
Automatic Synthesis of Filters to Discard Buffer Overflow Attacks:
A Step Towards Realizing Self-Healing Systems∗

Zhenkai Liang, R. Sekar, and Daniel C. DuVarney
Department of Computer Science, Stony Brook University

{zliang,sekar,dand}@cs.sunysb.edu

Abstract
Buffer overflows have become the most common target
for network-based attacks. They are also the primary
propagation mechanism used by worms. Although many
techniques (such as StackGuard) have been developed to
protect servers from being compromised by buffer over-
flow attacks, these techniques cause the server to crash.
In the face of automated, repetitive attacks such as those
due to worms, these protection mechanisms lead to re-
peated restarts of the victim application, rendering its
service unavailable. In contrast, we present a promis-
ing new approach that learns the characteristics of inputs
associated with attacks, and filters them out in the future.
It can be implemented without changing the server code,
or even having access to its source. Since attack-bearing
inputs are dropped before they corrupt the victim pro-
cess, there is no need to restart the victim; as a result,
recovery from attacks can be very fast. We tested our ap-
proach on 8 buffer overflow attacks reported in the past
few years on securityfocus.com and were available
with working exploit code, and found that it generated
accurate filters for 7 out of these 8 attacks.

1 Introduction
Self-healing is emerging as an exciting new area within
computer security. A key characteristic of approaches in
this area is their ability to detect ongoing attacks, identify
the underlying vulnerability being exploited, and adapt
the system to “heal” the vulnerability. Once healed, the
system becomes immune to subsequent attacks that ex-
ploit the same vulnerability. An important benefit of
self-healing is that it avoids system resources from be-
ing spent on reactive defenses, such as system restarts,
which can adversely impact system availability.

Although self-healing approaches have been studied in
the context of spontaneous faults, they have just begun to
receive attention in the context of computer and network
security. We present a new approach that represents an
important first step towards realizing practical defenses
that employ self-healing. Our approach focuses on buffer

∗This research is supported in part by an ONR grant
N000140110967 and an NSF grant CCR-0208877.

overflows, which have become the most common target
for network-based attacks. Among the COTS-related se-
curity advisories released by CERT Coordination Center
in 2003 to 2004, 41 of the 51 were related to buffer over-
flows. Moreover, they are the primary mechanism used
by worms in order to propagate.

The state-of-art in defenses against buffer overflows
includes various guarding techniques [3, 4] for prevent-
ing execution from data segments, and randomization
techniques [1, 2]. Although these techniques can de-
tect attacks before vital system resources (such as files)
are compromised, they cannot protect the victim pro-
cess itself, whose integrity is compromised prior to the
time of detection. For this reason, the safest approach
for recovery is to terminate the victim process. With
repetitive attacks, such as those due to worms, or other
forms of automated attacks, these approaches will cause
repeated server restarts, effectively rendering a service
unavailable during periods of attack. In contrast, our
self-healing approach can filter out attacks before pro-
cess integrity is compromised, thereby enabling the ser-
vice to continue without any interruption. Moreover, our
approach doesn’t require any user-supplied knowledge
about the server, or access to its source code.

2 Overview of Approach
Our approach, called ARBOR (Adaptive Response to
Buffer OveRflows), is designed to protect network server
processes. It is based on the observation that attacks ar-
rive via inputs to these processes. Figure 1 illustrates the
architecture of ARBOR, which forms a protective layer
between a process and the external environment by adap-
tively filtering out attack inputs. The adaptation is based
on a feedback loop: inputs which don’t trigger an intru-
sion report from the detector are allowed to pass through
the filter unmodified, while inputs that trigger an intru-
sion report activate the feedback loop, causing the fil-
ter to be modified to block future attacks. The principal
components of ARBOR are described below.

The input filter inspects all input entering the system
and filters out (i.e., drops) those inputs that match exist-
ing filter rules. The filtering rules are generated (auto-



Internet

External
Environment ARBOR

Inputs

Alert

Response
Recent
Inputs

Check
Update

Check

Behavior
Model

Input
Filter Logger

Analyzer

Detector

Program

Figure 1: Architecture of our approach, which is a protective layer between the protected program and the external
environment.

matically) by the analyzer component, and are intended
to capture characteristics that distinguish attack-bearing
inputs from benign ones.

The behavior model is a central component that is con-
sulted by all components of ARBOR. It is constructed
from events, such as system calls and other relevant li-
brary calls, intercepted by the logger. The model takes
the form of a finite-state automaton that is similar to a
control-flow graph of a program, except that (a) it records
only those events reported by the logger, and not the in-
ternal program actions, such as assignments and jumps,
and (b) it captures only those program paths that were
actually traversed. The behavior model is based on our
earlier work [7]. The behavior model provides contex-
tual clues that form the basis of the filter generation logic
in the analyzer component, as well as provides the tests
made by the input filter.

The logger, like the rest of the components, is imple-
mented using library call interposition. (Instead of sys-
tem call interposition, we use library interposition be-
cause of its low performance overhead. Library interpo-
sition also provides adequate security for our purposes,
since we are interested in program behaviors before it is
compromised.) It records a log of input events that is
used subsequently by the analyzer. In order to reduce
space as well as time overheads due to logging, only a
subset of data is sampled and logged.

The detector is external to ARBOR. Our current im-
plementation uses address obfuscation [2] to build the
detector. With the defense of address obfuscation, each
buffer overflow attempt will be turned into a server crash.
We intercept this crash event to trigger the feedback loop
in ARBOR.

The analyzer is responsible for synthesizing filters that
distinguish attack-bearing inputs from benign ones. The
analyzer resides in a separate process from the protected

process, collecting recent program behavior events from
the logger. If the protected process is attacked, the an-
alyzer will be notified by the detector. Upon receiving
a notification, the analyzer examines recent inputs to the
protected process to identify attack-bearing inputs. The
process of analysis is described in greater detail in the
following section.

2.1 Automatic Identification of Attack-bearing
Inputs

Given the nature of buffer overflow attacks, a basic char-
acteristic for filter generation come to mind — length
of input data, as buffer overflow attacks are usually as-
sociated with receiving inputs that are longer than what
is expected by the program. But length of input alone
is not sufficiently powerful to identify inputs of typical
buffer overflow attacks, because an attacker only needs
to provide an input longer than the normal input for that
buffer, not necessarily longer than all other inputs to the
program. Therefore, the attack-bearing input may not
be distinguishable among all the inputs. However, if we
compare the inputs serving the same purpose, the length
difference between attack-bearing inputs and benign in-
puts will likely become more obvious. In our approach,
we use the program’s execution context of input opera-
tions to provide us “hints” about the purpose of an input.
The problem, then, is how to extract context information
from a program’s execution.

One of the key insights in this paper is that we can in-
fer relevant context information by observing the actions
of the protected process, e.g., the execution path taken by
the program, the contents of runtime stack at the point of
input operation, parameters to input operation. We treat a
process as a state machine, which makes transitions from
one state to another. The transitions are made on library
calls. In our approach, we use the location in the program



from which library calls are made to represent states of
the state machine. The state machine provides a con-
text of the process’s current operation. In addition, we
may rely on context information observed near the input
operation in question. This leads to two major types of
contexts: current context and historical context.

Current context is the program state at the point of in-
put, which helps to distinguish a specific input operation
from others made by the protected program. In our im-
plementation, current context is defined by the location
in the program from which the input operation was in-
voked, and a sequence of return addresses on the pro-
gram’s stack. The return addresses provides information
about how the current operation is invoked. It is partic-
ularly helpful when the program uses a centralized input
handler function that is called from multiple places in the
code, and this function in turn invokes the actual input
operation. In this case, the calling location for the input
function may always remain the same, but the sequences
of return address on the stack are different.

With the current context, the analyzer synthesizes a
filter rule matching the attack as follows. For each suspi-
cious input, the analyzer first identifies its current context
C, and then retrieves the input statistics under context C,
which is maintained by the logger during the program’s
normal execution. If in this context, the size a of the sus-
picious input is significantly larger than the maximum
size bmax that has ever been seen during normal execu-
tion, we report this input as an attack-bearing input. The
synthesized filtering rule is simply one that flags an at-
tack if the input size is larger than the geometric mean of
a and bmax.

If the context of all input operations made by a pro-
gram are identical, then the above approach may fail to
distinguish between attack-bearing and benign inputs. In
this case, we extend our approach to use historical con-
text, which takes into account the program paths that
were taken prior to the input operation.

2.2 Light-weight Recovery After Discarding
Attack-bearing Inputs

After discarding input, it is necessary for the server pro-
cess to take recovery actions, so that it can get ready to
serve future requests. However, it is difficult to automat-
ically discover the set of actions to be taken. To address
this problem, we observe that networked servers expect
and handle transient network errors, which can cause in-
put operations to fail. We leverage this error recovery
code to perform the necessary clean up actions. Specif-
ically, whenever ARBOR drops attack-bearing input, it
changes the return code of the input operation to an er-
ror code associated with a network error. This error code
causes the server to invoke its recovery code, including
freeing of resources allocated to process the client re-

irc
d

gt
kftp

d
lsh

d
ntp

d
oo

ps

ep
ic4

sa
m

ba

pas
slo

gd

Current context used

Historical context used

No context used

0.1

 1

 10

 100+

R
at

io
 o

f 
at

ta
ck

 t
o 

be
ni

gn
 in

pu
t 

si
ze

Figure 2: Effectiveness of ARBOR in synthesizing size-
based filters against buffer overflow attacks. A value less
than one indicates that ARBOR is not able to distinguish
attack-bearing inputs from benign input.

quest and so on. We have found this approach to work
successfully in all of our experiments.

3 Preliminary Results
We used ARBOR to defend several programs against re-
mote buffer overflow attacks. Our focus was on “real”
buffer overflow attacks, so we examined buffer over-
flow attacks reported on securityfocus.com during 2001–
2003. We found eight attacks with working exploit code.

Figure 2 shows the results obtained with these pro-
grams, which are ratios of attack-bearing input size and
maximum benign input size. A ratio less than one indi-
cates that ARBOR cannot distinguish attack-bearing in-
put from benign input under the program context used.
The results are divided into three groups according to the
context involved in the synthesized filters. In the first
group (gtkftpd, ircd, lshd, ntpd), current context (specifi-
cally, the program location from where the input oper-
ation was called) was enough to generate an effective
filter. The programs in the second group (oops, epic4,
samba) received several types of inputs from a single lo-
cation, so current context was not sufficient to synthesize
filters. However, by using historical context, ARBOR
was able to create an accurate filter that discarded sub-
sequent attacks. The third group (passlogd) consists of a
single program, for which ARBOR cannot successfully
generate a filter. The buffer overflow in the third group
is caused by part of the input, which cannot be identified
by the overall length of the input.

Importance of context information As we can see
from the figure, when context information is not in-
volved, only 13% (1 out of 8) of attacks can be identi-
fied, in which the attack-bearing input is so huge that it
is larger than all other inputs. After current context is
involved, 50% of the attacks can be identified and fil-



tered out. If both current context and historical context
are used, ARBOR can generate effective filters for 88%
of the attacks.

As a final point, we note that we restricted ourselves
to length-based filters as a way to stress our approach for
inferring and using program context in filtering rules. By
using other criteria, such as input character distributions,
in conjunction with length-based and context-based fil-
tering rules, the approach can be made even more effec-
tive.

4 Related Work
Shield [9] is also aimed at filtering out network-based at-
tacks on servers. Whereas our approach synthesizes fil-
ters automatically for a subclass of attacks (buffer over-
flows), Shield is based on manually developed filtering
rules to address a broader range of attacks.

Automatic patch generation [8] attempts to deal with
rapidly propagating worms by automatically generating
a patch to fix the vulnerability being exploited by the
worm. The primary differences with our approach are
that [8] uses a more complex generate-and-test approach
to diagnose the vulnerability exploited in an attack, re-
quires source code of the protected server, plus an iso-
lated, sandboxed duplicate of the protected server to test
the correctness of the patch.

The HACQIT project [5] takes an alternative approach
that combines software diversity with content-filters de-
ployed at the network level. Attacks are suspected when
two implementations of the same software yield differ-
ent results on the same input. A rule-based algorithm is
used to learn characteristics of inputs suspected of con-
taining attacks, and generate a filter to discard such re-
quests in the future at the firewall. This algorithm has
been shown to work against Code Red worm. However,
it is not clear how the algorithm can be generalized to
deal with all types of buffer overflow attacks.

Failure-oblivious computing [6] is a source code trans-
formation approach that can also recover quickly from
attacks. It detects out-of-bounds write accesses, and di-
rects them to a different (free) memory area. Subsequent
out-of-bounds reads to the same area return the data that
was previously written. Other out-of-bounds reads re-
turn carefully chosen values, e.g., all zeroes. The main
strength of this approach is that it reliably detects the
root cause of the problem. Its weaknesses are the high
overheads required for memory error detection, often ex-
ceeding 100%; and the possibility that processing the at-
tack input may cause the program to fail and/or crash,
although their experiments indicate that is atypical.

5 Discussion
Our preliminary results demonstrate the feasibility of de-
veloping self-healing approaches to protect servers from

buffer overflow attacks. Unlike previous approaches that
were focused mainly on preventing a system compro-
mise, our approach is able to provide complete immunity,
in the sense that attacks don’t even have a performance
impact on the victim server.

While the approach is very effective on existing at-
tacks, it does have some weaknesses that may be ex-
ploited in attacks specifically designed to fool it. For
instance, attacks may be delivered through a sequence
of small packets, causing each input operation to return
a small amount of data. We are developing techniques to
deal with this problem by assembling together the data
returned by successive input operations, and developing
filters based on this assembled data rather than the data
returned by individual input operations.

A second problem concerns attacks where the buffer
overflow is triggered by a field in the request, and not
the entire request. Therefore, the length of input is not a
characteristic of the attack. In this case, we need to iden-
tify the vulnerable field in the input, and use the identi-
fication information to increase the accuracy of program
contexts. We are currently investigating techniques to
handle such attacks.

References
[1] The pax team. http://pax.grsecurity.net.

[2] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a broad range of memory error
exploits. In Proceedings of 12th USENIX Security Symposium,
August 2003.

[3] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Auto-
matic adaptive detection and prevention of buffer-overflow attacks.
In Proceedings of 7th USENIX Security Conference, January 1998.

[4] H. Etoh and K. Yoda. Protecting from stack-smashing
attacks. Published on World-Wide Web at URL
http://www.trl.ibm.com/projects/security/ssp/main.html, June
2000.

[5] J. C. Reynolds, J. Just, L. Clough, and R. Maglich. On-line in-
trusion detection and attack prevention using diversity, generate-
and-test, and generalization. In Proceedings of the 36th Hawaii
International Conference on System Sciences, 2003.

[6] M. Rinard, C. Cadar, D. Roy, and D. Dumitran. A dynamic tech-
nique for eliminating buffer overflow vulnerabilities (and other
memory errors). In Proceedings of the 20th Annual Computer Se-
curity Applications Conference (ACSAC), December 2004.

[7] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A fast
automaton-based method for detecting anomalous program behav-
iors. In Proceedings of IEEE Symposium on Security and Privacy,
May 2001.

[8] S. Sidiroglou and A. D. Keromytis. Countering network worms
through automatic patch generation. Technical Report CUCS-029-
03, Columbia University Department of Computer Science, 2003.

[9] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
Vulnerability-driven network filters for preventing known vulner-
ability exploits. In Proceedings of the 2004 conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), August 2004.


