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Abstract 

This paper presents an implementation method and experi- 
mental results of an extensible parallel processing system for 
databases. We have already proposed a stream-oriented par- 
allel processing scheme (stream-oriented ncheme) of basic op- 
erations for databases and knowledge bases. This scheme is 
based on the demand-driven evaluation incorporating stream 
processing. 

We have designed basic primitives as a set of basic facilities 
for implementing the stream-oriented scheme. By using these 
basic primitives, arbitrary basic operations for a wide variety 
of databve applications caa be described and executed in par- 
allel. In this paper, we present an implementation method of 
these basic primitives. This method is used to implement the 
stream-oriented scheme in parallel processing environments in 
which message passing is used for interprocessor communica- 
tion. This paper aIso shows several experimental results of 
actual query processing in a parallel processing environment in 
which multiple conventional processors are loosely connected 
to a high speed network. 

1 Introduction 

Relational database systems usually support a fixed set of ba- 
sic operations called relational database operations. For sup 
porting database applications, such as knowledge bases and 
engineering applications, it is necessary to allow the database 
administrator or user to specify new basic operations and data 
types, and to integrate them into the system. The key issue is 
to provide the administrator or user with the facilities to im- 
plement specific operations and data types and to enable them 
to be integrated into the system. 

Furthermore, those operations should be execn ted efficiently. 
To enhance the processing performance of relational database 
operations, many algorithms and database machine architec- 
tures have been proposed (see e.g.,[2,3]). In general, these 
algorithms and architectures have been designed to execute 
relational database operations efficiently. That is, these algo- 
rithms and architectures have been oriented for a fixed set of 
operations. 
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For oupporting advanced database applications, database 
systems should have facilities to execute arbitrary basic oper- 
ations efficiently. We have proposed a stream-oriented parallei 
processing scheme (stream-oriented rcheme) for basic opera- 
tions of relational databases [4] and inference operationa for 
deductive databases[5]. This scheme is based on the demand- 
driven evaluation[ll,l2) incorporating stream processing. We 
have designed basic primitives as a set of basic facilities for 
implementing the stream-oriented scheme[l]. By using these 
basic primitives, arbitrary basic operations for a wide variety 
of advanced database applications can be described and exe- 
cuted in parallel. 

Two parallel processing environments are considered for im- 
plementing the stream-oriented parallel processing scheme as 
follows: 

(1) Multiple conventional processors are connected to a high 
speed network. In this environment, message passing 
is performed to communicate stream elements and de- 
mands among multiple processors. 

(2) Multiple processors are tightly connected through shared 
memory. In this environment, stream elements and de- 
mands are sent and received through shared memory 
that is allocated among multiple processors. 

We have implemented the basic primitivea of the extensible 
parallel processing system SMASH in the environment (1). In 
this paper, we present an implementation method of the basic 
primitives. In this implementation method, the communication 
between processors is performed by using the message pass- 
ing mechanism. We have also performed several experiments 
of parallel query processing on the imptemented system. We 
present several experimental results and discuss the efficiency 
of our implementation method and system. 

2 

2.1 

Stream-oriented parallel pro- 
cessing 

The Stream-oriented scheme 

In this section, the stream-oriented scheme described in [4] 
is briefly reviewed. In our parallel processing scheme, the 
demand-driven evaluation strategy is used to exploit paral- 
lelism in processing queries for databases. In this scheme, 
independent function nodes, which are allocated to different 
processors, are executed in parallel. Furthermore, the streom- 
oriented parallelism is also exploited between function nodes 
(e.g. relational operation nodes) which are served as produc- 
ers and consumers of intermediate streams. A function node, 
which consumes intermediate stream, is referred to as a “con- 
sumer node”, and a function node, which produces intermedl- 
ate stream, is referred to as a “producer node”. 
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When a consumer node completes the processing of a grain 
(or a page) of stream elements which corresponds to its input 
buffer size, the node issues a demand to the producer node in 
order to have the input buffer refilled with the next grain of 
stream elements. 

When a producer node receives a demand from the consumer 
node, the consumer node accesses a grain of stream elements 
from its input buffer and it executes the computation until the 
node has completed the production of one grain of respiting 
stream elements in the output buffer. The output buffer is 
then treated as the input buffer for the consumer nod%. Once a 
grain is accessed by a consumer node, the grain can be removed 
from the buffer. 

Not every function node creates a whole intermediate stream 
for a single demand. Each node creates only one grain of 
stream elements for a single demand. Therefore, each buffer 
does not need to have a capacity for storing the whole interme- 
diate stream, that is, the buffer size is not related to the size 
of the intermediate stream. The size of the buffer corresponds 
to grain size. The grain size differs among function nodes, that 
means, each grain size is fixed according to the size of the each 
buffer allocated to each function nodes. 

If both the producer node and the consumer node of an inter- 
mediate stream are allocated to different processors, the double 
buffering mechanism is supported in a buffer between them, in 
order to exploit the stream-oriented parallelism. 

In terms of references to the earoe stream, two refer- 
ence methods named %-computation method” and “caching 
method” are supported and used alternatively. In the re- 
computation method, if a stream is referenced more than once, 
the corresponding stream is reproduced each time it is refer- 
enced. In this case, each stream element can be deleted just 
after a reference to it is completed. If this method is employed, 
the computation to the stream can be performed within lim- 
ited memory resources. However, when the same stream is 
referenced more than once, it must be reproduced hat is, the 
computation which produces the stream mu+ s” re-executed. 

On the other hand, jnAhe_caching metha;h, a stream is pro- 
duced only once when the first reference to it is performed. 
The produced stream is then used in the other references to 
the stream. In this method, the stream must be retained un- 
til every reference to it is completed. If the stream is huge, 
like a stream of tuples in a relation, it seems that the memory 
could be swamped. ‘However, reproduction of the same stream 
is unnecessary. 

2.2 Basic primitives 

We have designed the basic primitives, as basic facilities to im- 
plement the stream-oriented scheme. A set of our basic prim- 
itives has been presented in [4] in detail. Each basic primitive 
is independent of hardware architectures, on which the basic 
primitives are implemented. Furthermore, each basic primi- 
tive is also independent of algorithms of basic operations for 
databases and knowledge bases. This enables the basic prim- 
itives to be used in describing arbitrary basic operations for 
databases and knowledge bases. Basic primitives exploit par- 
allelism inherent in arbitrary basic operations by incorporating 
the demand-driven evaluation with stream processing. In our 
system, an arbitrary basic operation is defined as a function, 
and that function is transformed into the procedural object 
codes which include basic primitives. A function activated at 
execution time is referred to as a function instance. Each func- 
tion instance is allocated to one of the multiple sites, and par- 
allel processing is then performed among function instances 
which are allocated to different sites. 

Basic primitives are classified as follows: 
(1) The creation of a function instance and a channel. (prim- 

itives: new , channel) 

(case-l) (f (g ..) (h ..) ..). 

fi 
consumer-function 

instance 

(case-2) (f . ..) I (r . . (g ..i ..). 

a ’ Ch%?~~%%%ring mechanism 

f : slleam 

i : demand 
.J’ 

Figure 1: Sending and Receiving of &ream elements and 
demands 
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(2) 

- 

The primitive %ewn creates a specified function instance 
on the specified site. The primitive “channel” creates a 
channel, which connects to function instances to facili- 
tate the passing and receiving of stream elerlents and 
demands between function instances. Every channel iu- 
eludes a buffer to store a grain of stream elements whose 
size is specified as &granularity”. 

The sending and receiving of stream elements and de- 
mands. (primitives: get, put, send, receive, pre-demand) 
There are two cases for transferring a stream between 
function instances (“T” and “g”). 

In the case that the output stream of a function in- 
stance (“g” or “h”) becomes the input stream of another 
function instance (“f”) as an actual argument, the func- 
tion applications are represented in case-1 of Fig. 1. 

In this case, the primitive “get” ie used in the consumer 
function (“f”) to fetch a stream element from the buffer 
of the channel allocated between two function instances 
(“I” and “g”). When the buffer is vacant, this primitive 
issues a demand to the producer function (“g”). Then, 
it waits until the buffer is refilled with &he next grain of 
stream elements. At t.hie time, if the double-buffering 
mechanism is supported in the buffer, as discussed in 
section 2.1, and the next grain has already been pro- 
duced due to the pre-issued demand, this primitive be- 



(3) 

(4) 

gins to fetch a‘stream element from the other area of 
the buffer. In thii case, stream-oriented parallelism is 
exploited. When the producer function (“8”) receives a 
demand, it storer a stream element in the buffer by using 
the primitive Yput”. Until the buffer is filled this prim- 
itive stores rtream elements. Thea, Ihe primitive waib 
for its next demand. 

In the case that a function instance (“f”) invokes rn- 
other function instance (“g”) in the function body by 
using the primitives “new” and “channel”, the function 
applicatidns are represented in case-2 of Fig. 1 

In this case5 primitives ‘send” and “receive” are used 
in the function instance “f”. In the function instance “f”, 
to pass a&ream element to the child function instance 
“g”, the primitive ‘send” stores the stream element in 
the buffer. This primitive does not wait for the next de- 
mand when the buffer is filled with stream elements. Un- 
til the next demand arrives, this primitive does not store 
a stream element, that is, this primitive is ignored at the 
execution of the function instance 9”. In the function 
instance “fn, the primitive %eceive” receives a stream 
element from the buffer as a part of a return value of the 
child function instance “g”. When the buffer becomes 
vacant, this Drimitive issues a demand to the child func- 
tion in&an& “g”. However, at this time, this primitive 
does not wait for the next grain of stream elements. This 
primitive is ignored at the execution of function instance 
“f”, until the next grain of stream elements is stored into 
the buffer by the child function instance. 

The basic primitive “pre-demand” is used when the 
double buffering mechanism is supported in (he buffer 
of a chinnel. In this case, stream-oriented parallelism is 
exploited between function instances which are allocated 
lo different sites. For Ihe producer function instance 
of a stream, this primitive is issued only once at the 
beginning of execution of the consumer function so as 
to have the producer function create the first grain of 
stream elements eagerly. 

The implementation of “re-computation method” and 
“caching method”. (primitive: rewind) 
As reference methods to the same stream, “re- 
computation method” and ‘caching method” are al- 
ternatively used in our system. In supporting the re- 
computation method, the primitive “rewind” is used to 
request the re-production of the stream to the producer 
function instance. This primitive initializes the pro- 
ducer function instance and the channel allocated be- 
tween these function instances. If the caching method is 
specified, the re-computation of the stream is not nec- 
essary, but the intermediate stream elements must be 
stored in the caching directory to cope with the next 
references to the same stream. 

Nondeterministic selection of a single stream element 
from multiple streams. (primitives: select, disable, en- 
able) 
By using the concept of “nondeterminism”, when a func- 
tion instance sends and receives severat streams and de- 
mands through .chdnnels, higher parallelism is exploited. 
Thai is, when the function instance sends and receives 
several streams and demands, a higher degree of paral- 
lelism can be exploited by choosing one of the demands 
or one of (he streams in the nondeterministic way. 

The primitive “select” chooses one of channels, which 
are connected to the function instance. In the case of 
this primitive not being supported, some primitives in 
the function instance may wait for the arrival of stream 
elements or a demand at a channel, which is not activated 
due to Ihe delay of the arrival of stream elements. In this ^ 

case, the execution of the fun&on instance ir rurpended 
and, u a rewlt, the parallelism may decrease. 

The primitive %elect” is used incorporating with the 
primitiver Ydirable” and yenable”. The primitive “dis- 
able” removes the specified channel from candidates for 
the nondeterministic selection. The primitive “enable” 
adds the specified channel to candidates for the nonda 
terministic selection. 

3 An’ implementation method 
In this section, we present an implementation method of the 
basic primitives. This implementation method is thought of 
as being novel, for implementing parallel processing environ- 
ments for databases by using multiple conventional processors 
connected to a high speed network. Using only conventional 
processors and networks, arbitrary basic operations for a wide 
variety of database applications can be executed in parallel. 

In this method, communication of stream elements and de- 
mands is performed by using message-passing between func- 
tion instances allocated to different sites. On the other hand, 
stream elements and demands are sent or received through the 
shared segment of a memory, between function instances which 
are allocated to the same site. 

When several function instances are allocated to the same 
site, the stream-oriented scheme enables those function in- 
stances to be executed in pseudo parallel within limited buffer 
resources. Two approaches to the implementation of a sin- 
gle site have been considered. First approach is based on the 
method that the function instances allocated to a single site 
are activated and executed within a single process. In this ap 
preach, stream elements and demands are transferred within 
the single process. The kernel in the process manages the tran- 
sition of control to one of executable function instances. We 
adopt this approach to the implementation of a single site. The 
other approach is based on the method that a single process is 
assigned to each function instance. In general, communication 
and switching among processes may cause overhead, because 
the transition of control is managed by the operating system. 
In this case, since stream elements and demands are trans- 
ferred by communication and switching among processes, the 
overhead of communication and switching becomea unaccept- 
able. Therefore, we do not employ this approach. 

Each site consists of (I eommunicolion process (CP) and a 
junctional computation process (FCP) as shown in Fig. 2. At 
each site, only two processes are required to execute Qe basic 
operations and to communicate the stream elements and de- 
mands among the sites. Function instances and channels are 
created within the FCP. The message passing mechanism is 
implemented at CP to transfer stream elements and demands 
between the sites. 

3.1 Kernel 

A kernel is implemented at each site in order to manage com- 
munication among function instances, and to schedule the ex- 
ecution order of function instances that are allocated to a site. 
One kernel is provided for each site, and its facilities are sepa- 
rately implemented in FCP and CP as follows: 

(1) creation of function instances.(FCP) 

(2) creation of channels.(FCP) 

(3) scheduling for pseudo parallel execution of function in- 
stances allocated to the single site.(FCP) 

(4) control of interprocessor communication.(CP) 

The interpretation of basic primitives, “new” and “channel”, 
corresponds to (1) and (2), respectively. As (3), the kernel con- 
trols the execution of function instances which are allocated to 



Figure 2: An overview of the system 

the same site. In our implementation method, several function 
instances can be allocated to the same site. This allocation 
enables a query to be executed within the limited processor- 
resources, allowing the function instances in the same site to be 
executed in pseudo parallel as coroutines. The kernel obtains 
control when a producer function instance, which has com- 
pleted producing a grain of stream elements, has suspended 
and is waiting for a next demand, or when a consumer func- 
tion instance has suspended and is waiting for the next grain 
of stream elements. When the scheduler is activated by the 
kernel, it selects one of the executable function instances, and 
transfers control to it. 

In terms of (4), when function instances are allocated to 
different sites, the interprocessor communication is required 
to transfer demands and stream elements. At each site, for 
each interprocessor communication request, the kernel facility 
in the CP sends a grain of stream elements or a demand to the 
destination site through the network. 

3.2 Function instance 

Each function instance is sequentially executed, but paral- 
lelisms can be exploited among function instances. Each fuuc- 
tion instance receives one or several streams, and creates a 
stream as a return value. Stream elements and demands are 
transferred through a “channel” which is allocated between 
function instances. 

Each function instance transits states as follows: 

1. Executing State: 
This is the state that the function instance is executing. 
From this state, it transits to the waiting state when one 
of the following conditions occurs. 

(1) When the function instance completes producing a 

i 

4 

Waiting for the next demand: 
When the function instance transits to the waiting state 
due to the condition (I), it waits for the next demand is- 
sued by its consumer function instance. When this func- 
tion instance receives a demand, it tram&s to the Ready 
state. 

Waiting for the next grain of stream elements: 
When the function instance transits to the waiting state 
due to the condition (2), it waits for a grain of atream ele- 
ments which has been produced by the producer function 
instance, after issuing the demand. In thii state, when 
the function instance receives the grain, it transits to the 
Ready state. 

Ready state: 
If several fun&ion instances arcallocatcd to the same 
site, the function instance traneitcd from the waitinn 
state cannot be always executed immedirtcIy. Fint, th; 
function instance transits to tkc Ready state, but not to 
the Executing state. From the Ready state, the function 
instance, which has obtained control from the scheduler, 
transits to the Executing state. Each kernel includes a 
scheduler. Then, the scheduler search@ for the func- 
tion instances which are ready to be activated, and gives 
control to one of these function instances. Currently, 
round-robin scheduling is employed. 

3.3 Channel 

grain of stream elements, it transits to the waiting 
state to wait for tko riext demand. In this case, 
the waiting state is called ‘Waiting for the next 
demand”. 1,. 

(2) When it c&mpletcs consuming a grain of stream 
clcmentr, it trmeitn to the waiting rtate to wait for 
the next grain of thtam elementm. In this case, the 
waiting state is called “Waiting for the next grain 
of stream &men@. 

Function instances use a “channel” to transfer demands and 
stream elements between them, as shownin Fig. 3. The channel 
has a communication buffer for transferring grains of stream 
elements and demands. By using the channel, communication 
between function instances can be performed tronsporentfy. A 
channel has two main roles; one is to be the interface to a 
[unction instance as a “channel port”, the other is to perform 
communication between channel ports in a single channel. 

0) 

(21 

channel port: 
A channel port is the interlace to a function instance. We 
call the channel port connected to the producer function 
instance the producer channel ‘poport. We calf the chan- 
nel port connected to the consumer function instance the 
cowumer channel port. Eachchannel port is l Uacated to 
the site where the function instance, whidh is connected 
to it, is allocated. C6mmunication between ftwtction in- 
stances is performed through the producer and consumer 
channel ports in a single channel according to requests 
of demand or data transfers. 

communication between channel ports: 
When function instances couuected to a channel are al- 
located to single site, or to different sites, they are exe- 
cuted in pseudo-parallel, or in parallel, respectively. The 
communication between producer and consumer channel 
ports is performed as follower 

(a) channel port communication withcn a single site: 
When the producer and consumer channel ports arc al- 
located to the same site, a shared segment of memory is 
used to communicate stream elements and demands as 
shown in Fig. 3-(a). In our method, since the function 
instances allocated to the same site behave as coroutines, 
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(a) channel port communication within a single site, 

-yv l clrwk 

(b) channel port communication between different sites. 
m :step 2 

r 

-s rue- 1 > I I-. sltc. 2 > 

Figure 3: Communication between function instances 

the execution and suspension of each function instance 
is managed under the control of a scheduler, thus the 
mutual exclusion can be performed. Accordingly, the 
accesses to the shared segment of memory by producer 
and consumer function instances are serialized and per- 
formed without conflict. 

(b) channel port communication between different sites: 
When the producer and consumer channel ports are al- 
located to different sites, message-passing is performed 
to communicate stream elements and demands. Stream 
elements and demands are transferred as message pack- 
ets. The interprocessor communication is performed as 
shown in Fig. 3-(b). 
step 1: 
By the function instance in the FCP, stream elements 
and demands are stored in the shared segment of mem- 
ory that has been allocated between the FCP and the 
CP. A large amount of data may be transferred between 
the FCP and the CP. Therefore, we use communication 
with shared segments. Because the FCP and the CP 
are in the same site, they can communicate with shared 
segments. This method does not need to cat1 the operat- 
ing system for each communication request, so the over- 

head of communication in relatively small. (Currently, 
we *re also implementing the parallel proccrning envi- 
ronment with the tightly-coupled multiproceuors with 
shared memory. ,In thin environment, we utilize the com- 
munication method using shared segments for trancfer- 
ring stream elemtntr and demanda among processors.) 
Accesses to shared segments are serialized by ordering 
the access requests incorporating a semaphore mecha- 
nism. 
step 2: 
The kernel facility in the CP creates a packet including a 
grain of stream elements or a demand, which are stored 
in the shared segment, it then transfers the packet to the 
CP of the destination site. 
Step 3: 
In the destination site, the CP stores the received stream 
elements or a received demand .inb the shared segment 
of memory which is allocated between the FCP and the 
Cf. Then, the function instance receives the grain of 
atream elements or the demand. 

3.4 Interprocessor communication 

We have implemented a parallel processing qrtem SMASH on 
the basis of the implementation method discussed above. The 
current hardware environment consists of a number of Sun- 
3 workstations(Unix 4.2BSD [lo]) connected to the Ethernet 
(101. We use facilities of interprocessor communication which 
are supported in Unix. 

We have chosen the UDP [lo] as the communication pro- 
tocol among the sites. In the communicating model of UDP, 
interprocessor communication is performed through a shared 
bus. In comparing to the communication protocol TCP [lo], 
we explain the reasons why we have adopted the UDP. 

1. Since the UDP is a lower level communication protocol 
than the TCP, its communication can be performed more 
efficiently than that of the TCP. That is, since the UDP 
is simple protocol, its overhead for network communica- 
tion is small, and it is advantageous for transferring a 
large amount of data, such as databases. 

2. In the UDP, a processor can dynamically select the com- 
munication partner when it receives a request for com- 
munication. That is, unlike the TCP, it is not necessary 
to statically fix a one-to-one virtual circuit between the 
processors. On the other hand, the TCP is based on 
the communication model of Client and Server. This 
forces the processors to communicate with each other as 
a master and a servant. However, in our implementation 
method, there is no special processor such aa a ouper- 
visor, and parallel processing is performed by commu- 
nicating with processors of the same ability. Therefore, 
the UDP is suited to our method. 

3. Communication in the UDP is less reliable than that 
in the TCP. Therefore, the reliability of communication 
must be assured within the framework of our implemen- 
tation. In OUT system, the CP supports reliable com- 
munication. On the other hand, the TCP has a higher 
reliability than the UDP. However, this higher reliability 
in the TCP often causes heavy overhead, especially, for 
applications of database processing which are required 
to manipulate large amounts of data. In comparing the 
TCP with the UDP, we found the UDP to be more et% 
cient. 

4 Experiments and results 

We have performed several experiments on the experimental 
system for examining the effectiveness of our implementation 
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: function instance 

El 
: buffer in a channel 

BQ , BS3. BS3 : curer-relation buffer size (tuplcs) 

IBS,, lBS3, IBS3 : inner-relolion buJ jet size (tuyle~) 

SRI, SRa, SRs, IRa : base-relation sire (tuplo) 

RI,&,& : outer-rclstion sixc (tuplee) 

IR,, IR3, XR3 : inner-retaiion sire (fuples) 

IRO : result relation size (tuples) 

isfi, isf2, is/s : join seledivily factor 

ssf1, ssfa, ash : selection selectivity factor 

( intermediate relation l ise = 
jsf * (inner-relation size l outer-relation size) ) 

( intermediate relation size = ssf l base-relation size ) 
Figure 4: The type of query for experiments 

method presented in this paper. In addition, we have mea- 
sured the execution time of several queries. The execution 
time includes the actual CPU time, system call time for disk 
l/O processing, and communication time among sites. 

4.1 Queries for experiments 

Cur system can support a wide variety of database operations. 
Queries consisting of relational database operations are used, as 
examples. We utilize four simple queries, with the same struc- 
ture, consisting of three join and three selection operations, as 
shown in Fig. 4. Selection and join nodes arc allocated to dif- 
fertnt sites, and executed in parallel by the stream-oriented 
scheme. In each join node, the tuples of the grain stored 
in the outer-relation buffer arc sorted on joining attribute(s), 
and each tuple in the inner-relation buffer is compared with 
the sorted tuples by using thi binarysearch algorithm. The 
operand base-relation of each selection node is stored in the 

Table 1: Bazc-relation siscz and selectivity factors in the 
evaluated queries 

site where the node is allocated. 
Table 1 shows the parameter settings of relation sizer and 

selectivity factors (7,9,13] for each query. 
In Query 1, the size of the intermediate relation produced 

by each join node is the same as the size of the operand inncr- 
relation. In Query 2, Join-8 produces an intermediate relation 
with twice the size of the operand inner-relation. loin-h and 
Join- 1 produce relationa of the same size as that of the inter- 
mediate relation produced by Join& In Query 3, each node 
(Join-l, Join-2, Join-3) producer a relation with twice the size 
of the operand inner-relation. In Query 4, each node produces 
a relation with half the size of the operand inner-relation. 

In the stream-oriented sehcmt, if the selectivity factors and 
the bulftr sizes arc kept constant, the frequency of communi- 
cations, the amount of transfer data and the comparison times 
between pages will remain constant. Although the total txccu- 
tion time becomes longer with the increase of base-relation size, 
neither parallelism nor effect on communication traffic changes. 
Therefore, we did not perform experiments on various settings 
of base-relation sizes. 

We considered the queries with the same base-relation sizes 
and different join selectivity factors. Tuplcs in all the relations 
arc 64 bytes long, each inctuding 4 byte integer attributes as 
selection and joining attributes. All of the integer attributes 
have uniformly distributed valnes, but the range of their dis- 
tributions varies to generate digerent join selectivity factors. 

4.2 Ex&menthl results 

In these experiments, the rc-computation method has been 
used as the parameter passing method in the ztrcam-oriented 
scheme. In employing re-computation method, the told num- 
ber of computations is dependent only on the rize of the outcr- 
relation huger which has been allocated tocach operation node. 
The outer-relation buffer size has an effect not only on the 
number of computations, but on the parallelism between the 
operations which arc being executed al d&rent rites. Thcre- 
fore, it is very important to allocate available buffer resources 
optimally to each outer-relation buffer. In parallel processing 
cases, the size of the grain being transferred between rites atso 

agects paraltetism. In the experiments, this grain size corm- ’ 
sponds to the inner-relation buffer size. Furthermore, buffer 



riza for base relation8 affect the numbsr of disk I/O operr- 
tionr. Therefore, it i8 important to optimally allocate buffer 
resources to inner-relation buffer8 and buffer8 for base rela- 
tions. That ir, the limited buffer re8ource8 murt optimally be 
allocated to each buffer for each operation node. In [6,7,8), for 
implementing tha’rtrerm-oriented scheme in sequential, parai- 
lel and dirtributed processing environments, we have prcrented 
8eVCd rfgorithmr to optimafty allocate the buffer re8ource8 to 
each buffer. The8e algorithms arc used to minimize the number 
of computation8 and diskI/ operations, and to exploit paral- 
lelism in query processing. The experiment8 discussed in this 
section have been focuwd on the investigation of the effects of 
the outer-relation buffer size md the inner-relation buffer size 
on the number of computations and parallelisms. 

Exe&on tin78 
4. 

‘\ 

4.2.1 Effects of buffer resources 

Three proceaeors(site8) were used to execute each query. To 
store outer-relation tuples of each join operation, the same 
amount of buffer resource8 wss allocated to each site, that i8, 
BSI = BS, = BSs. Fig. 5 ahow the execution time in parallel 
processing of Query 1, 2, 9 and 4 in varying the outer-relation 
buffer size. 

The execution time is shortened with the increase of the 
outer-relation buffer size (BSI, BSz, BSJ). This is because, 
the increase of the outer-relation buffer size decreases the num- 
ber of computations in query processing. Execution time is 
shortened discontinuously with the increase of the buffer size. 
Thc.number of re-computations of the join operation does not 
continuously change with the increase of the buffer size. In 
the tange of the buffer sizes with which the number of re- 
computation8 does not change, the execution time of a query 
is not always shortened with the increase of the buffer size. 

IO 
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4.2.2 Effects of the outer-relation buffer size on 
parallelism 

The outer-r&lion bulfer size (ES1 43$2=853). 

Resource allocation to the outer-relation buffer of each join 
node gives a significant effect on parallelism inherent in a query. 
In [6], we have introduced a criterion for resource allocation to 
exploit the stream-oriented parallelism inherent in the oper- 
ation nodes. Here, we briefly review the criterion. We con- 
sider parallelism inherent between two nodes (Join-2Join-3) 
in Fig. 4. It is assumed that two operation nodes are being 
executed by different sites. 

Figure 5: Relationship between the outer-relation bufler 
size and execution time. 

If this criterion is satisfied in any adjacent nodes served as 
producer and consumer node8 at different sites, the root-node 
of a query tree (e.g. Join-f) can be executed without the 8us- 
pension. 

If Join-2 performs the comparisons between two operand 
grains currently stored in the input buflers (BS2, IBSs), and 
Join-3 complete8 producing the next inner-relation grain dur- 
ing the comparisons in Join-S, the pipeline delay is eliminated. 
(That is, tbe stream-oriented parallelism is exploited.) In other 
words, a suspension of operation execution causes a pipeline 
delay, which occurs in the absence of the next inner-relation 
graia. 

Fig. 5 shows the execution time of the queries Query 1, 2, 
3 and 1. In Fig. 5, with the size ( 1024 tupleo ) of outer- 
relation buffer resources available at each site, the criterion 
for exploiting parallelism mentioned above is satisfactory in 
executing Query l,2, and 3. In this size, there is no need to 
perform the re-computation for the inner-relations in executing 
Query l,2,3 and 4 because the buffer size is large enough to 
contain all the tuples of the outer-relations. As a result, the 
best execution efficiency is shown. 

The number of comparisons between an inner-relation grain 
IBS2 and a eotted outer-relation grain BSz in Join-2 is 

The increase of the outer-relation buffer size contribute8 both 
to reducing the number of computations and to satisfying the 
criterion for exploiting parallelism. 

IBS2 + (log2 BS, + jsf2 + BS2). (1) 

The number of comparisons in Join-S, to produce an inner- 
relation grain (IS&) of Join-2 by using the &wry-search al- 
gorithm (l/jsiz is the average number of comparisons required 
to generate one output tuple by the nested-loop) is 

4.2.3 Effects of communication granularity on 
parallelism 

IBS2 + (log2 BS3 + jsf3 * B&)/(jsf3 l B&). (2) 

Thecriterion to execute Join-dcontinuously without pipeline 
delay is as follows: 

The size of the inner-relation buffer does not influence the num- 
ber of computation8 in query processing. However, it influence8 
the number of times it take8 to transfer stream elements and 
the number of times it takes to issue demands. We varied the 
size IBSi(i = 1,2,3) of the inner-relation buffer in Query 1, 
2, 3, and 4 to examine its effects on the number of times it . 
takes to transfer packets of stream elements, and the number 
of times it takes to issue demands. The change of IBSi corre- 
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sponds to that of granularity for message-passing. Fig. 6 shows 
the relationship between the execution time and the alterna- 
tion of the inner-relation buffer sire, when all the. tuplcs of the 
outer-relationu are contained in the outer-relation buffers. As 
shown in this figure, with the smaller size of the inner-relation 
buffer, the execution time becomes longer, because the over- 
head has become heavier due to the increase of the number 
of times it takes to transfer packets of stream elements or de- 
mands. With the larger size of the inner-relation buffer, the 
execution time also becomes longer because the increase of the 
buffer size decreases the parallelism in stream-oriented process- 
ing. In particular, the setting of granularity is important in the 
small granularity range. 
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those presentcd%n iI&&&; ~%cihtrmore, IWOUICC allocation 
strategies are also different, 

We are extending our basic primitives so as to rupport a wide 
variety of advanced database l pplicationr. fn particular, in 
extending our basic prilitives, the flexibility and extensibility 
for descriptions and manipulations .of complex objects[l] have 
beei very important. 
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