
CS4221: Extending Classical FDs ...
1

CS 4221: Database Design

Extending
Classical Functional Dependencies

for
Physical Database Design

Ling Tok Wang
National University of Singapore

CS4221: Extending Classical FDs ...
2

Topics
 Physical Database Design
 Normalization: Theory vs. Practice
 Strong Functional Dependency

o Replicated 3NF
Weak Functional Dependency

o Relaxed 3NF
 Relax-replicated 3NF
 Preserving database integrity with relax-replicated 3NF

Ref: Tok Wang Ling, Cheng Hian Goh, Mong-Li Lee: Extending classical
functional dependencies for physical database design. Information &
Software Technology 38(9): 601-608 (1996)

2

CS4221: Extending Classical FDs ...
3

Physical Database Design
• It is the process of transforming a logical database model

into a physical database model of a database.
• Unlike a logical database design, a physical database design

is optimized for data-access paths, performance
requirements and other constraints of the target
environment, i.e. hardware and software.

• Note that a database in good normal form (e.g. 3NF,
BCNF, or 4NF) may not give good performance for some
applications.

• We will introduce some extensions to functional
dependency together with some theories for physical
database design.

CS4221: Extending Classical FDs ...
4

Normalization: theory vs. practice
Example 1. Consider the Supplier-Part database

Sup_info (sno, pno, sname, addr, pname, color, qty)

with FDs:
sno sname, addr
pno pname, color
sno, pno qty

• The relation Sup_info is not in good normal form (in fact
it is not in 2NF).

• According to normalization theory, we need to normalize it to
the below 3NF and also BCNF relations:

Supplier (sno, sname, addr)
Part (pno, pname, color)
Supply (sno, pno, qty)

4

CS4221: Extending Classical FDs ...
5

• Assume that the enterprise requires frequently reporting
on the information held in the relation Supply together
with sname and pname values, i.e. what we need is the
relation

Supply_View (sno, pno, sname, pname, qty)

• This effectively means computing the join on all the three
3NF relations to get Supply_View.
A very expensive and time consuming operation!

• The above schema is not a good solution for this
application.

• Any better solution?

5

CS4221: Extending Classical FDs ...
6

Example 2. Consider a database whose intension is to capture
information of employee in a company.

Emp (emp#, empname, phone#, post, ...)

Assumption: Every employee has only one phone except a
few very senior managers.

The database designer has 2 alternatives:

Solution 1. Create a new attribute alt_phone#
Emp (emp#, empname, phone#, alt_phone#, post, ...)

Problem: High storage cost. Also some senior managers may
have more than 2 phones.

Solution 2. Treat phone# as a multivalued attribute,
i.e. emp# phone#

So one more relation is needed, i.e.
Emp(emp#, empname, post, ...)
Emp_phone(emp#, phone#)

6

CS4221: Extending Classical FDs ...
7

Solution 2 has two problems:

(1) need one extra relation, so extra storage cost
(2) To retrieve the phone#’s and other information such as

name of employees, we need to join the 2 relations.
An expensive and time consuming operation.

Q: Any other better solutions?
Yes!

We introduce the notions of strong functional dependency
and weak functional dependency.

7

CS4221: Extending Classical FDs ...
8

Defn: Let X Y be a FD such that for each z

Y, X z
is full FD. X Y is a SFD if all the attributes in Y
will not be updated, or if the updates need not be
performed at real-time or on-line and such updates
are very seldom.
We denote it as:

Strong Functional Dependency (SFD)

X YS

E.g. In example 1, as pname and sname are seldom changed,
so we have 2 SFDs

pno pnameS

sno snameS

8

CS4221: Extending Classical FDs ...
9

Weak Functional Dependency (WFD)

and it is a weak FD.

Defn: Let X and Y be subsets of a relation R, and
X Y in R.
If most of the X-values are associated with a Y-value
in R, except for a handful of X-values which may be
associated with more than one Y-value,
i.e. if we remove these handful of exception tuples
from R, then X Y holds in R.
We say Y is weakly dependent on X and denote this as

X YW

emp# phone#W

E.g. In Example 2, we have the below WFD

9

CS4221: Extending Classical FDs ...
10

Property:

Defn: [Replicated 3NF]

X YS X YWX Y

Let R

= {R1 , R2 , ..., Rn } be a relational database schema,
and Aj be the set of the attributes of Rj , for j = 1, 2, ..., n.
A relation Ri in R

is said to be in replicated 3NF if:

a key of Ri ,
Case (1) If X is not a role name of the key of Ri , then there

exist a unique Rj

R, j

i, such that X is a key of

Rj and Y

Aj . Rj is said to be the primary instance
of Ri w.r.t. the attributes in X

Y, or

Case (2) If X is a role name of the key of Ri, and Y is a role
name of some attribute in Ri

s(1) For each X Y, X Y Ai, where X is not

X is not a key of Ri , B is a non-prime of Ri }
The relation obtained from Ri after removing all attributes
in

is in 3NF.

s(2) Let = {B | X B, X {B} Ai ,

10

CS4221: Extending Classical FDs ...
11

Example 3. Consider the database schema

Supplier (sno, sname, addr)
Part (pno, pname, color)
Supply (sno, pno, sname, pname, qty)

Clearly Supply relation is not in 3NF.
However, it is in replicated 3NF since

sno snameS

pno pnameS

Supplier and Part relations are the primary instances of
Supply w.r.t. {sno, sname} and {pno, pname} resp.
(i.e. case (1) and

= {sname, pname})

Observation: Supply relation contains redundant sname and
pname information. However, there is no updating problem by
sname and pname as we don’t change their vaules.

11

CS4221: Extending Classical FDs ...
12

Example 4. Consider the relation

Emp_Mgr (emp#, ename, mgr#, mgrname, addr)

(1) Replicated 3NF relations may contain redundant data.
However, such redundancies can be controlled. Q: How?

(2) Replicated 3NF relations provide efficient retrieval for
certain applications.

mgr# is a role name of emp#
mgrname is a role name of ename

Emp_Mgr is not in 3NF but it is in replicated 3NF by the
condition in case (2) and

= {mgrname}.

Note: Some mgrname’s are duplicated. However,
mgrname does not cause updating anomalies as managers
do not change their name.

Properties:

s

s
 emp# ename

mgr# mgrname

12

CS4221: Extending Classical FDs ...
13

Defn: [Relaxed 3NF]

Example 5. Consider the relation Emp in Example 2

Emp (emp#, ename, phone#, post, ...)

Let R

= {R1 , R2 , ..., Rn } be a relational database schema,
and Aj be the set of the attributes of Rj , for j = 1, 2, ..., n.
A relation Ri in R

is said to be in relaxed 3NF if whenever

by its regular counterpart (i.e. X Y), Ri would have
been in 3NF.

We have
emp# ename, post, ...

Emp is not in 3NF, but it is in relaxed 3NF.
Q: Why?

Wevery weak FD X Y which holds in Ri is replaced

Wemp# phone#

13

CS4221: Extending Classical FDs ...
14

We can implement the WFD

by treating phone# as if
emp# phone#

holds and accommodates exceptional cases (i.e. 2nd or
3rd, etc. phone of employees) in an overflow relation
as follows:

Emp (emp#, ename, phone#, post, ...)
Emp_phone_overflow (emp#, overflow-phone#)

Wemp# phone#

Question: How to maintenance the phone#’s of employees
in the two relations?

14

CS4221: Extending Classical FDs ...
15

Defn: [Relax-Replicated 3NF]
Let R

= {R1 , R2 , ..., Rn } be a relational database schema,

and Aj be the set of the attributes of Rj , for j = 1, 2, ..., n.

A relation Ri in R

is said to be in relax-replicated 3NF if

replaced by its regular counterpart (i.e. X Y),
Ri would have been in replicated 3NF.

whenever every weak FD X Y which holds in Ri is W

15

CS4221: Extending Classical FDs ...
16

Example 6. Consider the schema

Emp_mgr (emp#, ename, mgr#, mgrname, phone, addr)
Emp_phone_overflow (emp#, overflow-phone#)

where attribute mgr# and mgrname are role names of emp# and
ename resp., and

The relation Emp_mgr is in relax-replicated 3NF.

Note:
We can similarly define relax-replicated improved 3NF,
relax-replicated BCNF, relax-replicated 4NF, etc.

Smgr# mgrname

Semp# ename

Wemp# phone#

16

CS4221: Extending Classical FDs ...
17

Preserving database integrity with
relax-replicated 3NF

Example 7. [Preserving integrity of replicated 3NF]
Consider schema

Supplier (sno, sname, addr)
Part (pno, pname, color)
Supply (sno, pno, sname, pname, qty)

where

Supply relation is in replicated 3NF.

In order to preserve the integrity of this database, we need
to enforce the below inclusion dependencies:

Supply [sno, sname]

Supplier [sno, sname]
Supply [pno, pname]

Part [pno, pname]

Spno pname
Ssno sname

Q: How? 17

CS4221: Extending Classical FDs ...
18

E.g. Insert into supply values (“s1”, p1”, “acme”, “screw”, 10)
The insertion operation might be rewritten to the
following:

S := select *
from Supplier
where Supplier.sno = “s1” and

Supplier.sname = “acme”;

P:= select *
from part
where Part.pno = “p1” and

Part.pname = “screw”;

if S = NULL or P = NULL
then reject transaction
else insert into Supply

value (“s1”, “p1”, “acme”, “screw”, 10);

Q: How about update and delete operations on relation Supply?

To test whether there is
a part “p1” with name
“srew” in the relation
Part.

18

CS4221: Extending Classical FDs ...
19

Example 8. [preserving integrity of relaxed 3NF]

Consider the schema in Example 5 again.

Emp (emp#, ename, phone#, post, ...)
Emp_phone_overflow (emp#, overflow-phone#)

• Find all the phone numbers of Smith.

select phone#
from Emp
where ename = “Smith”
union
select overflow-phone#
from Emp_phone_overflow, Emp
where Emp.ename = “Smith” and

Emp.emp# = Emp_phone_overflow.emp#;
19

Note that there are very few tuples
in relation Emp_phone_overflow,
only very few employees have
more than one phone.

CS4221: Extending Classical FDs ...
20

• In fact, we could have an interface and users only see
the relation Emp. In this case, the users could query the
relation directly say, with

select phone#
from Emp
where ename = “Smith”;

In this case, users don’t need to know WFD and its
implementation.

20

CS4221: Extending Classical FDs ...
21

• The insertion operation. E.g.
insert into Emp values (Eno, Ename, Ephone, ...)

can be transformed to
E := select *

from Emp
where emp# = Eno;

if E = NULL then // a new employee
insert into Emp values (Eno, Ename, Ephone, ...)

else
if E.phone# = NULL then // employee has no phone yet

update Emp set phone# = Ephone
else // employee has one or more than one phone

if E.phone# = Ephone then reject transaction // same phone # value

else
insert into Emp_phone_overflow values (Eno, Ephone)

// also need to check duplicate phone # value in Emp_phone_overflow
21

CS4221: Extending Classical FDs ...
22

• The deletion operation

E.g. Delete a phone# with value Ephone of an emplyoee with
E# value Eno. The query is written as below:

update Emp set phone# = NULL
where emp# = Eno and phone# = Ephone

The above query is transformed to a query on the two tables
Emp and Emp_phone_overflow.

• If the phone # to be deleted is in Emp table, then delete it and move
a phone# in the overflow table to Emp if any, and exit.
• If the phone # to be deleted is not in Emp table, then check whether
it is in the overflow table. If yes, delete it, else error.

22

CS4221: Extending Classical FDs ...
23

select phone#
from Emp
where emp# = Eno;
if phone# = Ephone then // the phone# (i.e. Ephone) to be deleted is in Emp relation

S := select overflow-phone# // check whether this employee has other phones
from Emp_phone_overflow
where emp# = Eno;

if S = NULL then // this employee has no other phone
update Emp set phone# = NULL // this employee now has no phone
where emp# = Eno

else // this employee has other phones, move a phone# in the overflow relation
to Emp
p := any arbitary phone# value in S
delete from Emp_phone_overflow

where emp# = Eno and overflow-phone# = p;
update Emp set phone# = p
where emp# = Eno

else // the phone# to be deleted is not in Emp, delete it in Emp_phone_overflow relation
delete from Emp_phone_overflow
where emp# = Eno and overflow-phone# = Ephone

Q: Efficient? How about update a phone#?
23

	CS 4221: Database Design���Extending �Classical Functional Dependencies �for �Physical Database Design
	Topics
	Physical Database Design
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

