
Implementation and Experiments of an Extensible Parallel Processing System
Supporting User Defined Database Operations

Yamshi KIYDKX, Takahiro XCUILOSAWA, P&g LN
Jnmtitute of Information Scicncem md Ekctmniw

Univenity of T~ukube, Tsukuba, JburLi 305, JAPAN
EMAIL: Iciyoki%i.~rulruba.junet%jjapmORELAY.CS.NET

Kasuhiko KATO, T&&i MASUDA
Department of fnformation Science, Faculty of Science

University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113, Tokyo, JAPAN

Abstract

This paper presents an implementation method and experi-
mental results of an extensible parallel processing system for
databases. We have already proposed a stream-oriented par-
allel processing scheme (stream-oriented ncheme) of basic op-
erations for databases and knowledge bases. This scheme is
based on the demand-driven evaluation incorporating stream
processing.

We have designed basic primitives as a set of basic facilities
for implementing the stream-oriented scheme. By using these
basic primitives, arbitrary basic operations for a wide variety
of databve applications caa be described and executed in par-
allel. In this paper, we present an implementation method of
these basic primitives. This method is used to implement the
stream-oriented scheme in parallel processing environments in
which message passing is used for interprocessor communica-
tion. This paper aIso shows several experimental results of
actual query processing in a parallel processing environment in
which multiple conventional processors are loosely connected
to a high speed network.

1 Introduction

Relational database systems usually support a fixed set of ba-
sic operations called relational database operations. For sup
porting database applications, such as knowledge bases and
engineering applications, it is necessary to allow the database
administrator or user to specify new basic operations and data
types, and to integrate them into the system. The key issue is
to provide the administrator or user with the facilities to im-
plement specific operations and data types and to enable them
to be integrated into the system.

Furthermore, those operations should be execn ted efficiently.
To enhance the processing performance of relational database
operations, many algorithms and database machine architec-
tures have been proposed (see e.g.,[2,3]). In general, these
algorithms and architectures have been designed to execute
relational database operations efficiently. That is, these algo-
rithms and architectures have been oriented for a fixed set of
operations.

&mission to copy with&t fee all or part of this maierial is granted
provided that thk copies are no& made or distributed for direct
commerciai advantage, the DASFAA copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permjssion of the Organizing Committee of fhe International
Symposium on Database Systems for Advanced Appljcations. To
copy olherwise, or lo republish, requires a fee and /or special
permission from the Organizing Commiftee.

For oupporting advanced database applications, database
systems should have facilities to execute arbitrary basic oper-
ations efficiently. We have proposed a stream-oriented parallei
processing scheme (stream-oriented rcheme) for basic opera-
tions of relational databases [4] and inference operationa for
deductive databases[5]. This scheme is based on the demand-
driven evaluation[ll,l2) incorporating stream processing. We
have designed basic primitives as a set of basic facilities for
implementing the stream-oriented scheme[l]. By using these
basic primitives, arbitrary basic operations for a wide variety
of advanced database applications can be described and exe-
cuted in parallel.

Two parallel processing environments are considered for im-
plementing the stream-oriented parallel processing scheme as
follows:

(1) Multiple conventional processors are connected to a high
speed network. In this environment, message passing
is performed to communicate stream elements and de-
mands among multiple processors.

(2) Multiple processors are tightly connected through shared
memory. In this environment, stream elements and de-
mands are sent and received through shared memory
that is allocated among multiple processors.

We have implemented the basic primitivea of the extensible
parallel processing system SMASH in the environment (1). In
this paper, we present an implementation method of the basic
primitives. In this implementation method, the communication
between processors is performed by using the message pass-
ing mechanism. We have also performed several experiments
of parallel query processing on the imptemented system. We
present several experimental results and discuss the efficiency
of our implementation method and system.

2

2.1

Stream-oriented parallel pro-
cessing

The Stream-oriented scheme

In this section, the stream-oriented scheme described in [4]
is briefly reviewed. In our parallel processing scheme, the
demand-driven evaluation strategy is used to exploit paral-
lelism in processing queries for databases. In this scheme,
independent function nodes, which are allocated to different
processors, are executed in parallel. Furthermore, the streom-
oriented parallelism is also exploited between function nodes
(e.g. relational operation nodes) which are served as produc-
ers and consumers of intermediate streams. A function node,
which consumes intermediate stream, is referred to as a “con-
sumer node”, and a function node, which produces intermedl-
ate stream, is referred to as a “producer node”.

lnternatlonal Symposlum on Database Systems for Advanced Appiicatlons
-266-

Seoul, Korea, April, 1989

When a consumer node completes the processing of a grain
(or a page) of stream elements which corresponds to its input
buffer size, the node issues a demand to the producer node in
order to have the input buffer refilled with the next grain of
stream elements.

When a producer node receives a demand from the consumer
node, the consumer node accesses a grain of stream elements
from its input buffer and it executes the computation until the
node has completed the production of one grain of respiting
stream elements in the output buffer. The output buffer is
then treated as the input buffer for the consumer nod%. Once a
grain is accessed by a consumer node, the grain can be removed
from the buffer.

Not every function node creates a whole intermediate stream
for a single demand. Each node creates only one grain of
stream elements for a single demand. Therefore, each buffer
does not need to have a capacity for storing the whole interme-
diate stream, that is, the buffer size is not related to the size
of the intermediate stream. The size of the buffer corresponds
to grain size. The grain size differs among function nodes, that
means, each grain size is fixed according to the size of the each
buffer allocated to each function nodes.

If both the producer node and the consumer node of an inter-
mediate stream are allocated to different processors, the double
buffering mechanism is supported in a buffer between them, in
order to exploit the stream-oriented parallelism.

In terms of references to the earoe stream, two refer-
ence methods named %-computation method” and “caching
method” are supported and used alternatively. In the re-
computation method, if a stream is referenced more than once,
the corresponding stream is reproduced each time it is refer-
enced. In this case, each stream element can be deleted just
after a reference to it is completed. If this method is employed,
the computation to the stream can be performed within lim-
ited memory resources. However, when the same stream is
referenced more than once, it must be reproduced hat is, the
computation which produces the stream mu+ s” re-executed.

On the other hand, jnAhe_caching metha;h, a stream is pro-
duced only once when the first reference to it is performed.
The produced stream is then used in the other references to
the stream. In this method, the stream must be retained un-
til every reference to it is completed. If the stream is huge,
like a stream of tuples in a relation, it seems that the memory
could be swamped. ‘However, reproduction of the same stream
is unnecessary.

2.2 Basic primitives

We have designed the basic primitives, as basic facilities to im-
plement the stream-oriented scheme. A set of our basic prim-
itives has been presented in [4] in detail. Each basic primitive
is independent of hardware architectures, on which the basic
primitives are implemented. Furthermore, each basic primi-
tive is also independent of algorithms of basic operations for
databases and knowledge bases. This enables the basic prim-
itives to be used in describing arbitrary basic operations for
databases and knowledge bases. Basic primitives exploit par-
allelism inherent in arbitrary basic operations by incorporating
the demand-driven evaluation with stream processing. In our
system, an arbitrary basic operation is defined as a function,
and that function is transformed into the procedural object
codes which include basic primitives. A function activated at
execution time is referred to as a function instance. Each func-
tion instance is allocated to one of the multiple sites, and par-
allel processing is then performed among function instances
which are allocated to different sites.

Basic primitives are classified as follows:
(1) The creation of a function instance and a channel. (prim-

itives: new , channel)

(case-l) (f (g ..) (h ..) ..).

fi
consumer-function

instance

(case-2) (f . ..) I (r . . (g ..i ..).

a ’ Ch%?~~%%%ring mechanism

f : slleam

i : demand
.J’

Figure 1: Sending and Receiving of &ream elements and
demands

- 267

(2)

-

The primitive %ewn creates a specified function instance
on the specified site. The primitive “channel” creates a
channel, which connects to function instances to facili-
tate the passing and receiving of stream elerlents and
demands between function instances. Every channel iu-
eludes a buffer to store a grain of stream elements whose
size is specified as &granularity”.

The sending and receiving of stream elements and de-
mands. (primitives: get, put, send, receive, pre-demand)
There are two cases for transferring a stream between
function instances (“T” and “g”).

In the case that the output stream of a function in-
stance (“g” or “h”) becomes the input stream of another
function instance (“f”) as an actual argument, the func-
tion applications are represented in case-1 of Fig. 1.

In this case, the primitive “get” ie used in the consumer
function (“f”) to fetch a stream element from the buffer
of the channel allocated between two function instances
(“I” and “g”). When the buffer is vacant, this primitive
issues a demand to the producer function (“g”). Then,
it waits until the buffer is refilled with &he next grain of
stream elements. At t.hie time, if the double-buffering
mechanism is supported in the buffer, as discussed in
section 2.1, and the next grain has already been pro-
duced due to the pre-issued demand, this primitive be-

(3)

(4)

gins to fetch a‘stream element from the other area of
the buffer. In thii case, stream-oriented parallelism is
exploited. When the producer function (“8”) receives a
demand, it storer a stream element in the buffer by using
the primitive Yput”. Until the buffer is filled this prim-
itive stores rtream elements. Thea, Ihe primitive waib
for its next demand.

In the case that a function instance (“f”) invokes rn-
other function instance (“g”) in the function body by
using the primitives “new” and “channel”, the function
applicatidns are represented in case-2 of Fig. 1

In this case5 primitives ‘send” and “receive” are used
in the function instance “f”. In the function instance “f”,
to pass a&ream element to the child function instance
“g”, the primitive ‘send” stores the stream element in
the buffer. This primitive does not wait for the next de-
mand when the buffer is filled with stream elements. Un-
til the next demand arrives, this primitive does not store
a stream element, that is, this primitive is ignored at the
execution of the function instance 9”. In the function
instance “fn, the primitive %eceive” receives a stream
element from the buffer as a part of a return value of the
child function instance “g”. When the buffer becomes
vacant, this Drimitive issues a demand to the child func-
tion in&an& “g”. However, at this time, this primitive
does not wait for the next grain of stream elements. This
primitive is ignored at the execution of function instance
“f”, until the next grain of stream elements is stored into
the buffer by the child function instance.

The basic primitive “pre-demand” is used when the
double buffering mechanism is supported in (he buffer
of a chinnel. In this case, stream-oriented parallelism is
exploited between function instances which are allocated
lo different sites. For Ihe producer function instance
of a stream, this primitive is issued only once at the
beginning of execution of the consumer function so as
to have the producer function create the first grain of
stream elements eagerly.

The implementation of “re-computation method” and
“caching method”. (primitive: rewind)
As reference methods to the same stream, “re-
computation method” and ‘caching method” are al-
ternatively used in our system. In supporting the re-
computation method, the primitive “rewind” is used to
request the re-production of the stream to the producer
function instance. This primitive initializes the pro-
ducer function instance and the channel allocated be-
tween these function instances. If the caching method is
specified, the re-computation of the stream is not nec-
essary, but the intermediate stream elements must be
stored in the caching directory to cope with the next
references to the same stream.

Nondeterministic selection of a single stream element
from multiple streams. (primitives: select, disable, en-
able)
By using the concept of “nondeterminism”, when a func-
tion instance sends and receives severat streams and de-
mands through .chdnnels, higher parallelism is exploited.
Thai is, when the function instance sends and receives
several streams and demands, a higher degree of paral-
lelism can be exploited by choosing one of the demands
or one of (he streams in the nondeterministic way.

The primitive “select” chooses one of channels, which
are connected to the function instance. In the case of
this primitive not being supported, some primitives in
the function instance may wait for the arrival of stream
elements or a demand at a channel, which is not activated
due to Ihe delay of the arrival of stream elements. In this ^

case, the execution of the fun&on instance ir rurpended
and, u a rewlt, the parallelism may decrease.

The primitive %elect” is used incorporating with the
primitiver Ydirable” and yenable”. The primitive “dis-
able” removes the specified channel from candidates for
the nondeterministic selection. The primitive “enable”
adds the specified channel to candidates for the nonda
terministic selection.

3 An’ implementation method
In this section, we present an implementation method of the
basic primitives. This implementation method is thought of
as being novel, for implementing parallel processing environ-
ments for databases by using multiple conventional processors
connected to a high speed network. Using only conventional
processors and networks, arbitrary basic operations for a wide
variety of database applications can be executed in parallel.

In this method, communication of stream elements and de-
mands is performed by using message-passing between func-
tion instances allocated to different sites. On the other hand,
stream elements and demands are sent or received through the
shared segment of a memory, between function instances which
are allocated to the same site.

When several function instances are allocated to the same
site, the stream-oriented scheme enables those function in-
stances to be executed in pseudo parallel within limited buffer
resources. Two approaches to the implementation of a sin-
gle site have been considered. First approach is based on the
method that the function instances allocated to a single site
are activated and executed within a single process. In this ap
preach, stream elements and demands are transferred within
the single process. The kernel in the process manages the tran-
sition of control to one of executable function instances. We
adopt this approach to the implementation of a single site. The
other approach is based on the method that a single process is
assigned to each function instance. In general, communication
and switching among processes may cause overhead, because
the transition of control is managed by the operating system.
In this case, since stream elements and demands are trans-
ferred by communication and switching among processes, the
overhead of communication and switching becomea unaccept-
able. Therefore, we do not employ this approach.

Each site consists of (I eommunicolion process (CP) and a
junctional computation process (FCP) as shown in Fig. 2. At
each site, only two processes are required to execute Qe basic
operations and to communicate the stream elements and de-
mands among the sites. Function instances and channels are
created within the FCP. The message passing mechanism is
implemented at CP to transfer stream elements and demands
between the sites.

3.1 Kernel

A kernel is implemented at each site in order to manage com-
munication among function instances, and to schedule the ex-
ecution order of function instances that are allocated to a site.
One kernel is provided for each site, and its facilities are sepa-
rately implemented in FCP and CP as follows:

(1) creation of function instances.(FCP)

(2) creation of channels.(FCP)

(3) scheduling for pseudo parallel execution of function in-
stances allocated to the single site.(FCP)

(4) control of interprocessor communication.(CP)

The interpretation of basic primitives, “new” and “channel”,
corresponds to (1) and (2), respectively. As (3), the kernel con-
trols the execution of function instances which are allocated to

Figure 2: An overview of the system

the same site. In our implementation method, several function
instances can be allocated to the same site. This allocation
enables a query to be executed within the limited processor-
resources, allowing the function instances in the same site to be
executed in pseudo parallel as coroutines. The kernel obtains
control when a producer function instance, which has com-
pleted producing a grain of stream elements, has suspended
and is waiting for a next demand, or when a consumer func-
tion instance has suspended and is waiting for the next grain
of stream elements. When the scheduler is activated by the
kernel, it selects one of the executable function instances, and
transfers control to it.

In terms of (4), when function instances are allocated to
different sites, the interprocessor communication is required
to transfer demands and stream elements. At each site, for
each interprocessor communication request, the kernel facility
in the CP sends a grain of stream elements or a demand to the
destination site through the network.

3.2 Function instance

Each function instance is sequentially executed, but paral-
lelisms can be exploited among function instances. Each fuuc-
tion instance receives one or several streams, and creates a
stream as a return value. Stream elements and demands are
transferred through a “channel” which is allocated between
function instances.

Each function instance transits states as follows:

1. Executing State:
This is the state that the function instance is executing.
From this state, it transits to the waiting state when one
of the following conditions occurs.

(1) When the function instance completes producing a

i

4

Waiting for the next demand:
When the function instance transits to the waiting state
due to the condition (I), it waits for the next demand is-
sued by its consumer function instance. When this func-
tion instance receives a demand, it tram&s to the Ready
state.

Waiting for the next grain of stream elements:
When the function instance transits to the waiting state
due to the condition (2), it waits for a grain of atream ele-
ments which has been produced by the producer function
instance, after issuing the demand. In thii state, when
the function instance receives the grain, it transits to the
Ready state.

Ready state:
If several fun&ion instances arcallocatcd to the same
site, the function instance traneitcd from the waitinn
state cannot be always executed immedirtcIy. Fint, th;
function instance transits to tkc Ready state, but not to
the Executing state. From the Ready state, the function
instance, which has obtained control from the scheduler,
transits to the Executing state. Each kernel includes a
scheduler. Then, the scheduler search@ for the func-
tion instances which are ready to be activated, and gives
control to one of these function instances. Currently,
round-robin scheduling is employed.

3.3 Channel

grain of stream elements, it transits to the waiting
state to wait for tko riext demand. In this case,
the waiting state is called ‘Waiting for the next
demand”. 1,.

(2) When it c&mpletcs consuming a grain of stream
clcmentr, it trmeitn to the waiting rtate to wait for
the next grain of thtam elementm. In this case, the
waiting state is called “Waiting for the next grain
of stream &men@.

Function instances use a “channel” to transfer demands and
stream elements between them, as shownin Fig. 3. The channel
has a communication buffer for transferring grains of stream
elements and demands. By using the channel, communication
between function instances can be performed tronsporentfy. A
channel has two main roles; one is to be the interface to a
[unction instance as a “channel port”, the other is to perform
communication between channel ports in a single channel.

0)

(21

channel port:
A channel port is the interlace to a function instance. We
call the channel port connected to the producer function
instance the producer channel ‘poport. We calf the chan-
nel port connected to the consumer function instance the
cowumer channel port. Eachchannel port is l Uacated to
the site where the function instance, whidh is connected
to it, is allocated. C6mmunication between ftwtction in-
stances is performed through the producer and consumer
channel ports in a single channel according to requests
of demand or data transfers.

communication between channel ports:
When function instances couuected to a channel are al-
located to single site, or to different sites, they are exe-
cuted in pseudo-parallel, or in parallel, respectively. The
communication between producer and consumer channel
ports is performed as follower

(a) channel port communication withcn a single site:
When the producer and consumer channel ports arc al-
located to the same site, a shared segment of memory is
used to communicate stream elements and demands as
shown in Fig. 3-(a). In our method, since the function
instances allocated to the same site behave as coroutines,

- 269 -

(a) channel port communication within a single site,

-yv l clrwk

(b) channel port communication between different sites.
m :step 2

r

-s rue- 1 > I I-. sltc. 2 >

Figure 3: Communication between function instances

the execution and suspension of each function instance
is managed under the control of a scheduler, thus the
mutual exclusion can be performed. Accordingly, the
accesses to the shared segment of memory by producer
and consumer function instances are serialized and per-
formed without conflict.

(b) channel port communication between different sites:
When the producer and consumer channel ports are al-
located to different sites, message-passing is performed
to communicate stream elements and demands. Stream
elements and demands are transferred as message pack-
ets. The interprocessor communication is performed as
shown in Fig. 3-(b).
step 1:
By the function instance in the FCP, stream elements
and demands are stored in the shared segment of mem-
ory that has been allocated between the FCP and the
CP. A large amount of data may be transferred between
the FCP and the CP. Therefore, we use communication
with shared segments. Because the FCP and the CP
are in the same site, they can communicate with shared
segments. This method does not need to cat1 the operat-
ing system for each communication request, so the over-

head of communication in relatively small. (Currently,
we *re also implementing the parallel proccrning envi-
ronment with the tightly-coupled multiproceuors with
shared memory. ,In thin environment, we utilize the com-
munication method using shared segments for trancfer-
ring stream elemtntr and demanda among processors.)
Accesses to shared segments are serialized by ordering
the access requests incorporating a semaphore mecha-
nism.
step 2:
The kernel facility in the CP creates a packet including a
grain of stream elements or a demand, which are stored
in the shared segment, it then transfers the packet to the
CP of the destination site.
Step 3:
In the destination site, the CP stores the received stream
elements or a received demand .inb the shared segment
of memory which is allocated between the FCP and the
Cf. Then, the function instance receives the grain of
atream elements or the demand.

3.4 Interprocessor communication

We have implemented a parallel processing qrtem SMASH on
the basis of the implementation method discussed above. The
current hardware environment consists of a number of Sun-
3 workstations(Unix 4.2BSD [lo]) connected to the Ethernet
(101. We use facilities of interprocessor communication which
are supported in Unix.

We have chosen the UDP [lo] as the communication pro-
tocol among the sites. In the communicating model of UDP,
interprocessor communication is performed through a shared
bus. In comparing to the communication protocol TCP [lo],
we explain the reasons why we have adopted the UDP.

1. Since the UDP is a lower level communication protocol
than the TCP, its communication can be performed more
efficiently than that of the TCP. That is, since the UDP
is simple protocol, its overhead for network communica-
tion is small, and it is advantageous for transferring a
large amount of data, such as databases.

2. In the UDP, a processor can dynamically select the com-
munication partner when it receives a request for com-
munication. That is, unlike the TCP, it is not necessary
to statically fix a one-to-one virtual circuit between the
processors. On the other hand, the TCP is based on
the communication model of Client and Server. This
forces the processors to communicate with each other as
a master and a servant. However, in our implementation
method, there is no special processor such aa a ouper-
visor, and parallel processing is performed by commu-
nicating with processors of the same ability. Therefore,
the UDP is suited to our method.

3. Communication in the UDP is less reliable than that
in the TCP. Therefore, the reliability of communication
must be assured within the framework of our implemen-
tation. In OUT system, the CP supports reliable com-
munication. On the other hand, the TCP has a higher
reliability than the UDP. However, this higher reliability
in the TCP often causes heavy overhead, especially, for
applications of database processing which are required
to manipulate large amounts of data. In comparing the
TCP with the UDP, we found the UDP to be more et%
cient.

4 Experiments and results

We have performed several experiments on the experimental
system for examining the effectiveness of our implementation

- 270 -

: function instance

El
: buffer in a channel

BQ , BS3. BS3 : curer-relation buffer size (tuplcs)

IBS,, lBS3, IBS3 : inner-relolion buJ jet size (tuyle~)

SRI, SRa, SRs, IRa : base-relation sire (tuplo)

RI,&,& : outer-rclstion sixc (tuplee)

IR,, IR3, XR3 : inner-retaiion sire (fuples)

IRO : result relation size (tuples)

isfi, isf2, is/s : join seledivily factor

ssf1, ssfa, ash : selection selectivity factor

(intermediate relation l ise =
jsf * (inner-relation size l outer-relation size))

(intermediate relation size = ssf l base-relation size)
Figure 4: The type of query for experiments

method presented in this paper. In addition, we have mea-
sured the execution time of several queries. The execution
time includes the actual CPU time, system call time for disk
l/O processing, and communication time among sites.

4.1 Queries for experiments

Cur system can support a wide variety of database operations.
Queries consisting of relational database operations are used, as
examples. We utilize four simple queries, with the same struc-
ture, consisting of three join and three selection operations, as
shown in Fig. 4. Selection and join nodes arc allocated to dif-
fertnt sites, and executed in parallel by the stream-oriented
scheme. In each join node, the tuples of the grain stored
in the outer-relation buffer arc sorted on joining attribute(s),
and each tuple in the inner-relation buffer is compared with
the sorted tuples by using thi binarysearch algorithm. The
operand base-relation of each selection node is stored in the

Table 1: Bazc-relation siscz and selectivity factors in the
evaluated queries

site where the node is allocated.
Table 1 shows the parameter settings of relation sizer and

selectivity factors (7,9,13] for each query.
In Query 1, the size of the intermediate relation produced

by each join node is the same as the size of the operand inncr-
relation. In Query 2, Join-8 produces an intermediate relation
with twice the size of the operand inner-relation. loin-h and
Join- 1 produce relationa of the same size as that of the inter-
mediate relation produced by Join& In Query 3, each node
(Join-l, Join-2, Join-3) producer a relation with twice the size
of the operand inner-relation. In Query 4, each node produces
a relation with half the size of the operand inner-relation.

In the stream-oriented sehcmt, if the selectivity factors and
the bulftr sizes arc kept constant, the frequency of communi-
cations, the amount of transfer data and the comparison times
between pages will remain constant. Although the total txccu-
tion time becomes longer with the increase of base-relation size,
neither parallelism nor effect on communication traffic changes.
Therefore, we did not perform experiments on various settings
of base-relation sizes.

We considered the queries with the same base-relation sizes
and different join selectivity factors. Tuplcs in all the relations
arc 64 bytes long, each inctuding 4 byte integer attributes as
selection and joining attributes. All of the integer attributes
have uniformly distributed valnes, but the range of their dis-
tributions varies to generate digerent join selectivity factors.

4.2 Ex&menthl results

In these experiments, the rc-computation method has been
used as the parameter passing method in the ztrcam-oriented
scheme. In employing re-computation method, the told num-
ber of computations is dependent only on the rize of the outcr-
relation huger which has been allocated tocach operation node.
The outer-relation buffer size has an effect not only on the
number of computations, but on the parallelism between the
operations which arc being executed al d&rent rites. Thcre-
fore, it is very important to allocate available buffer resources
optimally to each outer-relation buffer. In parallel processing
cases, the size of the grain being transferred between rites atso

agects paraltetism. In the experiments, this grain size corm- ’
sponds to the inner-relation buffer size. Furthermore, buffer

riza for base relation8 affect the numbsr of disk I/O operr-
tionr. Therefore, it i8 important to optimally allocate buffer
resources to inner-relation buffer8 and buffer8 for base rela-
tions. That ir, the limited buffer re8ource8 murt optimally be
allocated to each buffer for each operation node. In [6,7,8), for
implementing tha’rtrerm-oriented scheme in sequential, parai-
lel and dirtributed processing environments, we have prcrented
8eVCd rfgorithmr to optimafty allocate the buffer re8ource8 to
each buffer. The8e algorithms arc used to minimize the number
of computation8 and diskI/ operations, and to exploit paral-
lelism in query processing. The experiment8 discussed in this
section have been focuwd on the investigation of the effects of
the outer-relation buffer size md the inner-relation buffer size
on the number of computations and parallelisms.

Exe&on tin78
4.

‘\

4.2.1 Effects of buffer resources

Three proceaeors(site8) were used to execute each query. To
store outer-relation tuples of each join operation, the same
amount of buffer resource8 wss allocated to each site, that i8,
BSI = BS, = BSs. Fig. 5 ahow the execution time in parallel
processing of Query 1, 2, 9 and 4 in varying the outer-relation
buffer size.

The execution time is shortened with the increase of the
outer-relation buffer size (BSI, BSz, BSJ). This is because,
the increase of the outer-relation buffer size decreases the num-
ber of computations in query processing. Execution time is
shortened discontinuously with the increase of the buffer size.
Thc.number of re-computations of the join operation does not
continuously change with the increase of the buffer size. In
the tange of the buffer sizes with which the number of re-
computation8 does not change, the execution time of a query
is not always shortened with the increase of the buffer size.

IO

50

0 6s’ (luples)
170 2g6 34'1 426 51'2 59'7 662 766 663 93-E Id24

4.2.2 Effects of the outer-relation buffer size on
parallelism

The outer-r&lion bulfer size (ES1 43$2=853).

Resource allocation to the outer-relation buffer of each join
node gives a significant effect on parallelism inherent in a query.
In [6], we have introduced a criterion for resource allocation to
exploit the stream-oriented parallelism inherent in the oper-
ation nodes. Here, we briefly review the criterion. We con-
sider parallelism inherent between two nodes (Join-2Join-3)
in Fig. 4. It is assumed that two operation nodes are being
executed by different sites.

Figure 5: Relationship between the outer-relation bufler
size and execution time.

If this criterion is satisfied in any adjacent nodes served as
producer and consumer node8 at different sites, the root-node
of a query tree (e.g. Join-f) can be executed without the 8us-
pension.

If Join-2 performs the comparisons between two operand
grains currently stored in the input buflers (BS2, IBSs), and
Join-3 complete8 producing the next inner-relation grain dur-
ing the comparisons in Join-S, the pipeline delay is eliminated.
(That is, tbe stream-oriented parallelism is exploited.) In other
words, a suspension of operation execution causes a pipeline
delay, which occurs in the absence of the next inner-relation
graia.

Fig. 5 shows the execution time of the queries Query 1, 2,
3 and 1. In Fig. 5, with the size (1024 tupleo) of outer-
relation buffer resources available at each site, the criterion
for exploiting parallelism mentioned above is satisfactory in
executing Query l,2, and 3. In this size, there is no need to
perform the re-computation for the inner-relations in executing
Query l,2,3 and 4 because the buffer size is large enough to
contain all the tuples of the outer-relations. As a result, the
best execution efficiency is shown.

The number of comparisons between an inner-relation grain
IBS2 and a eotted outer-relation grain BSz in Join-2 is

The increase of the outer-relation buffer size contribute8 both
to reducing the number of computations and to satisfying the
criterion for exploiting parallelism.

IBS2 + (log2 BS, + jsf2 + BS2). (1)

The number of comparisons in Join-S, to produce an inner-
relation grain (IS&) of Join-2 by using the &wry-search al-
gorithm (l/jsiz is the average number of comparisons required
to generate one output tuple by the nested-loop) is

4.2.3 Effects of communication granularity on
parallelism

IBS2 + (log2 BS3 + jsf3 * B&)/(jsf3 l B&). (2)

Thecriterion to execute Join-dcontinuously without pipeline
delay is as follows:

The size of the inner-relation buffer does not influence the num-
ber of computation8 in query processing. However, it influence8
the number of times it take8 to transfer stream elements and
the number of times it takes to issue demands. We varied the
size IBSi(i = 1,2,3) of the inner-relation buffer in Query 1,
2, 3, and 4 to examine its effects on the number of times it .
takes to transfer packets of stream elements, and the number
of times it takes to issue demands. The change of IBSi corre-

- 272 -

r ,’

sponds to that of granularity for message-passing. Fig. 6 shows
the relationship between the execution time and the alterna-
tion of the inner-relation buffer sire, when all the. tuplcs of the
outer-relationu are contained in the outer-relation buffers. As
shown in this figure, with the smaller size of the inner-relation
buffer, the execution time becomes longer, because the over-
head has become heavier due to the increase of the number
of times it takes to transfer packets of stream elements or de-
mands. With the larger size of the inner-relation buffer, the
execution time also becomes longer because the increase of the
buffer size decreases the parallelism in stream-oriented process-
ing. In particular, the setting of granularity is important in the
small granularity range.

(SC
E

>cond)
Execution lime.

. :Query 1

. :aue~ 2

. :Query 3

. :Quely 4

,

those presentcd%n iI&&&; ~%cihtrmore, IWOUICC allocation
strategies are also different,

We are extending our basic primitives so as to rupport a wide
variety of advanced database l pplicationr. fn particular, in
extending our basic prilitives, the flexibility and extensibility
for descriptions and manipulations .of complex objects[l] have
beei very important.

References
111 M. P. Atkinson and 0. P. Buneman, “TYDCS and persis-
* - tence in database programming Lan&ag~&” ACM- Com-

put. Surv., Vol. 19, NO. 2, pp. 106-190, 1987.

[2] P. B. Hawthoron and D. J. Dewitt, “Performance analy-
sis of alternative database machine architectures,” IEEE
Tmns. Softw. Eng., Vol. SE-8 NoA 1, pp. 61-76, 1982.

(3) Y. Kiyoki, K. Tanaka, N. Kamibayashi and If. Aiso,
“Design and evaluation of a relational database machine
employing advanced data structures and algorithms,” in
Proc. 8th Int. Symp. on Computer Architecture, pp. 407-
423, 1981.

[a] P. Liu, Y. Kiyoki and ‘I’. Masuda, ‘Efficient algorithms for
resource allocation in parallel and distributed query pro-
cessing environments,n Proceeding of tie IEEE Distributed
Computing S@ems,f989 (to appear).

(tupies, [9] P.G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.

4 8 16 64 100 128 256 384 512 640 766 696 1024 Lorie and T. G. Price, “Access path selection in a re-
The inner-telalion buffer sire. tational database system,” Proc. of the ACM-SIGMOD

Conf., pp.23-34, 1979 .
Figure 6: Execution time in various settings of communi-
cation granularity.

[lo] “Programming reference manual for the Sun workstation,”
Sun Micro Systems, Inc., 1986,

5 Conclusion
[ll] P. C. Treleaven, D. R. Brownbridge and R. P. Hopkins,

“Data-driven and demand-driven computer architecture,
n ACM Comp& Surv., Vol. 14, No. 1, Mar. 1982.

In this paper, we have presented an implementation method [12] S. R. Vegdahl, “A survey of proposed architectures for the

of an extensible parallel processing system SMASH for sup-
execution of functional languages,” IEEE Trans. Comput.,

porting a wide variety of basic operations. Our experimental Vol. C-33, No. 12, pp. 1050-1071, Dec. 1984.

results have shown that this implementation method is effec- [Ia] C. T. Yu and C. C. Chang, “Distributed query process-
tive in performing parallel processing of actual queries. This ing,” AChf Computing Surveys, Vol. 16, No.4, pp* 399-433,
implementation method can be applied to a wide variety of Dec. 1984.
parallel processing environments in which the message pass-
ing mechanism is used for the interprocessor communication.
Currently, we are designing another implementation method of
the basic primitives for implementing the stream-oriented par-
allel processing scheme on tightly-coupled multiple processors
with shared memory. In utilizing this method, the commu-
nication schemes between function instances are different from

[4] Y. Kiyoki, K. Kato and T. Masuda,“A relational database
machine based on functional programming concepts,” in
Proc. 1986 ACM-IEEE Computer So&& Fall Joint Com-
puter Conf., pp. 969-978, NOV. 1986.

[S] Y. Kiyoki, K. Kato, N. Yamaguchi and T. Masuda, “A
stream-oriented approach to parallel processing for deduc-
tive databases,” in Proc. 5th ht. Workshop on Database
Machinea, pp. 102-115, 1987.

[S] Y. Kiyoki, P. Liu and T. Masuda, “A rcsontce allocation
strategy in the stream-oriented parallel processing scheme
for relational database operations,” Transactions of Infor-
motion Processing Society of Japan, vol. 28, N0.11, pp.
1177-1192, 1987.

I?] P. Liu, Y. Kiyoki and T. Masuda, “A computation method
for buffer resource allocation in the stream-oriented pro-
cessing schime for relational database operations,” Z’mns-
actions of Information Proceraing Society of Japan, Vol.
29, No. 8, PQ. 770-731, 1988.

