ1 ∧ ψ2 ∧ . . . ∧ ψm where ψi are primitive constraints. We solve the
m formulas {ϕi | 0 ≤ i < m}.

ϕi
de f= f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1.

For all 0 ≤ i < m, if ϕi is satisfiable, we use backwards traceability links to find the
branch bi+1 contributing to the primitive constraint ψi+1. We report bi+1 as a potential
root cause if the solution for ϕi is successfully validated. This means that the input
produced by solving ϕi should follow the same path as that of t in P and follow a

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:12 D. Qi et al.

different path as compared to t in P ′. For checking the satisfiability of each ϕi, we use
the four optimization steps given earlier in Section 4.2.

On the other hand, if f ∧ ¬ f ′ is unsatisfiable, we replicate the preceding steps for
solving f ′ ∧ ¬ f . Again, we do not solve f ′ ∧ ¬ f directly but, instead, solve k formulas
(f ′ ∧ θ1 ∧ . . . ∧ θi ∧ ¬θi+1), where f = (θ1 ∧ . . . ∧ θk), and θi are primitive constraints.
Again, we get a set of at most k-validated alternate inputs.

Working with Different Implementations. An interesting characteristic of our ap-
proach is that we do not require the two programs P and P ′ to be similar (i.e., versions
of the same application). The programs could be two completely different implemen-
tations. We only require that the programs operate on the same input space and im-
plement the same specification for all common inputs. As long as these conditions are
satisfied, the path conditions we compute will be formulas over the same input vari-
ables, and hence, all solutions to fcomputed∧¬ f ′

computed are valid inputs for both programs.
Also, note that although we use two programs to generate new inputs, we always
compare inputs on the same program version. Thus, our approach for finding code
fragments where two inputs diverge is completely oblivious to the amount of change
between programs. This is unlike other approaches [Zeller 1999] that require two rea-
sonably similar program versions, such that a correspondence between parts of the
programs could be established. We refer the reader to our case study using Apache and
miniWeb Web servers (Section 7) for a more detailed description of this aspect of our
approach.

5. DEBUGGING COMMON PROGRAMMING ERRORS

We now explain the suitability of our debugging methodology for different common
kinds of programming errors: branch errors, assignment errors, and code-missing
errors.

Branch Errors. We believe that our methodology is naturally suited for localizing
errors in branch conditions, because our method finds the difference between two path
conditions which consists of branch conditions. So, if the error is in the condition of
a branch b, typically b will be evaluated differently (from the erroneous trace) in the
trace without the observable error. The examples given in Section 3 illustrate this point.
Since our approach for synthesizing and comparing tests is based on control flow, our
approach is ideally suited to bugs that cause a change in the control flow. Branch
condition errors cause a change in control flow and, hence, are easily root-caused using
our approach.

Errors that do no Affect Control Flow. Since our approach relies on comparing control
flow, errors that do not cause any change in the control flow cannot be directly root-
caused using our approach. We now describe a strategy that can translate such bugs
into those that influence control flow. Inspired by ideas in statistical debugging [Liblit
et al. 2005; Liblit 2005], we instrument the program with a predefined family of predi-
cates. These predicates are instrumented as branch conditions at various points in the
program. The predicates we instrument are as follows.

—Checks for null and the sign of return values at each function return site.
—Checks for equality of two program variables of the same type. Before each statement

that modifies a program variable x, we add predicates of the form x == y for all
variables y which are (i) of the same type as x and (ii) are live at the statement.

These predicates provide our DARWIN with additional opportunities to find new tests
that reveal the difference between the actual and the expected control flow of the
failing test. On the flip side, the instrumentation can increase the cost of tracing and

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:13

Old Program P New Program P’ Test Input t

Concrete execution +

Path cond. of t in P Path cond. of t in P’

+
Symbolic execution

f f’

f f’ f’ ff ∧ ¬ f’

SMT solving

f’∧ ¬ f

SMT solvingSMT solving

Test Input tAlternate Input t1 Alternate Input t2Program P Program P’

SMT solving

Input validation Input validation

Potential causes (Assembly level) Potential causes (Source level)
Reverse
translate

Fig. 5. Architecture of our DARWIN toolkit. It takes an old program P, a new program P ′, and a test input
t which passes in P but fails in P ′. The output is a report explaining the behavior of test t. The entire flow
is automated.

the complexity of constraint solving. In our experiments, we measured the overheads
from instrumentation and found it to be less than 20% for our subject programs (see
Section 7.7).

Code-Missing Errors. Code-missing errors correspond to portions of code left out
during the change of a program. Such code would be missing in the buggy program
but would be present in the reference program. Whether the missing code chunk con-
tains assignments (which, if they were present, would have affected control flow via
instrumented branches) or branches (which directly affect control flow), the reference
program P could be expected to have more paths than the buggy program P ′. Given a
failing test input t and f , f ′ being the path conditions of t in P, P ′, respectively, we can
thus expect f ′ ∧ ¬ f to yield a solution. This would be an input t′ following the path of
t in P ′ but following a different path than t in P (the code missing in P ′ is present in
P, leading to more branches and more paths). Thus, the traces of t′ and t in P would
be compared to yield potential root causes. No extension is needed in our methodology
to handle code-missing errors.

6. IMPLEMENTATION

We now describe our implementation setup. The overall architecture of DARWIN is
summarized in Figure 5. We built DARWIN on top of the BitBlaze platform [Song
et al. 2008]. Most of the modules used by DARWIN are contained in the recent open-
source release of BitBlaze. However, BitBlaze does not have the modules for formula
manipulation and optimization. We built these modules for DARWIN on our own.

6.1. Generating Alternate Inputs

DARWIN uses a symbolic execution engine for computing the path condition of a given
program execution. Our execution engine is a part of the BitBlaze platform [Song
et al. 2008], which works on ×86 binaries. Given an input, the platform concretely
executes the program on the specific input and records the trace. It then performs
symbolic execution to compute the path condition of the concrete trace recorded. The

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:14 D. Qi et al.

path condition represents a constraint denoting the set of inputs which execute the
concrete trace.

The concrete execution is carried out by TEMU, a whole-system emulator based
on QEMU [2009]. TEMU can run Windows and Linux as its guest operating system,
enabling us to analyze both Windows and Linux binaries. After the concrete execution,
TEMU generates a trace of instructions executed by the program. The trace is also
annotated with input dependence information, for example, whether the operand of an
instruction is dependent on input (an operand is dependent on the input if there is a
data dependence chain from the operand to an input). TEMU allows users to specify
several types of inputs, such as network inputs, files, and keyboard inputs.

The path condition calculation is performed by the VINE component of BitBlaze.
It first defines the bytes in the program input as symbolic variables: each byte in the
input is a distinct variable. Then, it makes a forward pass through the trace recorded by
TEMU, considering only tainted instructions, that is, instructions whose operands are
(directly or transitively) dependent on the program input (via data dependencies). Note
that such dependency information is present as annotations in the trace recorded by
TEMU. For each tainted instruction in the trace, VINE translates the instruction to a
sequence of statements in its own intermediate language, where the semantics of each
instruction is preserved [Brumley et al. 2007]. This translation helps the VINE tool
deal with the complexity of the x86 instruction set. Finally, VINE performs a traversal
of the trace in the intermediate language to compute the path condition.

Two points need to be noted about the BitBlaze execution engine and its interplay
with our debugging framework. First, the concrete and symbolic execution engines work
on ×86 binaries. Our path conditions are also computed at the level of binaries rather
than source code, thereby capturing the precise semantics of the program execution.
On the other hand, the bug report is computed at the level of source code for ease
of understanding (by the programmer). Second, the variables appearing in the path
condition correspond to the different bytes of the program input.

Given program versions P and P ′ and a test input t which passes in P and fails in P ′,
we compute the path conditions f , f ′ of input t in programs P, P ′, respectively. In fact,
the symbolic execution engine in BitBlaze constructs these path conditions as formulas
in the well-known SMT-LIB [Ranise and Tinelli 2003] format. The SMT-LIB format is
supported by all the solvers that participated in the SMT annual competition. Thus,
expressing the path conditions in the SMT-LIB format allows us to leverage a lot of
state-of-the-art SMT solvers. It also allows us to benefit from the ongoing improvement
in the solving ability of the existing solvers—we can use whichever solver is currently
the fastest. The solver we are currently using is Boolector [Brummayer and Biere 2009],
the winner of the SMT competition in 2009 for quantifier-free formulas with bitvectors,
arrays, and uninterpreted functions (the QF AUFBV category). Indeed, this is suitable
for us, since our formulas do not have universal quantification, and any variable is
implicitly existentially quantified.

6.2. Reporting Root Causes

Given the solutions of f ∧ ¬ f ′, we first validate them. In case we find f ∧ ¬ f ′ to be
unsatisfiable or none of the solutions of f ∧ ¬ f ′ can be validated, we solve f ′ ∧ ¬ f
in a similar fashion. By following the steps mentioned in the previous section (solving
either f ∧¬ f ′ or f ′ ∧¬ f), we obtain a set of branches at the assembly level as potential
root causes of the bug. Using standard compiler-level debug information, these can be
reverse-translated back to lines in source code.

Accuracy of Our Reports. We now discuss some low-level issues which make a sub-
stantial difference to the accuracy of our results. Given the path conditions f and f ′, let

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:15

if (!(png_ptr->mode & PNG_HAVE_PLTE))
{

png_warning(png_ptr, "Missing PLTE before tRNS");
}
else if (length > (png_uint_32)png_ptr->num_palette)
{

png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;

}

Fig. 6. Buggy code fragment from libPNG.

f ′ = (ψ1 ∧ψ2 ∧ . . .∧ψm), where ψi are primitive constraints. As mentioned in the previ-
ous section, we solve the m formulas {ϕi | 0 ≤ i < m}, where ϕi

de f= f ∧ψ1 ∧ . . . ψi ∧¬ψi+1.
The VINE symbolic execution engine ensures that the path conditions contain only
constraints from branches which are dependent on the program input. In practice, this
greatly cuts down on the number of ψi constraints and, hence, the number of ϕi formu-
las that need to be dispatched to the SMT solver. Since each ϕi formula contributes at
most one statement in our report, we get a smaller-sized report by reducing the num-
ber of ϕi. If the number of root causes is still high (due to a large number of alternate
inputs), we prioritize statements obtained from successful alternate inputs over other
statements, since these are more likely to reveal the real root cause.

7. DEBUGGING EXPERIENCE

We report our experience in using DARWIN to locate error causes in real-life case
studies.

7.1. Experience with libPNG

We first describe our experience in debugging the libPNG open source library [LibPNG
2009], a library for reading and writing PNG images. We used a previous version of
the library (1.0.7) as the buggy version. This version contains a known security vul-
nerability, which was subsequently identified and fixed in later releases. A PNG image
that exploits this vulnerability is also available online. As the reference implemen-
tation, or stable version, we used the version in which the vulnerability was fixed
(1.2.21). Assuming this vulnerability was a regression bug, we used our tool to see if
the vulnerability could be accurately localized.

The bug we localized is a remotely exploitable stack-based buffer overrun error in
libPNG. Under certain situations, the libPNG code misses a length check on PNG data
prior to filling a buffer on the stack using the PNG data. Since the length check is miss-
ing, a buffer overrun may occur. What is worse, such a bug may be remotely exploited
by emailing a bad PNG file to another user who uses a graphical email client for decod-
ing PNGs with a vulnerable libPNG. In Figure 6, we show a code fragment of libPNG
showing the error in question. If the first condition !(png ptr->mode & PNG HAVE PLTE)
is true, the length check is missed, leading to a buffer overrun error. A fix to the error is
to convert the else if in Figure 6 to an if. In other words, whenever the length check
succeeds, the control should return.

We now explain some of the issues we face in localizing such a bug using approaches
other than ours. Suppose we have the buggy libPNG program and a bad PNG image
which causes a crash due to the preceding error. If we want to perform program-
differencing methods (such as source code “diff”) to localize the bug, there are 1,589
differences in 28 files. Manually inspecting these differences requires a lot of effort.
Semantic diff [Jackson and Ladd 1994; Ren et al. 2004; Horowitz 1990; Apiwattanapong

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:16 D. Qi et al.

et al. 2004] could only provide limited help to the manual inspection. Because of the very
large number of source-code differences, the number of semantic differences would still
be large. Moreover, given a coarse-grained semantic difference, such as method change
[Ren et al. 2004], one still needs to inspect more details to tell whether this change
indeed causes the bug.

If we want to localize the error by an analysis of the erroneous execution trace starting
from the observable error, it is very hard to even define the observable error. Even if
the buffer being overrun is somehow defined as the observable error, tracking program
dependencies from the observable error could be problematic for the following reason.
The libPNG library is used by a client which inputs an image, performs computation,
and outputs to a buffer (the one that is overrun due to an error inside libPNG). In this
case, we are debugging the sum total of the client, along with the libPNG library. Since
almost all statements in the client program and many statements in libPNG involve
manipulation of the buffer being overrun itself, a dynamic slicing approach seems to
highlight almost the entire client program, as well as large parts of the libPNG library.

If we want to employ statistical bug isolation methods (which instrument predicates
and correlate failed executions with predicate outcomes), the key is to instrument the
right predicate. In this case, the predicates in question (such as !(png ptr->mode &
PNG HAVE PLTE)) contain pointers and fields. Hence, they would be hard to guess using
current statistical debugging methods which usually consider predicates involving
return values and scalar variables.

If we want to perform debugging by trace comparison, we must compare the trace
of the bad PNG image (which exposes the error) with the trace of a good PNG image
(which does not show the error). The question then is how do we get the good PNG
image? Even if we have a pool of good PNG images from which we choose one, making
the right choice becomes critical to the accuracy of root cause analysis. Moreover, the
method is sensitive to the pool of PNG images available at hand.

We now describe the working of our DARWIN method in terms of root-causing the
libPNG bug. Given the bad PNG image1, DARWIN synthesizes an alternate PNG image
via semantic analysis of the execution traces of the bad PNG image in the two program
versions. This image is a minimal modification of the bad PNG image. Our analysis
only minimally changes the bad PNG image to get a good image as alternate program
input.

Specifically, DARWIN first computes the path conditions of the bad PNG image on
the two libPNG versions 1.0.7 and 1.2.21. Let these be fbuggy and f f ixed, respectively. We
find that f f ixed ∧ ¬ fbuggy is unsatisfiable, so we solve for fbuggy ∧ ¬ f f ixed. By solving this
formula, we get nine alternate inputs from the Boolector solver. These nine alternate
inputs are essentially nine PNG images. All these nine inputs passed validation, hence
we report nine statements as potential root causes.

We prioritize these nine statements as follows. Among the nine alternate inputs, we
find out which of them are successful, that is, the program output for a successful input
should be the same in both the program versions. Only one of our nine alternate inputs
is found to be successful. The branch instruction contributed (to the result) by this input
corresponds to the branch length > (png uint 32)png ptr->num palette, thereby pointing
directly to the cause of failure. This branch is (mistakenly) not executed in the buggy
libPNG version 1.0.7.

Discovering New Errors. Interestingly, in the process of this debugging, we found
other potential problems in libPNG. As mentioned earlier, DARWIN obtained nine
alternate inputs, only one of which exhibits bug-free behavior, and pointed us to the

1The bad PNG image is from http://scary.beasts.org/security, with reference number CESA-2004-001.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:17

error. Interestingly, the other branch instructions point us to other deviations between
the two versions of libPNG. For example, by following one of these eight instructions,
we find that the two versions of libPNG use different functions to retrieve the length
field of a chunk from the input. In version 1.0.7, we have

length = png get uint 32(chunk length);

while in version 1.2.21, we have

length = png get uint 31(chunk length).

In particular, the code for png get uint 31 is as follows.
png_get_uint_31(png_structp png_ptr, png_bytep buf)
{

png_uint_32 i = png_get_uint_32(buf);
if (i > PNG_UINT_31_MAX)

png_error(png_ptr, "PNG unsigned integer
out of range.");

return (i);
}

Thus, png get uint 31 first uses png get uint 32 and then performs a length check.
If png get uint 32 is directly used to find the length of a chunk, a length check with
respect to the constant PNG UINT 31 MAX is missing. We also report the branch instruc-
tion containing this missing length check, thereby pointing to another potential error
in libPNG.

7.2. Experience with miniweb-apache

In our second case study, we study the Web server miniweb [Huang 2009], an optimized
HTTP server implementation which focuses on low resource consumption. The input
query whose behavior we debugged was a simple HTTP GET request for a file, the
specific query being “GET x.” Ideally, we would expect miniweb to report an error, as x
is not a valid request URI (a valid request URI should start with ‘/’). However, miniweb
does not report any errors and returns the file index.html. We then attempt to localize
the root cause of this observable error.

We found that even the latest version of miniweb contains the error. Therefore, we
could not choose another version of miniweb as the reference implementation. We chose
another HTTP server apache [Apache 2009] as the reference implementation. apache
is a well-known open-source secure HTTP server for Unix and Windows. Since both
apache and miniweb implement the HTTP protocol, they should behave similarly for
any input accepted by both implementations. Further, apache does not exhibit the bug
we are trying to fix. It reports an error on encountering the input query “GET x.”

We generate the path conditions of “GET x” in both apache and miniweb. Let these
be fapache and f miniweb, respectively. We find fapache ∧ ¬ f miniweb to be unsatisfiable.
However, by solving f miniweb ∧¬ fapache, we can get alternate input queries. By following
our methodology described in Section 4.1, we get exactly five alternate inputs and,
hence, five potential root causes.

GET /, GET \, GET *, GET . and GET %.

Based on the first of these five branches, we were able to localize the bug immediately.
miniweb does not check for ’/’ in GET queries and treats the query “GET x” similarly to
“GET /”, thereby returning the file index.html.

Discovering New Errors. Only one of our five alternate inputs was successful, exhibit-
ing the same output in both program versions. The branch instruction corresponding
to this input pointed us to the missing check for ’/’. The other statements pointed us

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:18 D. Qi et al.

to other missing checks in miniweb. Indeed, we can locate that apache contains checks
for each of these five characters, while miniweb misses the check for all five of them,
leading to potential errors.

In a Broader Perspective. Our experiments with apache and miniweb also give us a
broader perspective on the applicability of our method. Even if all versions of a program
exhibit a given error (as was the case with miniweb), we can still use DARWIN to localize
the error. We only need a reference program which is intended to behave similarly
to the program being debugged, and does not exhibit the bug being localized. In our
experiments, the apache Web server was the reference program. Thus, the applicability
of our method is broader than delta debugging methods, like Zeller [1999], which search
for bugs within the changes across program versions.

7.3. Experience with savant-apache

Savant [Savant 2009] is a full-featured open-source Web server for Windows. We notice
that savant does not report any errors when faced with an input query of the form
“GOT /index.html,” a typo from the valid HTTP GET request “GET /index.html.” We
cannot choose another version of savant as the reference program because the latest
version of savant also exhibits this error. As a reference program, we choose the apache
Web server, which reports an error for the query “GOT /index.html.” Both savant and
apache implement the HTTP protocol and are expected to behave similarly.

In this case study, DARWIN found 46 alternate inputs. Out of these, only one is
successful, that is, produces the same output in both savant and apache. This is the
input “GET /index.html.” Using the branch instruction corresponding to this alternate
input, DARWIN pinpointed the error to missing checks in savant. The savant program
does not check for all three letters ‘G’, ‘E’, ‘T’ in HTTP GET requests for HTTP protocol
version HTTP/0.9 (which is the default assumed, since we do not explicitly specify an
HTTP protocol version in the query “GOT /index.html”). Indeed, we found that savant
reports an error if we provide “GOT /index.html HTTP/1.0” as input. In HTTP/0.9 there
is only one command, namely GET. The error lies in the fact that savant does not check
for the string “GET”, and assumes any given string to be the GET command.

Discussion. Our experiments with savant also illustrate another additional feature
of DARWIN—the ability to rectify program inputs. The process of alternate input
generation in DARWIN can help correct errors in an almost correct program input, such
as the input “GOT /index.html.” In this case, the input fix was easy and could have been
done manually as well. In the future, we plan to conduct experiments with programs
like Web browsers to see if an almost correct HTML file (where the incorrectness in the
file is hard-to-see) can get rectified through alternate input generation.

7.4. Experience with TCPflow

We use two versions of the TCPflow program, namely TCPflow 0.21.ds1-2 and the same
version with the patch 10 extra-opts.diff, which is supposed to provide the user with
some extra options. TCP is the most popular transport layer protocol, and TCPflow
is a program which captures and displays data sent through TCP connections. The
statistics about the TCPflow program are given in Table II.

What is the intended functionality of the TCPflow program? If we capture the raw
TCP packets transmitted over the network, there is a TCP header inside each TCP
packet. Inside each raw packet, we also have the header for the network layer protocol
(usually the IP protocol). Thus, it is nontrivial to manually distinguish which parts in
a raw packet correspond to the real data being transmitted. Moreover, there can be
multiple active TCP connections at the same time. As a result, it is hard to determine
which packets are from the same connection. TCPflow is a program which solves these

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:19

47 45 54 20 2F 69 6E 64 65 78 24 68 74 6D 20 0D |GET /index.htm .|
0A 0D 0A |... |

00 47 45 54 20 2F 69 6E 64 65 78 24 68 74 6D 20 |.GET /index.htm |

Output from the unpatched version of TCPflow

0D 0A 0D 0A |.... |

Output from the patched version of TCPflow

Fig. 7. Output from the TCPflow program.

// unpatched version of the TCPflow
handle_tcp (packet_t packet) {

if(this packet has no data) {
return;

}
if ((state = find_flow_state(current_flow)) == NULL)

state = create_flow_state(flow, seq);
offset = seq - state->ins;
write data from offset;

}
// patched version of the TCPflow
handle_tcp (packet_t packet) {

if(this packet has no data) {
if ((state = find_flow_state(current_flow)) == NULL)

state = create_flow_state(flow, seq);
return;

}
offset = seq - state->ins;
write data from offset;

}

Fig. 8. Schematic code fragment from TCPflow.

problems. It analyzes the raw data (TCP packets) from TCP connections and outputs
the actual data being transmitted over the network. A TCP connection is associated
with source IP address, destination IP address, source port, and destination port. The
output from TCPflow is also classified by the connections.
TCPflow can read input both from network and file. If the input is from network, then

it captures the data that is being transmitted and analyzes the data. In our experiment,
the input is from a file which is generated by tcpdump.

The bug we investigate is introduced by the patch 10 extra-opts.diff. We provided
two packets from the same connection to TCPflow: an SYN packet to setup the connec-
tion and a simple HTTP request packet. Figure 7 shows the output from both versions of
the TCPflow program, where only the HTTP request payload is shown, and the headers
from TCP layer and IP layer are excluded.

The two versions of TCPflow we use are TCPflow 0.21.ds1-2 and the same version
with the patch 10 extra-opts.diff. Although the patch is supposed to provide some
extra options to the user, it actually introduces a bug into the code. Figure 8 is a simpli-
fied code pattern from TCPflow. For each TCP connection, a struct named flow state t
is used in the program to maintain some data associated with the connection. The pro-
gram processes the packets one by one from the start to the end. So, for our program
input, the SYN packet is processed before the data packet. The bug appears, because
the manner in which empty packets are handled is changed by the patch.

In the unpatched version of the program, if we see an empty packet and no other
packets from the same connection have been seen before, the packet is simply ignored
(the struct flow state t for the connection is not created at all). However in the patched

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:20 D. Qi et al.

version, empty packets are not ignored (the struct flow state t for the TCP connection
is still created). Note that in TCP connections, each transmitted packet has a sequence
number which is used by the sliding window protocol to make sure the packet is
transmitted to the destination. In our case, the sequence number of the data packet is
just the sequence number of the SYN packet increased by one. Given a TCP connection,
the corresponding struct flow state t has one critical member field named ins which
is used to store the initial sequence number the program has seen for this connection.
When a flow state t is created, ins is assigned with the sequence number of the
current packet being handled.

Since the SYN packet has no data inside, and the manner of handling such packets
are different in the two program versions, the flow state t are created with different
ins values in two program versions. In the unpatched version, because the SYN packet
is ignored, the flow state t is only created when the data packet is seen, so the ins
field is equal to the sequence number of the data packet. In the patched version, the
flow state t for this connection is created when the SYN is seen, so the ins field is
equal to the sequence number of the SYN packet. Note that the ins field is later used
to calculate the offset in the output file when the data is written out. The offset is
calculated via the statement

offset = seq - state->ins;

where seq is the sequence number of the packet being written. So, while writing
the data packet in the unpatched version, the value of seq is equal to the value of
state->ins; they are both set to the sequence number of the data packet. However, in
the patched version, the seq is the sequence of the data packet, and the state->ins is
the sequence of the SYN packet. So the offset is 1 in the patched version, making the
program write from the second byte in the output file. As a result, there is an additional
0×00 (in the first byte of the buggy output), as shown in Figure 7.

Once again, we emphasize that the bug we previously described (and detected using
DARWIN) is a real-life bug appearing in a patch of the TCPflow program. The bug
happens because the authors of TCPflow forgot to modify the update of state->ins
field after the manner of handling empty packets was changed. In fact, this bug is
only observed when the input to TCPflow contains at least one empty packet. When
we attempted to localize the root cause of this bug using DARWIN, the root causes we
reported were extremely accurate. Only six statements are reported as potential root
causes, and one of them points to a branch condition which checks for empty packets.

Over and beyond the accuracy, making DARWIN work on the TCPflow program
presented us with a substantial challenge in terms of scalability. Although the TCPflow
program contains only 1,000 lines of code, its path condition size was the largest among
all our four case studies. Part of the reason for this comes from the frequent usage of
libraries during the execution of TCPflow. The execution of the libraries bloats up the
trace size and creates substantial time overheads for symbolic execution. Recall that
we are trying to solve formula of the form funpatched ∧ ¬ fpatched, where funpatched, fpatched
are the path conditions of our chosen program input on the unpatched and patched
versions of TCPflow, respectively. Assuming fpatched ≡ ψ1 ∧ ψ2 ∧ . . . ∧ ψm, we actually
solve m formulas {ϕi | 0 ≤ i < m} where,

ϕi
de f= funpatched ∧ ψi ∧ ψ2 . . . ∧ ψi ∧ ¬ψi+1.

Without the optimizations mentioned in Section 4.2, solving each ϕi takes up to
30 minutes, and there are around 2,000 ϕi formulas to solve!! Clearly, such a time
overhead would be unacceptable.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:21

if((state->ins != seq) && !(IS_SET(flags, TH_ACK))){
return; /* ERROR here: should be printf("Warning: xxxxxx\n"); */

}

Fig. 9. Injected bug in TCPflow.

Let us now examine the impact of the different optimizations mentioned in Sec-
tion 4.2. In the experiment with Tcpflow, we use one additional optimization technique
to further shorten the formula solving time. We only solve those ϕi formulas where ψi+1
corresponds to a branch in the source code (not a branch within a library). The effect
of this technique is discussed next. By considering only ϕi formulas from the source
code, there are still 86 formulas left to solve. The estimated time for solving these for-
mulas comes to two days (since the solving of each ϕi formulas in the TCPflow program
seems to take about 30 minutes). However, recall that in the first step of our formula
simplification (see Section 4.2), we check whether ψ1 ∧ . . . ψi ∧ ¬ψi+1 is satisfiable in a
time-bounded fashion. In other words, we set a time limit (ten seconds for our experi-
ments), and see how many of the ϕi formulas can be proved to be unsatisfiable within
this time limit. Clearly, if ψ1 ∧ . . . ψi ∧ ¬ψi+1 is unsatisfiable, ϕi cannot be satisfiable!
We find that 64 out of the 86 formulas are proved to be unsatisfiable in this fashion.
Thus, we are left with (86–64), that is, 22 formulas to solve. The estimated time for
solving these formulas without any further optimization comes to around 12 hours. As
mentioned in Section 4.2, we further employ dynamic slicing and constant propaga-
tion to reduce the burden of the SMT solver. By using all of the formula simplification
steps mentioned in Section 4.2, the total time taken by the SMT solver is reduced to
only ten minutes. The total debugging time (which includes tracing as well) comes to
33 minutes. The final result from DARWIN contains only six statements, including the
line containing the error cause.

7.5. Experiment with Latent Bug

In this section, we report our experience with a latent injected bug to show a special
feature of our debugging method. We want to demonstrate the scenario in which the
actual bug exists in the old stable program; however, it only gets manifested in the
new changed program. Note that in such scenarios, change-analysis-based debugging
methods, such as that of Zeller [1999], will not work, since they seek to report a subset
of the changes (between the old and new programs) as the cause of error. However, our
method, being based on semantic analysis of the old and new programs, can still locate
the error cause.

We use the unpatched and patched versions of the TCPflow program, as described
in Section 7.4. The injected bug is shown in Figure 9. The code in Figure 9 is injected
in both versions of TCPflow. In the unpatched version of TCPflow, whenever the code
is executed, state->ins is always equal to seq, the second condition !(IS SET(flags,
TH ACK)) is never evaluated, and the return statement is never executed. However, in
the patched version, because of other code modifications, state->ins can be not equal
to seq. As a result, the return statement is executed, manifesting the error.

Although we have the same buggy code in both versions, the injected code is actually
executed differently in the two versions. This difference is caused by other modifications
in the patched version. Change-analysis-based delta debugging [Zeller 1999] cannot
expose such error causes, since the error is in a line which was not changed across
versions.

Using our technique, the difference in program executions is captured in the path
conditions funpatched and fpatched of the unpatched/patched program versions. The branch
!(IS SET(flags, TH ACK)) appears in fpatched but not in funpatched. So our technique is

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:22 D. Qi et al.

Table II. Properties of the Subject Programs

Trace size # Branches # Tainted
Programs LOC (# instructions) in trace instructions
libPNG v1.0.7 31,164 87,336 13,635 2,999
libPNG v1.2.21 36,776 108,769 15,472 2,592
Miniweb 2,838 270,856 26,201 331
Savant 8,730 121,714 16,212 1,613
Apache 358,379 60,380 5,388 264

(miniweb) (miniweb) (miniweb)
74,002 (savant) 9,672 (savant) 6,889 (savant)

TCPflow (unpatched) 895 56,838 7,210 7,753
TCPflow (patched) 934 58,079 7,375 7,860

Table III. Performance of DARWIN ’s Extended Debugging Method

Time in Time in Time in Time in Total
Programs step 1 step 2 step 3 step 4 Time
libPNG(v1.0.7-v1.2.21) 3m 57s 1m 49s 7m 44s 4s 13m 34s
Miniweb-Apache 2m 4s 1m 1s 2m 42s 1s 5m 48s
Savant-Apache 2m 27s 1m 11s 5m 2s 10s 8m 50s
TCPflow(unpatched-patched) 7m 9s 57s 20m 12s 3m 32s 31m 50s

Note: m = minutes, s = seconds.

able to construct an alternate input that satisfies funpatched ∧ ¬ fpatched by negating
the branch !(IS SET(flags, TH ACK)). Thus, one of our ϕi formulas corresponds to a
deviation in the branch !(IS SET(flags, TH ACK)), since this is a branch recorded in
the path condition. This deviation results in !(IS SET(flags, TH ACK)) being selected
as a potential root cause. On the whole, we identify ten potential root causes. Clearly,
the inclusion of the branch !(IS SET(flags, TH ACK)) as a potential root cause helps
the programmer diagnose the issue.

7.6. Performance of Our Debugging Method

In this section, we evaluate the performance of our debugging method. The properties
of our subject programs in terms of trace size and other statistics appear in Table II.

Recall from Section 4 that our debugging method involves four steps. The steps are
(i) constructing and checking the satisfiability of the ψ1 ∧ . . . ψi ∧ ¬ψi+1; (ii) slicing on
the f ′; (iii) concretizing all the inputs that are not in the slicing result and performing
constant propagation; and (iv) solving the simplified formula f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1.

Table III summarizes the time taken in these steps by DARWIN for all programs
including TCPflow. The input validation only compares whether two execution traces
are the same or different; no formula generation is needed. It takes hardly any time to
validate the inputs in all our case studies.

In the first step of our method, we construct the path conditions in the two program
versions and then construct several formulas ϕi. We also use a very short time to check
the satisfiability of ψ1 ∧ . . . ψi ∧ ¬ψi+1. We count the time taken to generate the traces
and raw path conditions into this step. The total time taken in this step was less than
seven minutes in all the case studies. In the second step, we use dynamic slicing to
find out the relevant input bytes for each formula. The time taken was less then two
minutes in all the case studies. In the third step, we concretize all the irrelevant input
bytes and perform constant propagation to simplify the formulas. The time taken by
this step was less than 21 minutes in all our case studies. In the fourth step, we solve
the whole formula f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1 (which has been greatly simplified by now,
due to constant propagation). The time taken by this step was less than four minutes
in all the case studies.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:23

Table IV. Overhead of Predicate Instrumentation

Programs Additional branches (%) Additional Instructions (%)
TCPflow 17.78% 16.48%
Miniweb 4.06% 3.83%

Overall, DARWIN took less than 32 minutes in all the case studies. We consider this
time to be very tolerable, considering that programmers often take hours and days to
find the root causes of errors in large code bases.

7.7. Additional Overheads Due to Predicate Instrumentation

Our debugging method is most suited for debugging branch errors (errors in program
branches) and code-missing errors. For errors in assignments, our technique needs to
be augmented with predicate instrumentation, as discussed in Section 5. Our predicate
instrumentation is geared to expose assignment errors, as mentioned in Section 5. We
introduce branches with branch conditions, checking that the following conditions hold.

—There are function return values at each function return site.
—There are binary constraints describing the equality of a program variable x with

other variables of the same type, at each assignment to x. Thus, if x, y are of the
same type, we introduce branches to check x == y.

Table IV shows the overhead for our predicate instrumentation. The additional
branches and instructions are introduced because of our predicate instrumentation.
We only show the numbers for TCPflow (a program with high instrumentation over-
head) and miniweb (a program with low instrumentation overhead). The overhead, in
terms of number of additional branches and instructions, is less than 20%. The instru-
mentation is done at source-code level, and hence, library code is not instrumented.
This also prevents the instrumentation overhead from blowing up.

8. RELATED WORK

Validation of evolving programs is an important problem, since any software system
moves from one version to another. Among the established efforts in this direction is
the work on regression testing, which focuses on which tests need to be executed for
a changed program. Even though regression testing, in general, refers to any testing
process intended to detect software regressions (where a program functionality stops
working after some change), often regression testing amounts to re-testing of tests
from an existing test suite. In the past, there have been several research directions
which go beyond re-testing all of the tests of an existing test suite. One stream of work
has espoused test selection [Chen et al. 1994; Rothermel and Harrold 1997], selecting
a subset of tests from an existing test suite (before program modification) for running
on the modified program. Another stream of works propose test prioritization [Elbaum
et al. 2000; Srivastava and Thiagarajan 2002], that is, ordering tests in existing test
suites to better meet testing objectives of the changed program. Finally, Santelices et al.
[2008] has studied test-suite augmentation, that is, developing certain criteria for new
tests so that they are likely to stress the effect of the program changes. Our technique
is complementary to regression testing, in that regression testing detects or uncovers
software regressions, whereas we explain (already detected) software regressions.

Using path conditions to partition input space has been explored in concolic testing
works [Godefroid et al. 2005; Sen et al. 2005]. However, the problem tackled by us is
entirely different from concolic testing. The main focus of concolic testing is exploring
the input space of one program to find test cases, whereas our technique performs
simultaneous analysis of two program versions for debugging a given test.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:24 D. Qi et al.

The issues in comprehending program changes for an evolving code base have
been articulated by Sillito et al. [2006]. Program differencing methods [Horowitz 1990;
Apiwattanapong et al. 2004; Ren et al. 2004] try to identify changes across two program
versions. Indeed, this can be the first step towards detecting errors introduced due to
program changes—identifying the changes themselves. The works on change impact
analysis are often built on such program differencing methods (e.g., Ren et al. [2004],
where the analysis identifies not only the changes, but also which tests are affected
by which changes). Person et al. [2008] recent work uses symbolic execution to accu-
rately capture behavioral differences between program versions. Overall, the works on
program differencing try to identify (via static analysis) possible software regressions,
rather than finding the root cause of a given software regression. Dynamic-analysis-
based change detection methods have also been studied (e.g., Giroux and Robillard
[2006], which analyzes the change in dependencies between parts of a program via
regression testing). These works focus on qualitative code measures and the possible
impact of program changes. Instead, we focus on the issue of root causing a bug that
has surfaced due to program changes.

In the area of computer security, deviation detection of various protocol implemen-
tations have been studied (e.g., Brumley et al. [2007]). This problem involves finding
corner test inputs, in which two implementations of the same protocol may deviate in
program output. We note that finding such deviating program inputs bears similari-
ties with uncovering software regressions, whereas our work is focused on explaining
already uncovered software regressions. Even though Brumley et al. [2007] appear to
employ techniques similar to ours, their goal is to generate a deviating program input
which can demonstrate the behavior differences between two programs, while the goal
of our work is to explain such a behavior difference. Thus, the deviating program input
generated by Brumley et al. [2007] can be fed to our debugging method.

Turning now to works on software debugging, the last decade has seen a spurt of
research activity in this area. Some of the works are based on static analysis to locate
common bug patterns in code (e.g., Hovemeyer and Pugh [2004]), while others espouse
a combination of static and dynamic analysis to find test inputs, which expose errors
(e.g., Csallner and Smaragdakis [2006]). Another area of works addresses the problem
of software fault localization (typically via dynamic analysis), that is, given a program
and an observable error for a given failing program input, these works try to find the
root cause of the observable error. Our work solves this problem of fault localization,
albeit for evolving programs. Next, we discuss the works on fault localization.

The works on software fault localization proceed by either (a) dynamic dependence
analysis of the failing program execution (e.g., [Sridharan et al. 2007; Zhang et al. 2006,
2007]), or (b) comparison of the failing program execution with the set of all correct
executions (e.g., Ball et al. [2003]), or (c) comparison of the failing program execution
with one chosen program execution which does not manifest the observable error in
question (e.g., [Zeller 2002; Renieris and Reiss 2003; Guo et al. 2006]). Our work bears
some resemblance to works which proceed by comparing the failing program execution
with one chosen program execution. Our approach tries to construct an alternate input
with whose trace we compare the failing program execution. However, the main novelty
in our approach lies in its ability to consider two different programs in the debugging
methodology. We do so by a separation of concerns: the two different program versions
are used to generate alternate program input (apart from the failing program input),
while the executions of the alternate input and failing input in the modified program
version are compared.

Comparing with delta debugging [Zeller and Hildebrandt 2002], we find that it
cannot be used in general to construct alternate inputs for evolving program debugging.
Consider a test input t showing a regression bug (failing in one program version,

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:25

passing in another). Delta debugging generates alternate inputs by deleting certain
fields of t which are irrelevant to the bug. However, it cannot generate new test inputs
by modifying certain fields of t; this is done in our method. For example, in our libPNG
case study, the bad PNG image contains a chunk (a PNG file is divided into chunks) with
an incorrect length field. To make the bug disappear, we need to correct the length field,
rather than delete fields in the PNG input. Moreover, arbitrary deletion in the PNG
input will create illegal PNG inputs, since the checksum will not match. In contrast, the
semantic analysis supported by our path conditions (where the relationship between
the checksum and the other fields is captured in the path condition) ensures that we
generate an alternate test input which is a legal PNG image and avoids the bug in
question.

Zeller [1999] studies debugging of evolving programs and proposes identifying
failure-inducing changes. However, this is restricted to only reporting the changes as
error causes. Errors present in the old version, which get manifested due to changes,
cannot be explained using such an approach. Moreover, suppose during program evo-
lution we encounter a bug for the first time (a test input which was ignored during
the testing of the past versions). Such bugs are not regression bugs. Our approach can
still be applied, provided a reference implementation is available; this is demonstrated
in our experiments with Web servers. In such a situation, searching among changes
across implementations is unlikely to work, since the reference implementation is a
completely different program, often with different algorithms/data structures.

In summary, existing works on program-analysis-based software debugging have not
studied the debugging of evolving programs. In particular, the possibility of exploiting
stable implementations (which were thoroughly tested) for finding the root cause of an
observable error in a buggy implementation has not been studied. This, indeed, is the
key observation behind our approach. Moreover, existing works on evolving software
testing/analysis primarily focus on finding tests which show differences in the behavior
of different program versions. These works do not prescribe any method for explaining
or debugging a failed test, an issue that we study here.

9. THREATS TO VALIDITY

In this section, we discuss certain threats to validity of the results presented in this
article. This also clarifies any implicit assumptions on which our debugging method
may be built.

—One key assumption of our approach is that the program requirements vis-a-vis the
buggy input do not change. The program requirements for the buggy input define the
supposed behavior of the program execution with the buggy input. In reality, what
commonly happens is that the program requirements vis-a-vis existing features do
not change (although new features may be added). In such a case, our assumption is
guaranteed to be satisfied. In fact, a typical scenario where DARWIN is applicable
may be described as follows. A program version P evolves to a new program version
P ′ because the customers want some new features to be added. However, in trying
to program the new features, the code for the old features mistakenly gets affected.
Thus, a test case t, which used to pass in program P, fails in the new program P ′. In
other words, in going from program P to program P ′, there is code evolution but no
evolution of requirements. The requirements for the old features (those supported by
both P and P ′) remain unchanged. DARWIN is most suited to explain and root-cause
such errors resulting from code evolution.

Note that the preceding assumption does not conflict with our claim that DARWIN
works with two different implementation of the same specification. Suppose P and
P ′ are two different implementations, such as miniweb and apache. As long as the

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:26 D. Qi et al.

behavior of the buggy input is supposed to be the same in both P and P ′, we can use
P as a reference implementation to debug P ′.

To illustrate the issue with a more concrete example, consider a banking system
P supporting some basic features like “login”, “logout”, “view balance”, and so on.
Suppose now the customers of the banking system demand a new feature for trans-
ferring funds between accounts. In trying to implement this system and produce a
new banking system P ′, the programmer may make mistakes and incorrectly modify
the account balance. As a result, the “view balance” functionality, which used to work
correctly earlier, may not work correctly any more, leading to an observable error.
DARWIN is most suited for explaining the root cause of such observable errors. Con-
sider an alternate scenario in which the requirements of the banking system itself
are being changed. Suppose the “view balance” functionality used earlier to view
of the account balance is now changed to display the account balance for current
accounts and the account balance minus $50 (the minimum deposit) for a savings
accounts. In this situation, the requirements of the “view balance” feature itself have
changed. DARWIN ’s approach is not suited to explain any errors resulting from such
evolution of software requirements.

—Path conditions serve as the basis of our debugging technique. In particular, the
approach hinges on the observation that the path conditions f and f ′ of the test input
t being debugged are different in the two program versions. What if f and f ′ are
logically equivalent? This means that the effect of the error being debugged is not
observable by a difference in control flow. Our DARWIN approach is not inherently
suited to explain such errors. Thus, the approach is most suited for explaining errors
that manifest as changes in control flow. In Section 5, we proposed some methods for
introducing more control-flow paths to handle assignment errors that do not affect
control flow. Even with heavy instrumentation, our solution cannot guarantee that
all such errors will be correctly diagnosed.

Apart from the assignments discussed in Section 5, some other program elements,
such as function pointers, cannot affect the path conditions either. Some ideas similar
to those in Section 5 could be used to introduce more branches. We could also control
the compilation process to avoid optimizations that remove branches. For example,
switch cases should be compiled into conditional jumps instead of direct jumps using
jump tables.

—Regarding the scalability of our technique, the size of the generated SMT formula
largely depends on the number of tainted instructions in the execution trace. This is
because only the tainted instructions are analyzed in the path condition generation
and all subsequent steps of our tool. From our experience in the experiments, we
found that the number of tainted instructions depends on the input size, as well as
the size of the program. Since SMT solving is extensively used in our approach, the
scalability of our approach is also tied to the scalability of the SMT solvers.

—Finally, there are some limitations regarding our experiments. Long program execu-
tions with large input size would produce large SMT formulas. We did not perform
experiments on programs of this kind. For errors in assignment, one may need to
follow dependency links to find the root cause if our instrumentation technique in
Section 5 is not used. Some manual code inspection is needed in this case. We did not
perform any case studies to evaluate this manual effort. However, as suggested by
the results in Section 7.7, instrumentation overhead is affordable. Therefore, users
could employ the instrumentation technique to expose errors in assignment.

10. CONCLUDING REMARKS

In this article, we presented DARWIN, a debugging methodology and tool for evolving
programs. DARWIN takes in two programs and explains the behavior of a test input

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:27

which passes in the stable program, while failing in the buggy program. The stable
program and buggy program can be two completely different implementations of the
same specification. DARWIN handles hard-to-explain code-missing errors inherently,
by pointing to code in the stable program. We have conducted experiments using four
real-world applications, such as the Apache Web server, libPNG (a library for manip-
ulating PNG images), and TCPflow (a program for displaying data sent through TCP
connections). Our experience with real-life case studies demonstrates the utility of our
method for localizing real bugs.

Developers are often faced with hard-to-locate bugs when a large software system
changes from one version to another. As long as the program requirements vis-a-vis
existing features do not change, DARWIN can truly be a useful automatic debugging
assistant for developers.

The alternate inputs generated by our method can also help detect new errors, apart
from localizing a given observable error. This can also help test-suite augmentation of
evolving programs, that is, when a program changes, we can find out potentially new
test cases to be tested for stressing the change.

REFERENCES

AGRAWAL, H. AND HORGAN, J. R. 1990. Dynamic program slicing. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI’90). ACM Press, New York, NY,
246–256.

APACHE. 2009. Apache Web server. http://httpd.apache.org/.
APIWATTANAPONG, T., ORSO, A., AND HARROLD, M. 2004. A differencing algorithm for object-oriented programs. In

Proceedings of the International Conference on Automated Software Engineering (ASE). IEEE Computer
Society, Los Alamitos, CA.

BALL, T., NAIK, M., AND RAJAMANI, S. 2003. From symptom to cause: Localizing errors in counterexample traces.
In Proceedings of the International Symposium on Principles of Programming Languages (POPL). ACM
Press, New York, NY.

BARRETT, C. AND TINELLI, C. 2007. CVC3. In Proceedings of the 19th International Conference on Computer-
Aided Verification. 298–302.

BRUMLEY, D., CABALLERO, J., LIANG, Z., NEWSOME, J., AND SONG, D. 2007. Towards automatic discovery of de-
viations in binary implementations with applications to error detection and fingerprint generation. In
Proceedings of the USENIX Security Conference. USENIX Association, Berkeley, CA.

BRUMMAYER, R. AND BIERE, A. 2009. Boolector: An efficient smt solver for bit-vectors and arrays. In Proceedings
of the 15th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’09). 174–177.

BRUTTOMESSO, R., CIMATTI, A., FRANZÉN, A., GRIGGIO, A., AND SEBASTIANI, R. 2008. The MathSAT 4 SMT Solver.
In Proceedings of the International Conference on Computer Aided Verification. 299–303.

CHEN, Y., ROSENBLUM, D., AND VO, K. 1994. Testtube: A system for selective regression testing. In Proceedings
of the International Conference on Software Engineering. IEEE Computer Society Press, Los Alamitos,
CA.

CSALLNER, C. AND SMARAGDAKIS, Y. 2006. DSD-Crasher: A hybrid analysis tool for bug finding. In Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA). ACM Press, New York, NY.

DE MOURA, L. AND BJORNER, N. 2008. Z3: An efficient SMT solver. In Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).

ELBAUM, S., MALISHEVSKY, A., AND ROTHERMEL, G. 2000. Prioritizing test cases for regression testing. In Pro-
ceedings of the International Symposium on Software Testing and Analysis (ISSTA). ACM Press, New
York, NY.

GANESH, V. AND DILL, D. L. 2007. A decision procedure for bit-vectors and arrays. In Pro-
ceedings of the Computer Aided Verification Conference (CAV). 524–536. Available online at
http://sites.google.com/site/stpfastprover/.

GIROUX, O. AND ROBILLARD, M. P. 2006. Detecting increases in feature coupling using regression tests. In Pro-
ceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(SIGSOFT’06/FSE-14). ACM Press, New York, NY, 163–174.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

19:28 D. Qi et al.

GODEFROID, P., KLARLUND, N., AND SEN, K. 2005. DART: Directed automated random testing. In Proceedings of
the Conference on Programming Languages Design and Implementation (PLDI). ACM Press, New York.
NY.

GUO, L., ROYCHOUDHURY, A., AND WANG, T. 2006. Accurately choosing execution runs for software fault local-
ization. In Proceedings of the International Conference on Compiler Construction (CC).

HOROWITZ, S. 1990. Identifying the semantic and textual differences between two versions of a program.
In Proceedings of the International Conference on Programming Language Design and Implementation
(PLDI). ACM Press, New York, NY.

HOVEMEYER, D. AND PUGH, W. 2004. Finding bugs is easy. In Proceedings of the Companion to the 19th Annual
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’04). ACM Press, New York, NY, 132–136.

HUANG, S. 2009. Miniweb Web server. http://miniweb.sourceforge.net/.
JACKSON, D. AND LADD, D. A. 1994. Semantic diff: A tool for summarizing the effects of modifications. In

Proceedings of the International Conference on Software Maintenance. 243–252.
KOREL, B. AND LASKI, J. W. 1988. Dynamic program slicing. Inform. Process. Letters 29, 3, 155–163.
LIBLIT, B. 2005. Cooperative bug isolation. Ph.D. dissertation, UC Berkeley.
LIBLIT, B., NAIK, M., ZHENG, A., AIKEN, A., AND JORDAN, M. 2005. Scalable statistical bug isolation. In Proceedings

of the Conference on Programming Language Design and Implementation (PLDI). ACM Press, New York,
NY.

LIBPNG. 2009. libPNG library. http://www.libpng.org.
PERSON, S., DWYER, M., ELBAUM, S., AND PASAREANU, C. 2008. Differential symbolic execution. In Proceedings

of the International Conference on Foundations of Software Engineering (FSE). ACM Press, New York,
NY.

QEMU. 2009. QEMU emulator. http://www.qemu.org.
QI, D., ROYCHOUDHURY, A., LIANG, Z., AND VASWANI, K. 2009. Darwin: An approach for debugging evolving

programs. In Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations of Software Engineering (ESEC-FSE).
ACM Press, New York, NY, 33–42.

RANISE, S. AND TINELLI, C. 2003. The SMT-LIB format: An initial proposal. In Proceedings of the Workshop on
Pragmatics of Decision Procedures in Automated Reasoning (PDPAR).

REN, X., SHAH, F., TIP, F., RYDER, B. G., AND CHESLEY, O. 2004. Chianti: A tool for change impact analysis
of java programs. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’04). ACM Press, New York, NY, 432–
448.

RENIERIS, M. AND REISS, S. P. 2003. Fault localization with nearest neighbor queries. In Proceedings of the Inter-
national Conference on Automated Software Engineering (ASE). IEEE Computer Society, Los Alamitos,
CA.

ROTHERMEL, G. AND HARROLD, M. J. 1997. A safe, efficient regression test selection technique. ACM Trans.
Softw. Eng. Methodol. 6, 2, 173–210.

SANTELICES, R., CHITTIMALLI, P., APIWATTANAPONG, T., ORSO, A., AND HARROLD, M. 2008. Test-suite augmentation
for evolving software. In Proceedings of the International Conference on Automated Software Engineering
(ASE). IEEE Computer Society, Los Alamitos, CA.

SAVANT. 2009. Savant Web server. http://savant.sourceforge.net/info.html.
SEACORD, R., PLAKOSH, D., AND LEWIS, G. 2003. Modernizing Legacy Systems: Software Technologies, Engineer-

ing Processes, and Business Practices. Addison-Wesley, Boston, MA.
SEN, K., MARINOV, D., AND AGHA, G. 2005. Cute: A concolic unit testing engine for c. In Proceedings of the

10th European Software Engineering Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM Press, New York, NY, 263–272.

SILLITO, J., MURPHY, G., AND DE VOLDER, K. 2006. Questions programmers ask during software evolution tasks.
In Proceedings of the International Conference on Foundations of Software Engineering (FSE). ACM
Press, New York, NY.

SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J., JAGER, I., KANG, M. G., LIANG, Z., NEWSOME, J., POOSANKAM, P.,
AND SAXENA, P. 2008. BitBlaze: A new approach to computer security via binary analysis. In Proceedings
of the 4th International Conference on Information Systems Security. Keynote invited paper.

SRIDHARAN, M., FINK, S. J., AND BODIK, R. 2007. Thin slicing. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’07). ACM Press, New York, NY, 112–122.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

DARWIN: An Approach to Debugging Evolving Programs 19:29

SRIVASTAVA, A. AND THIAGARAJAN, J. 2002. Effectively prioritizing tests in development environment. In Pro-
ceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
ACM Press, New York, NY, 97–106.

WANG, T. AND ROYCHOUDHURY, A. 2004. Using compressed bytecode traces for slicing Java programs. In Pro-
ceedings of the 26th International Conference on Software Engineering (ICSE). IEEE Computer Society,
Los Alamitos, CA, 512–521.

ZELLER, A. 1999. Yesterday, my program worked. Today, it does not. Why? In Proceedings of the 7th European
Software Engineering Conference held jointly with the ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 253–267.

ZELLER, A. 2002. Isolating cause-effect chains from computer programs. In Proceedings of the 10th ACM
SIGSOFT Symposium on Foundations of Software Engineering. ACM Press, New York, NY, 1–10.

ZELLER, A. AND HILDEBRANDT, R. 2002. Simplifying and isolating failure-inducing input. IEEE Trans. Softw.
Eng. 28, 2, 183–200.

ZHANG, X., GUPTA, N., AND GUPTA, R. 2006. Pruning dynamic slices with confidence. In Proceedings of the
International Conference on Programming Language Design and Implementation (PLDI). ACM Press,
New York, NY, 169–180.

ZHANG, X., TALLAM, S., GUPTA, N., AND GUPTA, R. 2007. Towards locating execution omission errors. In Pro-
ceedings of the International Conference on Programming Language Design and Implementation (PLDI).
ACM Press, New York, NY, 415–424.

Received October 2009; revised May, November 2010, February 2011

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 19, Pub. date: June 2012.

