Implementation and Experiments of an Extensible Parallel Processing System
Supporting User Defined Database Operations

Yasushi KIYOKIJ, Takahiro KUROSAWA, Peng LIU

Institute of Inf

ation Sci

and Electroni

University of Tsukuba, Teukuba, Ibaraki 305, JAPAN
E-MAIL: kiyoki%is.tsukuba.junet%japanORELAY.CS.NET

Kazuhiko KATO, Takashi MASUDA
Department of Information Science, Faculty of Science
University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113, Tokyo, JAPAN

Abstract

This paper presents an implementation method and experi-
mental results of an extensible parallel processing system for
databases. We have already proposed a stream-oriented par-
allel processing scheme (stream-oriented scheme) of basic op-
erations for databases and knowledge bases. This scheme is
based on the demand-driven evaluation incorporating stream
processing.

We have designed basic primitives as a set of basic facilities
for implementing the stream-oriented scheme. By using these
basic primitives, arbitrary basic operations for a wide variety
of database applications can be described and executed in par-
allel. In this paper, we present an implementation method of
these basic primitives. This method is used to implement the
stream-oriented scheme in parallel processing environments in
which message passing is used for interprocessor communica-
tion. This paper also shows several experimental results of
actual query processing in a parallel processing environment in
which multiple conventional processors are loosely connected
to a high speed network.

1 Introduction

Relational database systems usually support a fixed set of ba-
sic operations called relational database operations. For sup-
porting database applications, such as knowledge bases and
engineering applications, it is necessary to allow the database
administrator or user to specify new basic operations and data
types, and to integrate them into the system. The key issue is
to provide the administrator or user with the facilities to im-
plement specific operations and data types and to enable them
to be integrated into the system.

Furthermore, those operations should be executed efficiently.
To enhance the processing performance of relational database
operations, many algorithms and database machine architec-
tures have been proposed (see e.g.,[2,3]). In general, these
algorithms and architectures have been designed to execute
relational database operations efficiently. That is, these algo-
rithms and architectures have been oriented for a fixed set of
operations.

Permission (o copy without fec all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the DASFAA copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Organizing Commitice of the International
Symposium on Database Systems for Advanced Applications. To
copy otherwise, or fo republish, reguires a fee and for special
permission from the Organizing Commiltee.

International Symposlum on Database Systems for Advanced Appiications

For supporting advanced database applications, database
systems should have facilities to execute arbitrary basic oper-
ations efficiently. We have proposed a stream-oriented parallel
processing scheme (stream-oriented scheme) for basic opera-
tions of relational databases [4] and inference operations for
deductive databases[5]. This scheme is based on the demand-
driven evaluation{11,12] incorporating stream processing. We
have designed basic primitives as a set of basic facilities for
implementing the stream-oriented scheme[4]. By using these
basic primitives, arbitrary basic operations for a wide variety
of advanced database applications can be described and exe-
cuted in parallel.

Two parallel processing environments are considered for im-
plementing the stream-coriented parallel processing scheme as
follows:

(1) ‘Multiple conventional processors are connected to a high
speed metwork. In this environment, message passing
is performed to communicate stream elements and de-
mands among multiple processors.

Multiple processors are tightly connected through shared
memory. In this environment, stream elements and de-
mands are sent and received through shared memory
that is allocated among multiple processors.

@

We have implemented the basic primitives of the extensible
parallel processing system SMASH in the environment (1). In
this paper, we present an implementation method of the basic
primitives. In this implementation method, the communication
between processors is performed by using the message pass-
ing mechanism. We have also performed several experiments
of parallel query processing on the implemented system. We
present several experimental results and discuss the efficiency
of our implementation method and system.

2 Stream-oriented parallel pro-
cessing

2.1 The Stream-oriented scheme

In this section, the stream-oriented scheme described in [4]
is briefly reviewed. In our parallel processing scheme, the
demand-driven evaluation strategy is used to exploit paral-
lelism in processing queries for databases. In this scheme,
independent function nodes, which are allocated to different
processors, are executed in paraliel. Furthermore, the stream-
oriented parallelism is also exploited between function nodes
(e.g. relational operation nodes) which are served as produc-
ers and consumers of intermediate streams. A function node,
which consumes intermediate stream, is referred to as a “con-
sumer node”, and a function node, which produces intermedi-
ate stream, is referred to as a “producer node”.

Seoul, Korea, April, 1989

— 266 -



When a consumer node completes the processing of a grain
(or a page) of stream elements which corresponds to its input
buffer size, the node issues a demand to the producer node in
order to have the input buffer refilled with the next grain of
stream elements.

When a producer node receives a demand from the consumer
node, the consumer node accesses a grain of stream elements
from its input buffer and it executes the computation until the
node has completed the production of one grain of resulting
strteam elements in the output buffer. The output buffer is
then treated as the input buffer for the consumer node. Qnce a
grain is accessed by a consumer node, the grain can be removed
from the buffer.

Not every function node creates a whole intermediate stream
for a single demand. Each node creates only one grain of
stream elements for a single demand. Therefore, each buffer
does not need to have a capacity for storing the whole interme-
diate stream, that is, the buffer size is not related to the size
of the intermediate stream. The size of the buffer corresponds
to grain size. The grain size differs among function nodes, that
means, each grain size is fixed according to the size of the each
buffer allocated to each function nodes.

If both the producer node and the consumer node of an inter-
mediate stream are allocated to different processors, the double
buflering mechanism is supported in a buffer between them, in
order to exploit the stream-oriented parallelism.

In terms of references to the same stream, two refer-
ence methods named “re-computation method” and “caching
method” are supported and used alternatively. In the re-
computation method, if a stream is referenced more than once,
the corresponding stream is reproduced each time it is refer-
enced. In this case, each stream element can be deleted just

after a reference to it is completed. If this method is employed,

the computation to the stream can be performed within lim-
ited memory resources.
referenced more than once, it must be reproduced,_that is, the
computation which produces the stream must.b€1e-executed.

On the other hand, in-the caching method, a stream is pro-
duced only once when thé first reference to it is performed.
The produced stream is then used in the other references to
the stream. In this method, the stream must be retained un-
til every reference to it is completed. If the stream is huge,
like a stream of tuples in a relation, it seems that the memory
could be swamped. However, reproduction of the same stream
is unnecessary.

2.2 Basic primitives

We have designed the basic primitives, as basic facilities to im-
plement the stream-oriented scheme. A set of our basic prim-
itives has been presented in [4] in detail. Each basic primitive
is independent of hardware architectures, on which the basic
primitives are implemented. Furthermore, each basic primi-
tive is also independent of algorithms of basic operations for
databases and knowledge bases. This enables the basic prim-
itives to be used in describing arbitrary basic operations for
databases and knowledge bases. Basic primitives exploit par-
allelism inherent in arbitrary basic operations by incorporating
the demand-driven evaluation with stream processing. In our
system, an arbitrary basic operation is defined as a function,
and that function is transformed into the procedural object
codes which include basic primitives. A function activated at
execution time is referred to as a function instance. Each fanc-
tion instance is allocated to one of the multiple sites, and par-
allel processing is then performed among function imstances
which are allocated to different sites,

Basic primitives are classified as follows:

(1) The creation of a function instance and a channel. (prim-

itives: new , channel)

However, when the same stream is -

(case-1) (f (g'..) hy)

consumer-function
instance

producer-functiim producer-function
instance instance
(case-2) (f..)=(f.(g.).)
parent-function
instance
o o

, 't

'
|
\

\ e,
child-funection

instance
: channel supportin,

the double-buffering mechanism
/‘ : stream

_ ',/' : demand

-

Figure 1: Sending and Receiving of stream elements and
demands

The primitive “new” creates a specified function instance
on the specified site. The primitive “channel” creates a
channel, which connects to function instances to facili-
tate the passing and receiving of siream elerients and
demands between funciion instances. Every channel in-
cludes a buffer to store a grain of stream ¢lements whose
size is specified as “granularity”.

2)

The sending and receiving of stream elements and de-
mands. (primitives: get, put, send, receive, pre-demand)
There are two cases for transferring a stream between
function instances (“f” and “g”).

In the case that the output stream of a function in-
stance (“g” or “h”) becomes the input stream of another
function instance (“f) as an actual argument, the func-
tion applications are represented in case-1 of Fig. 1.

In this case, the primitive “get” is used in the consumer
function (“€”) to fetch a stream element from the buffer
of the channel allocated betweea iwo function instances
(“I” and “g”). When the buffer is vacant, this primitive
issues a demand to the producer function (“g”). Then,
it waits until the buffer is refilled with the next grain of
stream elements. At this time, if the double-buffering

" mechanism is supported in the buffer, as discussed in
section 2.1, and the next grain has already been pro-
duced due to the pre-issued demand, this primitive be-

— 267 —



(3)

4

gins to fetch a stream element from the other area of
the buffer. In this case, stream-oriented parallelism is
exploited. When the producer function (“g”) receives a
demand, it stores a stream element in the buffer by using
the primitive “put”®. Until the buffer is filled this prim-
itive stores siream elements. Then, the primitive waits
for its next demand.

In the case that a function instance (“f”} invokes an-
other function instance (“g”) in the function body by
using the primitives “new” and “channel”, the function
applications are represented in case-2 of Fig. 1

In this case, primitives “send” and “receive” are used
in the function instance “f”. In the function instance “f”,
to pass a'stream element to the child function instance
“g”, the primitive “send” stores the stream element in
the buffer. This primitive does not wait for the next de-
mand when the buffer is filled with stream elements. Un-
til the next demand arrives, this primitive does not store
a stream element, that is, this primitive is ignored at the
execution of the function instance “f”. In the function
instance “f”, the primitive “receive” receives a stream
element from the buffer as a part of a return value of the
child function instance “g”. When the buffer becomes
vacant, this primitive issues a demand to the child func-
tion instance “g”. However, at this time, this primitive
does not wait for the next grain of stream elements. This
primitive is ignored at the execution of function instance
“f”, until the next grain of stream elements is stored into
the buffer by the child function instance.

The basic primitive “pre-demand” is used when the
double buffering mechanism is supported in the buffer
of a channel. In this case, stream-ocriented parallelism is
exploited between function instances which are allocated
to different sites. For the producer function instance
of a stream, this primitive is issued only once at the
beginning of execution of the consumer function so as
to have the producer function create the first grain of
stream elements eagerly.

The implementation of “re-computation method” and
“caching method”. (primitive: rewind)

As reference methods to the same stream, “re-
computation method” and “caching method” are al-
ternatively used in our system. In supporting the re-
computation method, the primitive “rewind” is used to
request the re-production of the stream to the producer
function instance. This primitive initializes the pro-
ducer function instance and the channel allocated be-
tween these function instances. If the caching method is
specified, the re-computation of the stream is not nec-
essary, but the intermediate stream elements must be
stored in the caching directory to cope with the next
references to the same stream.

Nondeterministic selection of a single stream element
from multiple streams. (primitives: select, disable, en-
able)

By using the concept of “nondeterminism”, when a func-
tion instance sends and receives several streams and de-
mands through .channels, higher parallelism is exploited.
That is, when the function instance sends and receives
several streams and demands, a higher degree of paral-
lelism can be exploited by choosing one of the demands
or one of the streams in the nondeterministic way.

The primitive “select” chooses one of channels, which
are connected to the function instance. In the case of
this primitive not being supported, some primitives in
the function instance may wait for the arrival of stream
elements or a demand at a channel, which is not activated
due to the delay of the arrival of stream elements. In this

case, the execution of the function instance is suspended
and, as a result, the parallelism may decrease.

The primitive “select” is used incorporating with the
primitives “disable” and “enable”. The primitive “dis-
able” removes the specified channel from candidates for
the nondeterministic selection. The primitive “enable”
adds the specified channel to candidates for the nonde-
terministic selection.

3

In this section, we present an implementation method of the
basic primitives. This implementation method is thought of
as being novel, for implementing parallel processing environ-
ments for databases by using multiple conventional processors
connected to a high speed network. Using only conventional
processors and netwarks, arbitrary basic operations for a wide
variety of database applications can be executed in parallel.

In this method, communication of stream elements and de-
mands is performed by using message-passing between func-
tion instances allocated to different sites. On the other hand,
stream elements and demands are sent or received through the
shared segment of a memory, between function instances which
are allocated to the same site.

An implementation method

When several function instances are allocated to the same
site, the stream-oriented scheme enables those function in-
stances to be executed in pseudo parallel within limited buffer
resources. Two approaches to the implementation of a sin-
gle site have been considered. First approach is based on the
method that the function instances allocated to a single site
are activated and executed within a single process. In this ap-
proach, stream elements and demands are transferred within
the single process. The kernel in the process manages the tran-
sition of conirol to one of executable function instances. We
adopt this approach to the implementation of a single site. The
other approach is based on the method that a single process is
assigned to each function instance. In general, communication
and switching among processes may cause overhead, because
the transition of control is managed by the operating system.
In this case, since stream elements and demands are trans-
ferred by communication and switching among processes, the
overhead of communication and switching becomes unaccept-
able. Therefore, we do not employ this approach.

Each site consists of a communication process (CP) and a
functional computation process (FCP) as shown in Fig. 2. At
each site, only two processes are required to execute the basic
operations and to communicate the stream elements and de-
mands among the sites. Function instances and channels are
created within the FCP. The message passing mechanism is
implemented at CP to transfer stream elements and demands
between the sites.

3.1 Kernel

A kernel is implemented at each site in order to manage com-
munication among function instances, and to schedule the ex-
ecution order of function instances that are allocated to a site.
One kernel is provided for each site, and its facilities are sepa-
rately implemented in FCP and CP as follows:

(1) creation of function instances.(FCP)
(2) creation of channels.(FCP)

(3) scheduling for pseudo parallel execution of function in-
stances allocated to the single site.(FCP)

(4) control of interprocessor communication.(CP)
The interpretation of basic primitives, “new” and “channel”,

corresponds to (1) and (2), respectively. As (3), the kernel con-
trols the execution of function instances which are allocated to

— 268 —



(funcuoml oompuuuon process)

“’}a

Figure 2: An overview of the system

the same site. In our implementation method, several function
instances can be allocated to the same site. This allocation
enables a query to be executed within the limited processor-
resources, allowing the function instances in the same site to be
executed in pseudo parallel as coroutines. The kernel obtains
control when a producer function instance, which has com-
pleted producing a grain of stream ¢lements, has suspended
and is waiting for a next demand, or when a consumer func-
tion instance has suspended and is waiting for the next grain
of stream elements. When the scheduler is activated by the
kernel, it selects one of the executable function instances, and
transfers control to it.

In terms of (4), when fanction instances are allocated to
different sites, the interprocessor communication is required
to tramsfer demands and stream elements. At each site, for
each interprocessor communication request, the kernel facility
in the CP sends a grain of stream elements or a demand to the
destination site through the network.

3.2 Function instance

Each function instance is sequentially executed, but paral-
lelisms can be exploited among function instances. Each func-
tion instance receives one or several streams, and creates a
stream as a return value. Stream elements and demands are
transferred through a “channel” which is allocated between
function instances.

Each function instance transits states as follows:
1. Executing State:
This is the state that the function instance is executing.

From this state, it transits to the waiting state when one
of the following conditions occurs.

(1) When the function instance completes producing a

grain of stream elementl. it transits to the waiting
state to wait for the next demand. ' In this case,
the waiting state w called “Waiting for the next
demand”.

(2) When it completes comummg a grain of stream
elements, it transits to the waiting state to wait for
the next grain of stream clements. In this case, the
waiting state is called “Waiting for the next grain

of stream elements™.

2. Waiting for the next demand:
When the function instance transits to the waiting state
due to the condition (1), it waits for the next demand is-
sued by its consumer function instance. When this func-
tion instance receives a demand, it transits to the Ready
state,

3. Waiting for the next grain of stream elements:
When the function instance transits to the waiting state
due to the condition (2), it waits for a grain of stream ele-
ments which has been produced by the producer function
instance, after issuing the demand. In this state, when
the function instance receives the grain, it transits to the
Ready state.

4. Ready state;

If several funciijon instances are. allocxted to the same
site, the function instance transited from the waiting
state cannot be always executed immediately. Firsi, the
function instance transits io the Ready state, but not to
the Executing siate. From the Ready staie, the function
instance, which has obtained conirol from the scheduler,
transits to the Executing state. Each kernel includes a
scheduler. Then, the scheduler searches for the func-
tion instances which are ready to be activated, and gives
control to one of these funciion instances. Currently,
round-robin scheduling is employed.

3.3 Channel

Function instances use a2 “channel” to transfer demands and
stream elements between them, as shown in Fig, 3. The channel
has a communication buffer for transferring grains of stream
elements and demands. By using the channel, communication
between function instances can be performed transparently. A
channel has two main roles; oné is to be the interface to a
function instance as a “channel port”, the other is to perform
communication between channel ports in a single channel.
(1) channel port:
A channel port is the interface to a function instance. We
call the channel porl connected to the producer function
instance the producer channel port. We call the chan-
nel port connected to the consumer funclion instance the
consumer channel port. Each channel port is allocated to
the site where the function instance, which is connecied
to it, is allocated. Cémmunication between funciion in-
stances is performed through the producer and consumer
channel ports in a single channel according to requests
of demand or data transfers.

(2) communication between channel ports:

When function instances connected to a channel are al-
located to single site, or io different sites, they are exe-
cuted in pseudo-parallel, or in parallel, respectively. The
communication between producer and consnmer channel

ports is performed as follows:

{a) channel port communication within a single site:

When the producer and consumer channel ports are al-
located to the same site, a shared segment of memory is
used to communicate siream elements and demands as
shown in Fig. 3-(a). In our method, gince the function
instances allocated to the same site behave as coroutines,

— 269 ~



(a) channel port communication within a single site,

(b) channel port communication between different sites.

| g
n o

e < slte- 15>

< site- 2 >

Figure 3: Communication between function instances

the execution and suspension of each function instance
is managed under the control of a scheduler, thus the
mutual exclusion can be performed. Accordingly, the
accesses to the shared segment of memory by producer
and consumer function instances are serialized and per-
formed without conflict.

(b) channel port communication between different sites:
When the producer and consumer channel ports are al-
located to different sites, message-passing is performed
to communicate stream elements and demands. Stream
clemenis and demands are transferred as message pack-
ets. The interprocessor communication is performed as
shown in Fig. 3-(b).

step 1: )

By the function instance in the FCP, stream elements
and demands are stored in the shared segment of mem-
oty that has been allocated between the FCP and the
CP. A large amount of data may be transferred between
the FCP and the CP. Therefore, we use communication
with shared segments. Because the FCP and the CP
are in the same site, they can communicate with shared
segments. This method does not need to call the operat-
ing system for each communication request, so the over-

head of communication is relatively small. (Currently,
we are also implementing the parallel processing envi-
ronment with the tightly-coupled multiprocessors with
shared memory, In this environment, we utilize the com-
munication method using shared segments for transfer-
ring stream, elements and demands among processors.)
Accesses to shared segments are serialized by ordering
the access requests incorporating a semaphore mecha-
nism.
step 2:
The kernel facility in the CP creates a packet including a
grain of stream elements or a demand, which are stored
in the shared segment, it then transfers the packet to the
CP of the destination site.

step 3: )

In the destination site, the CP stores the received siream
elements or a received demand into the shared segment
of memory which is allocated beiween the FCP and the
CP. Then, the function instance receives the grain of
stream elements or the demand.

3.4 Interprocessor communication

We have implemented a parallel processing system SMASH on
the basis of the implementation method discussed above. The
current hardware environment consists of a number of Sun-
3 workstations(Unix 4.2BSD [10]) connected to the Ethernet
[10). We use facilities of interprocessor communication which
are suppotried in Unix.

We have chosen the UDP [10] as the communication pro-
tocol among the sites. In the communicating model of UDP,
interprocessor communication is performed through a shared
bus. In comparing to the communication protocel TCP [10],
we explain the reasons why we have adopted the UDP.

1. Since the UDP is a lower level communication protocol
than the TCP, its communication can be performed more
efficiently than that of the TCP. That is, since the UDP
is simple protocol, its overhead for network communica-
tion is smal}, and it is advantageous for transferring a
large amount of data, such as databases.

2. In the UDP, a processor can dynamically select the com-
munication partner when it receives a request for com-
munication. That is, unlike the T'CP, it is not necessary
to statically fix a one-to-one virtual circuit between the
processors. On the other hand, the TCP is based on
the communication model of Client and Server. This
forces the processors to communicate with each other as
a master and a servant. However, in our implementation
method, there is no special processor such as a super-
visor, and parallel processing is performed by commu-
nicating with processors of the same ability. Therelore,
the UDP is suited to our method. )

3. Communication in the UDP is less reliable than that
in the TCP. Therefore, the reliability of communication
- must be assured within the framework of our implemen-
tation. In our system, the CP supporte reliable com-
munication. On the other hand, the TCP has a higher
reliability than the UDP. However, this higher reliability
in the TCP often causes heavy overhead, especially, for
applications of database processing which are required
to manipulate large amounts of data. In comparing the
TCP with the UDP, we found the UDP to be more effi-
cient.

4 Experiments and results

We have performed several expetiments on the experimental
system for examining the effectiveness of our implementation

-270 -



) . Table 1: Base-relation sizes and seleclivity factors in the
evaluated queries =~ '

JToln-1 < site 1> v _
BS) -
isf1 Rlips, Query! | Query? } QueryS | Query{
®,) / Selection~3 | ssfa lflﬁ 1/16. | 1/10 1/10
' SR> | 10240 | 10240 | 10240 | 10240
Selection-1 < site 2> Join—3 jofs | 171024 | 17512 | 1/512 | 1/2048

3 1024 1024 1024 1024

TR, 1024 1024 1024 1024

ssfl "
(SR, i
/ Selection—2 1 ssfy 1/10 1/10 1/10 1/10

3R, | 10240 { 102406 | 10240 | 10240

< site 3> || Jom—2 Fsfa | 171024 | 171024 | /512 | 172048
: R 1024 1024 1024 1024
TR, | 1024 2048 | 2048 512
m Selection—1 | ssfy 1/10 1/10 1/10 1/10
1 10240 10240 10240 10240
et (1Ry] - Tein—1 Gahs | 171024 | 171024 | 1/512 | 1/2048
It 1024 1024 10_24 1024
TR, 1024 2048 4096 256
outpul IRo 1024 2048 8192 128
: function instance A X
site where the node is allocated.
D : buffer in a channel Table 1 shows the parameter settings of relation sizes and
} selectivity factors 7,9,13] for each query.

In Query 1, the size of the inh‘ermediate relation produced
.o - : : by each join node is the same as the size of the operand inner-
BS:, BS, BSs t_mtcr rdah_‘m buffer u'zc (tuples) relation. In Query 2, Join-$ produces an intermediate relation
IBS51,1BS3,IBS, inner—relation buffer size (tuples) with twice the size of the operand inner-relation. Join-2 and
SR;,5R32,S5Rs, IRy : basc—rvelation size (tuples) Join-t produce relations of the same size as that of the inter-
mediate relation produced by Join.3. In Query 3, each node
(Join-1, Join-2, Join-8) produces a relation with twice the size
IRy, IR2, Iy : inner—relation size (tuples) of the operand inner-relation. In Query {4, each node produces
a relation with half the size of the operand inner-relation.

Ry, Rz, Ra : outer—relation size (tuples)

, . {Ro ) r'e.?ult rclafm.n size (tuples) In the stream-oriented scheme, if the selectivity factors and
Jsh,isfagsfs i join selectivity facior the buffer sizes are kept constant, the [requency of communi-
3shi,88f2,85fs : selection selectivity factor cations, the amount of transfer data and the comparison times

: between pages will remain constant. Although the total execu-
( intermediate relation size = tion time becomes longer with the increase of base-relation size,
jsf * (inner-relation size * outer-relation size) ) neither parallelism nor effect on communication traffic changes.

Therefore, we did not perform experiments on various settings
of base-relation sizes.

We considered the queries with the same base-telation sizes

and different join selectivity factors. Tuples in all the rclations

. . - are 64 byies long, each including 4 byte integer attributes as

method presented in this paper. In addition, we have mea- gelection and joining attributes, All of the integer attributes

sured the execution time of several queries. The execution haye uniformly distributed values, but the range of their dis-
time includes the actual CPU time, system call time for disk  {ributions varies to generate different join selectivity factors.

I/O processing, and communication time among sites.

( intermediate relation size = ssf * base-relation size )
Figure 4: The type of query for experiments

4.2 Exberimental results

4.1 Queries for experiments ' In these experiments, the re-computation method has been

used as the parameter passing method in the stream-oriented
Our system can support a wide variety of database operations. scheme. In employing re-computation method, the total num-
Queries consisting of relational database operations are used, as  ber of computations is dependent only on the size of the outer-
examples. We utilize four simple queries, with the same struc-  relation buffer which has been allocated to ecach operation node.
ture, consisting of three join and three selection operations, as The outer-relation buffer size has an effect not only on the
shown in Fig. 4. Selection and join nodes are allocated to dif- number of computations, but on the parallelism between the
ferent sites, and executed in parallel by the stream-oriented operations which are being executed at different sites. There-
scheme. In each join node, the tuples of the grain stored fore, it is very important to allocate available buffer resources
in the outer-relation buffer are sorted on joining atiribute(s), optimally to each outer-relation bufler. In parallel processing
and each tnple in the inner-relation buffer is compared with cases, the size of the grain being transferred between sites also
the sorted tuples by using the binary-search algorithm. The affects parallelism. In the experiments, this grain size corre-
operand base-relation of each selection node is stored in the sponds to the inner-relation buffer size. Furthermore, buffer

_2?1_



sizes for base relations affect the number of disk 1/O opera-
tions. Therefore, it is important to optimally allocate buffer
resources to inner-relation buffers and buifers for base rela-
tions. That is, the limited buffer resources must optimally be
allocated to each buffer for each operation node. In [6,7,8], for
implementing the stream-oriented scheme in sequential, paral-
lel and distributed processing environments, we have presented
several algorithms to optimalily allocate the buffer resources to
each buffer. These algorithms are used to minimize the number
of computations and disk 1/O operations, and to exploit paral-
lelism in query processing. The experiments discussed in this
section have been focused on the investigation of the effects of
the outer-relation buffer size and the inner-relation buffer size
on the number of computations and paralielisms.

4.2.1 Effects of buffer resources

Three processors(sites) were used to execute each query. To
store outer-relation tuples of each join operation, the same
amount of buffer resources was allocated to each site, that is,
BS; = BS; = BSs. Fig. 5 shows the execution time in parallel
processing of Query 1, 2, 3 and 4 in varying the outer-relation
buffer size.

The execution time is shortened with the increase of the
outer-relation buffer size (BS), BS2, BS:). This is because,
the increase of the outer-relation buffer size decreases the num-
ber of computations in query processing. Execution time is
shortened discontinuously with the increase of the buffer size.
The number of re-computations of the join operation does not
continuously change with the increase of the buffer size. In
the range of the buffer sizes with which the number of re-
computations does not change, the execution time of a query
is not always shortened with the increase of the buffer size.

4.2.2 Effects of the outer-relation buffer size on
parallelism '

Resource allocation to the outer-relation buffer of each join
node gives a significant effect on parallelism inherent in a query.
In [6], we have introduced a criterion for resource allocation to
exploit the stream-oriented parallelism inherent in the oper-
ation nodes. Here, we briefly review the criterion. We con-
sider parallelism inherent between two nodes (Join-2,Join-3)
in Fig. 4. It is assumed that two operation nodes are being
executed by different sites.

If Join-2 performs the comparisons between two operand
grains currently stored in the input buffers (B33, IBS;), and
Join-3 completes producing the next inner-relation grain dur-
ing the comparisons in Join-2, the pipeline delay is eliminated.
{That is, the stream-oriented parallelism is exploited.) In other
words, a suspension of operation execution causes a pipeline
delay, which occurs in the absence of the next inner-relatio
grain. i

The number of comparisons between an inner-relation grain
IBS,; and a sorted outer-relation grain BS, in Join-21s

IBS2 % (log, BS: + jsf2 * BS3). 1

The number of comparisons in Join-3, to produce an inner-
relation grain (71BS:2) of Join-2 by using the binary-search al-
gorithm (1/jsf; is the average number of comparisons required
to generate one output tuple by the nested-loop) is

IBS; « (log,; BS3 + jsfa« BS:)/(Jsfs = BSs). (2)

The criterion to execute Join-2 continuously without pipeline

delay is as follows:

2 (2.

{second)
Execution limg.
1
100 '& .
» ;Que
£ i 4
s0T
o N

85 170 256 341 426 512 597 662 766 653 938 1024
The outer-relation buffer size (BS1=BS2=853).

Figure 5: Relationship between the outer-relation buffer
size and execution time.

If this criterion is satisfied in any adjacent nodes served as
producer and consumer nodes at different sites, the root-node
of a query tree (e.g. Join-1) can be executed without the sus-
pension.

Fig. 5 shows the execution time of the gueries Query 1, 2,
8 and 4. In Fig. 5, with the size ( 1024 tuples ) of outer-
relation buffer resources available at each site, the criterion
for exploiting parallelism mentioned above is salisfactory in
executing Query 1,2, and 9. In this size, there is no need to
perform the re-computation for the inner-relations in executing
Query 1,2,3 and 4 because the buffer size is large enough io
contain all the tuples of the outer-relations. As a result, the
best execution efficiency is shown.

The increase of the outer-relation buffer size contributes both
to reducing the number of computations and io satisfying the
criterion for exploiting parallelism.

4.2.3 Effects of communication granularity on
parallelism .

The size of the inner-relation buffer does not influence the num-
ber of computations in query processing. However, it influences
the number of times it takes to transfer siream elements and
the number of times it takes to issue demands. We varied the
size IBSi(i = 1,2,3) of the inner-relation baffer in Query 1,
2, 8, and { to examine iis effects on the number of times it
takes to transfer packets of stream elements, and the number
of times it takes to issue demands. The change of 1BS; corre-

- 272 -



sponds to that of granularity for message-passing. Fig. 6 shows
the relationship between the execution time and the alterna-
tion of the inner-relation buffer size, when all the tuples of the
outer-relations are contained in the outer-relation buffers. As
shown in this figure, with the smaller size of the inner-relation
buffer, the execution time becomes longer, because the aver-
head has become heavier due to the increase of the number
of times it takes to transfer packets of stream elements or de-
mands. With the larger size of the inner-relation buffer, the
execution time also becomes longer because the increase of the
buffer size decreases the parallelism in stream-oriented process-
ing. In particular, the setting of granularity is important in the
small granularity range.

(second)
Execution tima.

5T

{tuntes)
100 128 256 384 512 640 786 896 1024.
The inner-relation buffer size.

4 8 16 64

Figure 6: Execution time in various settings of cornmuni-
cation granularity.

5 Conclusion

In this paper, we have presented an implementation method
of an extemsible parallel processing system SMASH for sup-
porting a wide variety of basic operations. Our experimental
results have shown that this implementation method is effec-
tive in performing parallel processing of actual queries. This
implementation method can be applied to a wide variety of
parallel processing environments in which the message pass-
ing mechanism is used for the interprocessor communication.
Currently, we are designing another implementation method of
the basic primitives for implementing the stream-oriented par-
allel processing scheme on tightly-coupled multiple processors
with shared memory. In utilizing this method, the commu-
nication schemes between function instances are different from

those presented in ihispaper. Favéliermore, resonrce allocation
strategies are also different. ’ ’

We are extending our basic primitives so as to support a wide
variety of advanced database applications. In particular, in
extending our basic primitives, the flexibility and extensibility
for descriptions and manipulations of complex objectsfi] have
beeh very important. ‘

References

[1] M. P. Atkinson and O. P. Buneman, *Types and persis-
tence in database programming languages,” ACM Com-
put. Surv., Vol. 19, No. 2, pp. 106-190, 1987,

{2] P. B. Hawthoron and D. J. DeWitt, *Performance analy-
_ sis of alternative database machine architectures,” IEEE
Trans. Softw. Eng., Vol. SE-8 No. 1, pp. 61-76, 1982,

Y. Kiyoki, K. Tanaka, N. Kamibayashi and H. Aiso,
"Design and evaluation of a relational database machine
employing advanced data structures and algorithms,” in
Proc. 8th Int. Symp. on Computer Architecture, pp. 407-
423, 1981.

Y. Kiyoki, K. Kato and T, Masuda,” A relational database
machine based on functional programming concepts,” in
Proc. 1986 ACM-IEEE Computer Sociéty Fall Joint Com-
puter Conf., pp. 969-978, Nov. 1986,

Y. Kiyoki, K. Kato, N. Yamaguchi and T. Masuda, A
stream-oriented approach to parallel processing for deduc-
tive databases,” in Proc. 5th Int. Workshop on Database
Machines, pp. 102-115, 1987,

Y. Kiyoki, P. Liu and T. Masuda, ”A resource allocation
strategy in the stream-oriented paralle] processing scheme
for relational database operations,” Transactions of Infor-
mation Processing Society of Japon, Vol. 28, No.11, pp.
1177-1192, 1987.

P. Liu, Y. Kiyoki and T. Masada, * A computation method
for buffer resource allocation in the stream-oriented pro-
cessing scheme for relational database operations,” Trans-
actions of Information Processing Society of Japan, Vol.
29, No. 8, pp. 770-781, 1988,

P. Liu, Y. Kiyoki and T. Masuda, *Efficient algorithms for
resource allocation in parallel and distributed query pro-
cessing environments,” Proceeding of the IEEE Distributed
Computing Systems, 1989 (1o appear).

P.G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie and T. G. Price, ”Access path selection in 3 re-
lational database system,” Proc. of the ACM-SIGMOD
Conf., pp.23-34, 1979 . )

[10) ”Programming reference manual for the Sun workstation,”
Sun Micro Systems, Inc., 1986.
{11]

P. C. Treleaven, D. R. Brownbridge and R. P. Hopkins,
"Data-driven and demand-driven computer architecture,
?» ACM Comput. Surv., Vol. 14, No. 1, Mar. 1982.

S. R. Vegdahl, ” A survey of proposed architectures for the
execution of functional languages,” IEEE Trans. Comput.,
Vol. C-33, No. 12, pp. 1050-1071, Dec. 1984.

C. T. Yu and C. C. Chang, "Distributed query process-
ing,” ACM Computing Surveys, Vol. 16, No.4, pp. 399-433,
Dec. 1984.

(3]

[4

—

[5]

(6l

(7

fa)

18]

(9]

[12]

[13])

— D7 Y

<



