
1

The XQuery language
• XQuery is a query language developed by W3C.
• It is derived from several previous proposals:

– XML-QL
– YATL
– Lorel
– Quilt
which all agree on the fundamental principles.

• XQuery relies on XPath and XML Schema data
types.

2

Query language requirements
• The W3C Query Working Group has identified many technical requirements:

– must be declarative
– must respect XML data model
– must be namespace aware
– must coordinate with XML Schema
– must work even if schemas are unavailable
– must support simple and complex data types
– must support universal and existential quantifiers
– must support operations on hierarchy and sequence of

document structures
– must combine information from multiple documents
– must support aggregations
– must be able to transform and to create XML structures
– must be able to traverse ID references

• In short, it must be SQL generalized to XML!

3

XQuery concepts
• A query in XQuery is an expression that:

– reads a sequence of XML fragments or atomic values
– returns a sequence of XML fragments or atomic values

• The principal forms of XQuery expressions are:
– path expressions
– element constructors
– FLWOR (pronounced as "flower") expressions
– list expressions
– conditional expressions
– quantified expressions
– XQuery built-in functions
– User-defined functions
– datatype expressions

4

Path expressions
• The simplest kind of query is just an XPath expression.

As usual, some specific extensions are allowed...

• A simple path expression example:

document("zoo.xml")//chapter[2]//figure[caption = "Tree Frogs"]

– the result is all figure elements with caption “Tree
Frogs” in the second chapter of the document zoo.xml

– the result is given as a list of XML fragments, each
rooted with a figure element

– the order of the fragments respects the document
order (order matters! - as opposed to SQL)

5

Path expressions (Cont.)

• An XQuery specific extension of XPath allows location steps
to follow a new IDREF axis:

 document("zoo.xml")//chapter[title="Frogs"]//figref/@refid => figure/caption

– the result is all captions in figures referenced in the
chapter with title “Frogs”

– the => operator follows an IDREF attribute to its unique
destination

• As a further generalization, XQuery allows an arbitrary
XQuery expression to be used as a location step!

6

Element constructors
• An XQuery expression may construct new XML elements
• More interestingly, an expression may use values bound to variables:

<employee empid={ $id }>
 { $name }
 { $job }
</employee>

 Here the variables $id, $name, and $job must be bound to appropriate
fragments.

• In a direct element constructor, curly braces { } delimit enclosed
expressions, distinguishing them from literal text.

• Enclosed expressions are evaluated and replaced by their value.
 Without curly braces { }, e.g. $name will be simply treated as text string

in the employee element.

• The output will be like:
 <employee empid = “e12”>
 <name> Tan AK </name>
 <job> manager </job>
 </employee>

7

FLWOR expressions
• The main engine of XQuery is the FLWOR

expression:
– FOR-LET-WHERE-ORDERBY-RETURN
– pronounced as "flower"
– FOR iterates on a sequence, binds a

variable to each element.
– LET binds a variable to a sequence of

elements as a whole
– generalizes SELECT-FROM-HAVING-WHERE

from SQL

8

FLWOR expressions (cont.)
 Example:

 FOR $p IN document("bib.xml")//publisher
 LET $b := document("bib.xml)//book[publisher = $p]
 WHERE count($b) > 100
 RETURN $p

– FOR generates an ordered list of bindings of publisher to $p
– LET associates to each binding a further binding of the list of

book elements with that publisher (i.e. $p) to $b
– WHERE filters that list to retain only the desired tuples
– RETURN constructs for each tuple a resulting value

• The output of this example will have many publisher elements
including the start and end tags, e.g.

 <publisher> Springer </publisher>
• The combined result is in this case an ordered list of publishers (may

contain duplicates) that publish more than 100 books.

9

FLWOR expressions (cont.)

• We probably only want each publisher appears once, so the
distinct-values function eliminates duplicates in a list:

FOR $p IN distinct-values(document("bib.xml")//publisher)
LET $b := document("bib.xml)//book[publisher = $p]
WHERE count($b) > 100
RETURN $p

• Note the difference between FOR and LET:

 FOR $x in /library/book

• generates a list of bindings of $x to each book element in the library, but:

 LET $x := /library/book

• generates a single binding of $x to the list of all the book elements in the
library.

10

FOR vs. LET

FOR $book IN document(“bib.xml”)//book
LET $a := $book/author
WHERE contains($book/publisher, “Addison-Wesley”)
RETURN

 <book>
 { $book/title }
 <count>
 Number of authors: { count($a) }
 </count>
 </book>

Another example:

11

Inner Joins
FOR $book IN document(“www.bib.com/bib.xml”)//book,
 $quote IN
 document(“www.bookstore.com/quotes.xml”)//listing
WHERE $book/isbn = $quote/isbn
RETURN

 <book>
 {$book/title}
 {$quote/price}
 </book>

Note: Inner join only output information which satisfy the join condition.
 In this example, only those books appeared in both documents will
 appear in the output.

12

Outer Joins
FOR $book IN document(“bib.xml”)//book
RETURN

 <book>
 { $book/title }
 {
 FOR $review IN document(“reviews.xml”)//review
 WHERE $book/isbn = $review/isbn
 RETURN $review/rating
 }
 </book>

 Note: An outer join is a join that preserves information from one or more of
the participating documents, including elements that have no matching
element in the other documents.

In this example, the query returned titles of all books in document bib.xml
regardless whether or not they have a review in document reviews.xml

13

ORDER BY
Example:

FOR $p IN document("www.irs.gov/taxpayers.xml")//person
 $n IN document("neighbors.xml")//neighbor[ssn = $p/ssn]
ORDER BY $p/income
RETURN
 <person>
 { $p/ssn }
 { $n/name }
 { $p/income }
 </person>

Note: Order the output by person’s income in ascending order.

14

ORDER BY - Another Example

• Example:

– For each “item_tuple” element return the description and
reserve_price if the reserve_price is below 50 dollars, and return
them in alphabetically ascending order of the item description.

FOR $item IN
 document(“data/R-items.xml”)/items/item_tuple
WHERE $item/reserve_price < 50
ORDER BY $item/description
RETURN
 <item>
 {$item/description}
 {$item/reserve_price}
 </item>

15

List expressions
• XQuery expressions manipulate lists of values, for which many

built-in functions are supported.
For example, the avg(...) function computes the average of a list of

integers.

• The following query lists each publisher and the average price of
their books:

FOR $p IN distinct-values(document("bib.xml")//publisher)
LET $a := document("bib.xml")//book[publisher = $p]/price
RETURN
 <publisher>
 <name> { $p/text() } </name>
 <avgprice> { avg($a) } </avgprice>
 </publisher>

Note: text() matches any text node. $p/text() returns only the text
value of the publisher without the start and end tags of publisher.

16

List expressions (cont.)

• Lists can be sorted, as in the following where books costing
more than $100 are listed in sorted order:
– first by the first author
– second by the title

document("bib.xml")//book[price > 100]
 SORTBY (author[1],title)

• Other list operators compute unions, intersections,
differences, and subranges of lists.

17

Conditional expressions
• XQuery supports a general IF-THEN-ELSE construction.
 The example query:

FOR $h IN document("library.xml")//holding
RETURN
 <holding>

{ $h/title,
 IF ($h/@type = "Journal")
 THEN $h/editor
 ELSE $h/author
}

 </holding>

This query extracts from the holdings of a library the titles and

either editors or authors.

18

Quantified expressions

• XQuery allows quantified expressions, which decide
properties for all elements in a list:

 SOME-IN-SATISFIES

 EVERY-IN-SATISFIES

 Similar to existential quantifier and universal qualifier.

19

Quantified expressions (cont.)

 The following example finds the titles of all books
which mention both sailing and windsurfing in some
paragraph:

 FOR $b IN document("bib.xml")//book
 WHERE SOME $p IN $b//paragraph
 SATISFIES (contains($p,"sailing")
 AND contains($p,"windsurfing"))
 RETURN $b/title

20

Quantified expressions (cont.)

• The next example finds the titles of all books which
mention sailing in every paragraph:

 FOR $b IN document("bib.xml")//book
 WHERE EVERY $p IN $b//paragraph
 SATISFIES contains($p,"sailing")
 RETURN $b/title

21

Some More Expressions
• SOME $emp IN //employees SATISFIES

 ($emp/bonus > 0.25 * $emp/salary)

• EVERY $emp IN //employes SATISFIES
 ($emp/bonus > 0.05 * $emp/salary)

22

Other issues
Things not covered here:
• hundreds of built-in operators and functions -

contains anything you might think of
• computed element and attribute names - allow

more flexible queries
• user-defined functions - allow general-purpose

computations
• the XQuery language definition has many

outstanding issues - stay tuned for changes

23

XQuery 3.0: An XML Query Language
W3C Working Draft 14 June 2011

1. group by clause in FLWOR Expressions.
2. tumbling window and sliding window in FLWOR Expressions.
3. count clause in FLWOR Expressions
4. allowing empty in for clause, for functionality similar to outer

joins in SQL.
5. try/catch expression, for exception handling
6. dynamic function invocation
7. Inline functions
8. Private functions
9. switch expressions
10. Computed namespace constructors
11. Output declarations
12. Annotations
13. Annotation assertions in function tests.

XQuery 3.0 is an extended version of the XQuery 1.0
Recommendation published on 23 January 2007. A list of changes
made since XQuery 1.0 can be found in J Change Log. Here are
some of the new features in XQuery 3.0:

http://www.w3.org/TR/xquery-30/#id-revision-log

	The XQuery language
	Query language requirements
	XQuery concepts
	Path expressions
	Path expressions (Cont.)
	Element constructors
	FLWOR expressions
	FLWOR expressions (cont.)
	FLWOR expressions (cont.)
	FOR vs. LET
	Inner Joins
	Outer Joins
	ORDER BY
	ORDER BY - Another Example
	List expressions
	List expressions (cont.)
	Conditional expressions
	Quantified expressions
	Quantified expressions (cont.)
	Quantified expressions (cont.)
	Some More Expressions
	Other issues
	XQuery 3.0: An XML Query Language�W3C Working Draft 14 June 2011

