
_,

‘.
“I’

KNOWLEDGE BASE FOR DATABASE DESIGN

J.J.Korczak, L.A.Maciaszek, G.J.Stafford

The University of Wollongong
Department of Computing Science

P.O.Box 1144, Wollongong. N.S.W. 2500. Australia

ABSTRACT 1. INTRODUCTION

This paper describes the database design knowledge of a
computer-assisted database design tool, called the Intelligent
Database Design Kit (IDDK): useil to develop database sy&ms.
The IDDK knowledge base 1s stored in the form of a database
dictionary based on an extended entity-relationship-ataibute
model. The database dictionary is central to the knowledge
engineering approach of the IDDK implementation strategy. The
knowledge-based dictionary is a repository of meta-data (atomic
facts, concepts. definitions, inference rules, heuristics) for a
database system development. IDDK tools are developed using,
to a large extent, semantic models and artificial intelligence
techniques. The paper introduces computer-assisted extensions
to Chen’s entity-relationship model, in particular, recursive,
subset, generic, and nested relationship concepts. An
architecture and framework for intelligent database design is
presented. The database design knowledge is divided into a
declarative part (containing a description of entities, relationships
and attributes) and a procedural part (defining design
operations). While driving the IDDK tools, the knowledge base
maintains basic consistency checks. In fact, the same
methodology that supports the database design activities is used
to implement the knowledge base. The IDDK interface to the
knowledge base editor is based on a standard Macintosh
interface extended with database design-oriented pallette icons
and graphical editing tools.

Retrospectively, database design has relied ujton human
experience and judgement rather than mechanistic algcnithmS.
The design task is usually performed by vltperts who obtain
information about the users’ needs through interviewing,
examining existing documentation, and other traditional means.
To this extent, the current approach suffers from two
weaknesses: (1) it requires the use of a scarce resource - the
expert database designer, and (2) the designer’s knowledge of
the application is necessarily second-band and some of its
intricacies ,are likely to be overlooked. In our research, we
respond to these problems by providing: (1) an expert system
based set of tools, (2) a large lmowledge base ;IS a repository for
information about the application and design activities.

The Intelligent Database. Design Kit (IDDK) is a
knowledge engineering project which integrates database
technology. software engineering, and knowledge-based
techniques. A key concept in this research is the use of a
semantically extended conceptual model (entity-relationship
(Chcn, 1976)) as the underlying formalism of the database
design knowledge base, which in turn drives the IDDK tools.
The paper extends the fonhcoming ANSI and IS0 standards for
Information Resource Dictionary System IRDS (Dolk and
Kirsch II, 1987; Goldfine, 1985). The extension is threefold: (1)
it applies a knowledge-based technology to computer-assisted
design environments. (2) it uses expkit database design
knowledge,
development.

(3) it relate&. to, the life-cycle of system

Categories and Subject Descriptors: D.2 [Software
Engineering]: D.2.1 Requirements/Specifications, D.2.10
Design; H.2 [Database Management]: Data
dictionary/directory; I.2 [Artificial Intelligence]: 1.2.4
Knowledge Representation Formalisms and Methods, 12.5
Programming Languages and Software.

Additional Keywords and Phrases: Aggregation,
Conceptualization, Data Dictionary, Declarative
Knowledge, Entity-Relationship-Attribute Model, Expert
System, Generalization; Inference Engine, Knowledge
Base, Procedural Knowledge, User Interface.

Permission to copy without fee all or part of this material is granled
provided thar the copies are not made or distributed for direct
commercial advantage, the DASFAA copyright notice and the litle of
the publication and its date appear, and notice is given that copying
is by permission of the Organizing Committee of the International
Symposium on Database Syslems for Advanced Applications. To
copy otherwise, or to republish. requires a fee and /or special
permission from the Organizing Commitlee.

IDDK is concerned with an entire’ database development
life-cycle: requirements anaiysis, conceptual, logical and
physical database modelling, application software d&sign,
maintenance and evolution. The methodology is process-driven;
data semantics are derived from the semantics of business
functions and any performance-motivated refinements and
modifications of data structures, are, validated against the
specifications of functions. In an overall IDDK approach. the
design begins wi!h the identifloatlon of business processes and
data flows. IDDK includes a tool to draw data flow diagrams.
The diagrams are used to derive afust-cut conceptual structure.
which is then refined and converted $0 a relational logical
structure. IDDK keeps track of completed transforms and
ensures the coordination among s@s and the integrity of the
logical stmcture being derived.

The emphasis of this pa
k

r is on the database design
knowledge of IDDK. The IDD knowledge base is expressed
as a semantic net that is an extension of Chen’s entity-
relationship model (Chen, 1976). IDDK knows the fun@mental
concepts such as entity, relationship, attriiute, as well as the
extensions such as recursive relationship; subset relationship,
generic relationship, nested relationship, &normalized object,

International Symposium on Database Systems tar Advanced Applications Seotil, Korea, April, 1989

-61 -

and modeling heuristics. An extended entity-relationship-
attribute (BRA) model, built in IDDK, offers mechanisms for the
representation and organization of knowledge. In contrast to
application-oriented knowledge, database design knowled e -
once customized - is not expected to undergo changes. ht
design knowIedge for application development is unique to
lDDK and relatively static.

The database &sign knowledge is obtained from database
experts and encoded in IDDK,Tht design knowledge is divided
into declarative and procedural knowledge (Frost, 1986, Keller,
1987). Declarati~c knowledee emohasizes the “static” asceet of
database design - entities, relationships, attribute& The
procedural knowledge emphasizes the “dynamic” aspect of
database design and defines how to USC the declarative
knowledge in the design process. The declarative knowledge
and procedural knowledge are integrated in a common
framework and can be used for various phases of the system life
cycle.

The paper is organized as follows. In the next section, the
framework for intelligent database design is discussed. A
detailed diagram of the lDDK tools for the database design life
cycle is also introduced. In Section 3, our approach to database
design knowledge is described. The description of the
knowledge base editor is given and the structure of declarative
and procedural knowledge for database design is presented.
Simple examples are used to illustrate some fine points of a
knowledge-based approach to database design.

2. FRAMEWORK FOR INTELLIGENT DATABASE
DESIGN

2.1. Principles of IDDK Development

IDDK tools are being developed with the use of semantic models
and artificial intelligence techniques. The semantic component is
centered around the abstraction mechanisms (Smith and Smith,
1977). Recent advances in semantic modeling are taken
advantage of (Brodie and Mylopoulos. 1986; Maciaszek, 1989;
Stachowitz, 1985; Su, 1985). The applied artificial intelligence
techniques concern mainly the knowledge representation
formalism, reasoning and knowledge acquisition methods
(Frost, 1986; Keller, 1987; Michalski er al., 1983).

The IDDK design methodology covers all phases of the
database developmtnt. We have identified seven phases of the
database design life cycle:
1.

2.

3.

4.

5.

Requirements analysis amispecificarion (strategic planning,
tactical modelling, document flows, defining data flow
Conceptual modeling (functions specifications, derivation
of design ranks, view integration, clustering of attributes,
defining entities and relationships, using abstractions and
Design of the logicat schema (derivation of feasible logical
structure, designing logical objects (records, sets, base and
view tables, data items, etc.), verification and refinement
pmcedutw logical schema definition);
Design of the the physical schema (derivation of feasible
physical structuie, gross and fine placement, access path
optimizatiott, space requirements, performance prediction,
physical schema definition);
Progrummmg of user applications (designing interactive and
batch applications, enforcing semantic integrity of the
database, deriving programs from database structures and
business functions, screen (form) and report generation,
programming in the host language environment);

6. M&renance of the &mbase (security. integrity, recovery,
backup, authorization, auditing, tuning);

7. Evolution (restructuring, reorganization, application
software conversion).

Of the seven phases, requirements analysis and
specification and conceptual modeling are indtpendent of the
DBMS chosen for the database development. The remaining five
phases apply separately for the relational, network, and micro
environments.

The overall design process is iterative. Feedback is
expected and complied with. As an illustration, the general
design procedure at the conceptua1 level can be defined as
follows:

s..

sot database-design-knowledge:
rmrd application_knowledge-state;
S = application-knowledge-state;
. . .
procdure application-domain_designISJ;

var design unfinished, stop design: boolean;
design-unfznished + truef-
stop-design + false;
while design-unfinished
begin

identify a set T of applicable
transitions on S

T=IT-entitY/T-relationship, T-attribute,
T-connection, T-edftingJ

read selected-transition t(i);
ift(iJ e T

than
begin

apply t(i) on S + new-S;
S e new-S;

and;
else

send an error-message;
read stop-design;
if stop-design then

begin
save S in
application_knowledge_state;
design-unfinished c false:

end application-domain-design:
end;

Each step of the database design process can be
characterized by a state and a set of applicable transitions. The
are many ways in which one can select and apply transitions on
a current state of a conceptual schema design. The simplest way
istoevaluatetheconditionsinall ruleswithrespecttothe curent
state of database design.

States and transitions are constrained. This means that the
state which is obtained when transition t occurs has to satisfy the
appropriate constraints. ln general,

(S&k+j) A F*(filCtj)) -+ si+l(-%+l/Csi+l)
where Si denotes a set of asset dons in the database dictionary in
step i. Fr(t/ct) is a set of forn%las affected by the transition ti, CS
and ct are sets of constraints on states and transitions
respectively.

2.2. IDDK Architecture

lDDK consists of five modules. Bach module contains specific
and independent information, data structures and procedures.

- 62 -

The modules are: Knowledge Acquisition, Database Design
Knowledge, Application Domain Knowledge, Inference Engine,
and User Interface (Figure 1).

DATABASE
DESIGN *- KNOWLEDGE

KNOWLEDGE ACQUiSITION

APPLICATION

Figure 1 IDDK Architecture.

The knowledge acquisition module is in charge of
extracting database design knowledge and submitting it to the
knowledge base module. The IDDK knowledge base consists of
two types of knowledge which differ in content, in acquisition
method and in usage. The first, database design knowledge is
acquired by being programmed by a knowledge engineer
(database expert). The design knowledge is defined as a set of
design states and transitions; both restricted by a set of
constraints. The second type of knowledge, application domain
knowledge is acquired by being “drawn and typed”. This is a
form of learning from instruction (Michalski et al., 1983).
Acquiring domain knowledge from an application database
designer, requires that the IDDK programs interpret the text
typed or graphical symbols used, and transform them into an
internal representation. The IDDK inference engine performs
inferences on user-defined information, checks integrity
constraints, and finally augments the existing application
knowledge. The knowledge editor provides features to create,
modify and document application knowledge. The editor aids
the designer in organizing knowledge and supporting
incremental acquisition. A database designer can instruct the
system to change, validate or refute information it has been told
previously. In IDDK, a set of readily understandable questions
and help pages is implemented for eliciting knowledge from the
system designer. The user interface of the knowledge editor is
presented in Section 3 of the paper.

The IDDK database design knowledge is a collection of
concepts, objects, integrity constraints, rules and operations that
apply in the database design. The database design knowledge is
divided into two parts: declarative (static) knowledge and
procedural (behavioral) knowledge. The static knowledge is
represented by means of an enhanced entity-relationship-attribute
(ERA) model. The semantics of the knowledge base, in
enhanced ERA representation, are declarative. However, as a
semantically poor relational database technology is used to
implement the knowledge base, some of these declarative
semantics are implemented in procedural database triggers and
demons (and moved to the inference engine). As a result, a
limited and carefully monitored volume of deduction is traded
for, calculation (unavoidable phenomenon in any large
knowledge-based system, for feasibility and performance

- 63-

reasons). The procedural knowled@ refers to modeling of
design actions and to keeping srack of the database design
processes. Especially, it incorporates the side effects of actions
and the consistency checks. ‘The knotildge editor (IDDK,
1988) applies to these two parts of database design knowledge.
Another tool of IDDK is used to achieve a fmt-cut conversion of
the domain knowledge from its conceptual model to a relational
schema (Maciaszek : et ol., 1988). TKe database design
knowledge is discussed in the next section of the paper.

The application domain knowledge contains the
descriptions of concepts, objeots. integrity constraints, rules and
operations concerning a given application domain. In other
words, it contains the results of IDDK-controlled database
design process. The application knowledge is also composed of
declarative and procedural ‘knowledge. That knowledge is
application domain specific, i.e. a separate database is
maintained for each database design project. There is only one
body of design knowledge for a customized installation of
IDDK. However, multiple domain-centered knowledge can be
maintained by a designer who uses a customized IDDK (the
customization will normally be necessary to provide the user
with a required subset of IDDK taols, e.g. different subsets will
be required for the designers of relational and network
databases). Development of application domain knowledge is
controlled by the inference engine using the database design
knowledge. At the time of-writing, a number experimental
domain knowledge bases (e.g. bank cnstomer services,
inventory control, etc.) have been developed using IDDK and
implemented under Oracle.

Before the presentation of the IDDK inference engine, let
us consider strucmral and behavioral aspects of-database design.
The database design knowledge has relatively few rules and
facts compared with the number of activities, rules and facts in
an application domain. It wouid seem appropriate to consider
the rules which effectively govern the way in which a database
design state may be transformed into another. The database
design knowledge can be. regarded as a hierarchy of classes,
where classes are defined as being: objects (entities and
relationships), connections or attributes. These classes can be
related to each other in various but definite ways to result in a
semantic model of a given application. Note that the
classification helps to improve the efficiency of reasoning by
reducing the search space. For example? the operation of
deleting the last attribute fmm a regnlar relattonship reclassifies
the relationship to weak. In database design, there is a need to
store and manipulate a large amount of domain knowledge.

The IDDK inference &@te.uses the sets of axioms,
coritraints and functions in the database design knowledge to
control the design process. As pointed out, each step of the
database design process can be characterized by a state and a set
of applicable transitions. In the IDDK project, the inference
engine validates a transition with respect to the database design
axioms and assertions in the.databasc dictionary (this is the
database design knowledge and the application knowledge). The
inference engine is data-driven [forward-chaining) since the
database design state is the, sole identifier of applicable
transitions. The inference engine .can generate a tree of database
design states by applying transitions, branching out from the
input state and data. In a forward-chaining inference engine, it is
difficult to control the direction in which the inference is
conducted, because no explicit goals are defined. In many
design tasks, IDDK makes tern rary assumptions which allow
pursuit of a set of possible so uhons. Such assumptions may p”*
later be validated or invalidated, Non-monotonic reasoning is
appropriate in the database design process, because the
application domain is changing and incomplete. Some further

information about axioms, constraints and operations of
database design knowledge is given in the next section.

The IDDK mer intcrfoce fully adheres to the Macintosh
software development environment. This means an extensive
use of windows, pull-down and pop-up menus, scrolling,
scaling, mouse, etc. The user interface is oriented toward the
database design process. It contains design-oriented pallette
icons and graphical editing tools, tightly coupled with the data
dictionary. This is a WYSIWYG user interface.

3. DATABASE DESIGN KNOWLEDGE

3.1. User Interface to Knowledge Base Editor

The knowledge base editor is an extension to the standard
graphical Macintosh interface. The extensions concern database
design-oriented pallette tools and menus. The dictionary states
definitions of attributes, entities and relationships, as well as
cross-references between them. The changes to the data
dictionary which affect the conceptual diagram ate automatically
reflected in the diagram (e.g. adding attributes to a weak
relationship makes it regular). All changes in the diagram are
recorded in the dictionary. The dictionary also enforces basic
consistency checks (e.g. it does not allow duplicate names or
direct connection of entities). The data dictionary has its own
multiple-window user interface,

The user interface is tailored for ease of use (Figure 2).
Picking the tool required, pointing at the desired position on the
diagram screen, and clicking the mouse button, is all that is
required to create an object. At the time of creation a meaningful
name can be given to the object by simply typing the appropriate
name.

The connection tools support establishing basic
relationship connections. A connection can be made between a
relationship oval and an entity rectangle or between two
relationship ovals (the latter creates a nested relationship set). It
is not possible to draw a connection line directly between two
entity sets. Once established, the connection remains fiicd for all
editor operations, except for deleting a connected object or
explicitly cutting the connection. A designer may define both
partial and total membership of object sets in a relationship. The
conectivity (1:l. I:N, M:N) is indicated by means of a
somichole, rather than the conventional arrow-head.

A database designer may use two classes of abstraction.
The aggregation connection tools support the
aggregation/decomposition abstraction (black circles). The
second abstraction, generalization, is implemented by means of
black rectangles attached to subtype entity sets.

The editor provides an easy iconic way of manipulating
objects in the diagram screen. The tools allow the user to
relocate object boxes, slide the diagram on the paper, cut.
connection lines, delete objects, create and view sub-diagrams
(user views). The show/hide tools permit the creation of multiple
user views from a diagram. This feature is particularly useful for
scheduling teamwork system development. With this feature,
one can create sub-diagrams (sub-schemas), which can be
further developed and used by other team members.

The lDDK knowledge editor uses seven menu bars. The
first one is the standard Apple menu bar and it will not be
described here. The File and Edit menu bars adhere to Apple
requirements for such menus but are customized to serve editor
purposes. The remaining four menu bars @D. Project. Options,
and Help) are provided to satisfy some typical knowledge
editing functions.

Figure 2 User intesface of the knowledge editor.

The data dictionary tool provides quick access to any
relationship or entity. The object creation tools. allow creation
and to some extent modifleation of entities and relationships. AU
editing tools (except those that establish connections) can be
used against freehand text.

To create an object, one of the object editing tools has to
be selected. Selecting the entity or relationship tool and clicking
anywhere in the diagram screen, creates an entity or relationship
set with a default name. The object remains selected to allow a
new name to be typed in.

The Data Dictionary @D) menu is aptimaty mechanism of
entering the object definitions and the only mechanism of
entering the attribute definitions in the data dictionary. From the
DD menu, a multi-window editing environment is made
available. it provides a means of entering and modifying
definitions of attributes and of assigning attributes to entity sets
and regular relationship sets (Figure 3).

The editor allows adition or deletion of attributes (simple
or group) to/from an entity or relationship set. An attribute is
added to an object by grabbing and moving it from the box of

- 64 -

:

h Entltu Name: 6ROU~JllfiIWTE

0 connacllulty-second-la

Figure 3 Example of object &ditioit.
3.2. Declarative Knowlc edge - Entities, Relationships

and Attribu’-- Its

The declarative knowledge of IDDK is expressed as a
hypersemantic ERA model (Potter and Trueblood, 1988) and
implemented as an OFUWLE database. The representation of the
declarative knowledge is a multiple-inheritance hierarchy of the
objects connected by the is-a and part+/ links (Figure 4). The
is-a links denote the generalization/speciaIization hierachies. The
purr-of links express the aggtegation/decomposition hierarchies.

available attributes to the box of the object content. By moving
in the opposite direction, one can remove an attribute from the
object. The editor provides for a primary key and up to three
candidate keys for an entity set (or a regular relationship set, if
applicable). A professional-quality set of documentation of the
database design knowledge base as well as application domain
knowledge base can be automatically generated by the editor.
Such documentation is delivered in the form of a ‘ready-to-bind”
manual, with a title page, table of contents, etc.

Figure 4 Part of ERA representation of the declarative database design knowledge

- 65 - I

In Figure 4 ovals represent relationships, rectau les -
A* entities. The total membership of an entity in a relations up is

shown by a solid line that connects the two. A partial
membership is represented by a dotted line. Plain lines are used
to express 1 (singular) connectivity. To represent M (multiple)
connectivity, the semic&k is attached to an M object.

Generalization turns a class of objects (usually entities)
into a generic object (usually.an entity). The reverse of this is
calkd specioization. For imance, in Figure 4 the entity Ob&t-
Class is regarded as a generic (superrype) entity for the class of
entities Entity-Class and Relationship-Class. We use such a
generalization to ignore individual differences between subtype
entities. A nlationship that mlares a supertype entity to subtype
entities is called a generic relationship.

Black rectangles attached to subtype entities are used to
denote a generic relationship. They also indicate that subtype

The aggregation transforms a relationship between objects
(usually entities) into a higher level, aggregate {superset) object.
The reverse of aggregation is called decomposition. For
instance, in Figure 4 the subset entities Connection-Class,
Simple-Entity and Simple-Relationship can be abstracted into a
superset entity Relationship-Class. We can make such an
aggregation to ignore details about the subset entities. For
example, we want to think about a Relationship-Class without
bringing to mind such details as what are the candidate keys, if
any, of a relationship.

The existence of an aggregation is indicated by black
circles attached to an aggregate relationship. All subset entities
have connectidn lines that end with the black circle. This also
represent an upward attribute inheritance mechanism of
aggregation (i.e. from subset entities to a superset entity).

Clearly, there is an important differince between the
inheritance mechanisms of aggregation and generalization.
Contrary to aggregation, the inheritance of attributes in
generalization is downward (top-down). Aggregation and
generalization can be applied to composite objects to form
aggregates and generics. The root of the knowledge hierarchy ,
called DD-Super-Object. is a generic object representing all
objects, attributes and connections in the knowledge base. The
root must exist in order for the axioms of database design
knowledge to be hierarchically defied and satisfied.

As an example, a part of the declarative knowledge about
objects and attributes is of the form:
Axial 1: There exists an entity with the name E

which is found at the point P on the
diagram.

Axiam 2: There is a connection of type T from
relationship R to an entity E.

Axiom 3:There exists an attribute with the name A.
Axiom 4: The attribute A has the format F and

constraints C.
Axian 5: The attribute A is found in the entity E.
etc.

The declarative knowledge provides the derivation of not
explicitly stored theorems (data) from those stored in axioms. It
assures the integrity-preserving knowledge base manipulations
and it maintains the consistency of the database design
knowledge. It also describes all potentially available operations
which may be applied to transform the declarative knowledge,
e.g. the specification of pre-conditions to add an attribute to an
entity.

3.3. Proctdural Knowledge - Database Design
Transitions and Consistency Enforctments

Current methods and techniques of artificial intelligence and
expert database systems do ‘not allow for purely declarative
construction and manipulation of complex knowledge bases. In
the database design area, the deductive capabilities of the
declarative knowledge are liitid to those design aspects for
which production rules (if-then clauses) can be stated. The
procedural knowledge is used to fill the gaps in all these aspects
of the database design process in which extensive calculation,
follow-up integrity-enforcement operations, and human
intervention are neuled.

The models used in the de’&gn are: Business Model, Data
Flow Diagrams Model, Entity Model or Entity-Relationship
Model, Relational or Network Model, Application Design
Model, Design Recovery and Reverse Engineering Model, and a
few others.

Design process (major input-output transformations):
Problem Statement + Strategic Plan -+ Business

Modal
Business Model + (Document Flows, Implementation

Plan, Data Flow Diagram)
Data Flow Diagram + (Entity Model, Functions

Specs, Entity-Relationship Model)
Entity-Relationship Model + Normalized Entity-

Relationship Model + Relational Logical Model
-3 Prototype System

Entity-Relationship Model + Network Logical Model
Functions Specs + Structure Charts - Screen

Painting + Program Generation
Logical (Network or Relational) Model + Physical

(Network or Relational) Model
Application Design Model + Operational System 4

Design Recovery and Reverse Engineering Model

In order to exemplify the procedural aspect of the IDDK
knowledge base, suppose that we are creating application
domain knowledge (for a specific application).. At the begining
of the design (state 0), the database design knowledge contains:
(1) the declarative database design knowledge (axioms and

integrity constraints), and
(2) the procedural database design knowledge (the set of

allowed operations, e.g.. add-entity(E),
add-relationship(R), add_attribute(A), delete-entity(E),
Suppose that in a given application design state at the

conceptual level, we have already defined the entity e with a
group attribute g which in turn contains the attribute s, and a
relationship r with the attribute s. In the next step, the designer
wants to remove the attribute s. The diagram of the design
situation is illustrated in Figure 5.

Figure S Example of an application design situation at the c~~epcual
level.

- 66 -

. . . .

To remove the attribute the system uses the procedural
knowledge relating to the delete operation. This knowledge
contains descriptions of operations and constraints which have
to be satisfied to appIy the Delete-atrribute operation. The
defmition of the Remove-attribute procedure is as follows:

procedure Remove-attribute(a)
begin

if Inused (a)
then Delete-attribute(a)
else

begin
while g = Group-uses(a)

begin
if Last-reference(g)

then
Remove-attribute(g)
else
Delete-referenceIg,a)r

end;
while o = Object-uses(a)

begin
Delete-reference(o,a):

end;
Delete-attribute(a):

end;
end.

The internal representation of our diagram (Figure 5) in the
design state before Remove-attribute(a) is illustrated in Figure 6.

Figure 6 The internal representation of the design situation.

The process of removing the attribute s is illustrated
diagramatically in Figure 7.

The database design methodology that underlies IDDK is
process-driven. This means that the design begins with the
specifications of user processing requirements. These
specifications are then used to validate most intermediate design
results. The seminal idea is that the database system should be
closely tailored to specific user needs, rather than correspond tc
a vaguely understood concept of the “nature of data” (expresmi
in terms of various data dependencies). Although in lDDK the
data dependencies do not drive the design, they are used to
validate and enhance some data structuring decisions. The
process-driven approach of lDDK has a direct impact on the
procedural database design knowledge, as seen in the specific
features-:
* a methodology extending over the entire life-cycle of a

database system;
* utilization of techniques intrinsic in data-oriented

m6@dO~ogi6S,S!lcb aStlO~~ZationandabstraCtiOtt, for
design refitietnents;

* enhancements to entity-relationship model (e.g. relationship
attributes, nested relationships, entity roles, generalization,

” aggregation);
* knowledge base which captures static and behavioral

aspects of system design;
* strong design heuristics to olhninato, at early stages, paths

of investigation that have little chance of success.
* various optimization tools to improve database performance

(especially on the physical design Level);

Attempt IO deletes, discover it
is used in group g.
Discover it is the last attribute
in g, so detete g.
Anetnpt to delete g, discover it
is used in entity e.
Remove reference to g frcmt e.

Delete group g. {lmpticitly
deletes reference to s).
Attempt to delete s, discover it
is still used in tie reIatkwhip r.

Delete rcfeencc to sfrom
relathhip r.

Delete attrhue s.

Figure 7 Using procedural knowledge in cbt Remove~arrri6nfe operation.

* adherence to ANSI’85 definitions for database language
SQL (relational model) and Network Database Language
NDL (network model) (Technical Committee X3H2, X3
Secretariat/CBEMA); applicabilty to the design of databases
which provide relational user interface on top of network
data structures (such as IDMS/B, IDMS/SQL, or BDMS-
1100).

* Macintosh workstation graihics, U&and relational DBMS
interface; graphical and textual output of database schemas
(conceptual, logical, physica&versatile reprts; support for
derivation of database ‘progra;ths; redestgn support and
significant propagation of design changes.

4. CONCLUSION

Due to the popularity and successes of computer-assisted
software engineering tools, there is a growing need to provide a
foundation for constqtcting a new category of knowledge-based
CASEKADE systems. We believe that our work is a step in this
direction. We have described in this paper a framework for

-67 -

intelligent database design and a knowledge base for database
design.

The development of a knowledge base to govern the
database design process is a complex problem. The complexity
is partly caused by the intrinsic requirement of describing the
issues involved by fncans of themselves. This was evident in the
paper: The knowledge editor serves not only to support the
knowledge acquisition function of the IDDK (meta-data level),
but it is also a stand-alone tool for entitv-relationshin-attribute
modelling (data level). In the latter fun&ion, the to&l is called
IDDK:ERA-Editm. is imnlemented in LirrhtsueedCTN for the
Macintoshm and is now available commer&lly:

The bulk of the paper was concerned with the description
of the declarative and procedural database design knowledge. A
large part of the knowledge base has been implementedin a
prototype form as an Oracle database and it is being
experimentally used to drive existing tools of the Intelligent
Database Design Kit. At the time of writing, IDDKERA-EditTM
is integrated at the “front-end” with IDDKrDFD-Editm (data
flow diagramming tool) and at the “back-end” with IDDKLR-
zh;zy (converter from ERA, design to relational database

To achieve a full implementation of the knowledge base,
further research and development work is needed to interface the
knowledge base with the inference engine and knowledge
acquisition methods. Tn particular, continuing work is being
done on aspects of knowledge representation both in database
design and application domain areas, including aspects of
incomplete specification and non-monotonfc logic. Some
extensions and changes to the knowledge base schema ate likely
to be enforced by the development of successive IDDK tools.

REFERENCES

BRODIB, M.L. and MYLOPOULOS, J. (eds.) (1986): On
Knowledge 3aFe Management Systems. Springer-Verlag.

CHEN, P.P-S. (1976): The Entity-Relationship Model - Toward
;6Jnificd View of Data, ACM Trans. Database Syst., 1, pp.9-

DOLK, D.R. and KIRSCH 11, R.A. (1987): A Relational
Information Resource Dictionary System, Comm. ofthe ACM,
1, pp.48-61.

FROST, R.A. (1986): Introduction to Knowledge Base
Systems, Collins

GOLDFJNE. A. (1985): The Information Resource Dictionary
System, Proc. 4th Int. Conf. on E-R Approach, Chicago, USA,

IDDK (1988): IDDK:ERA-Edit Fundamentals, Version 1.0,
lDDK Software, p.33.

KELLER; R. (1987): Expert System Technology, Development
and Application, Yourdon Press Computing Series

MACIASZEK, L.A. STAFFORD, G.J. HAYWARD, J.J.
HAYWARD, M.R. and KRAV, S.I. (1988c): A CADE Tool to
Derive a Relational Database Structure from an Enhanced
Conceptual Design, Proceedings Australian Software
Engineering Conference - ASWEC’88, Canberra, Australia,
pp.137-154.

- 68 -

MACIASZEK, L-A. (1989): Database Design and
Implementation, Prentice-Hall (to appear).

MICHALSKI, R-S, CARBONELL, J.G. and MITCHELL,
T.M. (1983): Mrrchine Lear&g, Tioga Publ.

POTTER, W.D. and TRUEBLOOD. R.P. (1988): Traditional,
Semantic, and Hyper-Semantic Approaches to Data Modeling,
Comp., June, pp.53-63.

SMITH, J.M. and SMITH, D.C.P. (1977): Database
Abstractions: Aggregation and Generalization, ACM Trans.
Database Syst., 2, pp.105133.

STACHOWITZ, R.A. (1985): A Formal Framework for
Describing and Classifying Semantic Data Models, Inform.
Syst., 1, pp.77-96.

SU, S.Y.W. and RASCHID, L. (1985): Incorporating
Knowledge Rules in a Semantic Data Model: An Approach to
Integrated Knowledge Management, Artificial Intelligence
Applications, The Engineering of Knowledge-Based Systems,
Proc. 2nd Conf., ed. C.R.Weisbin, IEEE CS Press/North-
Holland, pp.250-256.

